JPH0297472A - Conductive silicon carbide sintered porous body and production thereof - Google Patents

Conductive silicon carbide sintered porous body and production thereof

Info

Publication number
JPH0297472A
JPH0297472A JP24588388A JP24588388A JPH0297472A JP H0297472 A JPH0297472 A JP H0297472A JP 24588388 A JP24588388 A JP 24588388A JP 24588388 A JP24588388 A JP 24588388A JP H0297472 A JPH0297472 A JP H0297472A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintering
porous body
sintered
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24588388A
Other languages
Japanese (ja)
Other versions
JP2728457B2 (en
Inventor
Hidetoshi Yamauchi
山内 英俊
Yoshimi Ohashi
大橋 義美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP63245883A priority Critical patent/JP2728457B2/en
Publication of JPH0297472A publication Critical patent/JPH0297472A/en
Application granted granted Critical
Publication of JP2728457B2 publication Critical patent/JP2728457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a conductive silicon carbide sintered porous body which is low in specific resistance and excellent in self-heat releasing properties by adopting a specified sintering stage. CONSTITUTION:This conductive silicon carbide sintered porous body has 10<-1>-10<3>OMEGA.cm specific resistance. Further the silicon carbide sintered porous body is formed by the following five stages. (1) A first stage for obtaining a mixture by utilizing silicon carbide powder as a starting raw material and adding a crystal growing auxiliary in accordance with necessity. (2) A second stage for obtaining a green molded body by adding a binder for molding to this mixture and molding the mixture into a prescribed shape. (3) A third stage for obtaining a primary sintered body by introducing this green molded body into a heat resistant vessel and performing primary sintering at 1500-1900 deg.C while interrupting infiltration of the outside air. (4) A fourth stage for obtaining a secondary sintered body by heating the primary sintered body at 500-900 deg.C in the oxidizing atmosphere to perform decarbonizing treatment and thereafter introducing it into the heat resistant vessel and performing secondary sintering at 2000-2400 deg.C while interrupting infiltration of the outside air. (5) A fifth stage for obtaining a tertiary sintered body by performing tertiary sintering for the secondary sintered body at 1700-2300 deg.C in the reduced pressure of 200-10<-3>Torr.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、導電性炭化ケイ素焼結多孔体及びその製造方
法に関し、さらに詳しくは、自動車、発電機等の内燃機
関、窯業、金属工業における工業炉等からの排ガス中に
含まれる微粒炭素を捕集するフィルターとして用いられ
る炭化ケイ素焼結多孔体及びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a conductive silicon carbide sintered porous body and a method for manufacturing the same, and more specifically, to internal combustion engines such as automobiles and generators, ceramic industry, and metal industry. The present invention relates to a sintered porous silicon carbide body used as a filter to collect particulate carbon contained in exhaust gas from industrial furnaces, etc., and a method for manufacturing the same.

[従来の技術及び発明が解決しようとする課題]従来、
排ガス中に含まれる微粒炭素を捕集し除去するために、
排気経路中にセラミック製焼結多孔体をフィルターとし
て用いることが多く試みられている。
[Prior art and problems to be solved by the invention] Conventionally,
In order to capture and remove particulate carbon contained in exhaust gas,
Many attempts have been made to use a ceramic sintered porous body as a filter in the exhaust path.

しかし、フィルターを長期使用すると、微粒炭素が堆積
して目詰りを起こし、圧力損失を生ずるという欠点があ
る。
However, if the filter is used for a long period of time, it has the drawback that fine carbon particles accumulate and cause clogging, resulting in pressure loss.

かかる欠点を解消するものとして、フィルターの微粒炭
素捕集部に定期的に燃料と空気を吹き込み強制加熱させ
るバーナ燃焼方式、フィルター前面に電熱ヒータを設け
て加熱燃焼させる等の方法が提案されている。
To overcome this drawback, methods have been proposed, such as a burner combustion method in which fuel and air are periodically blown into the particulate carbon collection part of the filter to forcefully heat it, and methods in which an electric heater is installed in front of the filter to heat and burn the particulate carbon. .

しかし、バーナ方式では、燃焼温度制御が困難であるた
め、異常高温によりフィルターが溶損したり、クラック
が生じる等の問題がある。また、ヒータ方式では、燃焼
がヒータ近傍部に留まり、フィルター全体に亘り燃焼さ
せることができず、また、フィルター全体に電気抵抗線
を取り付けることも困難である等の問題がある。特に、
炭化ケイ素などの熱伝導率の高い材料から成るフィルク
ーにおいては、局部的に加えた熱が全体に拡散し、微粒
炭素の着火温度である500〜600℃に達しにくく燃
焼しないことが問題となっている。
However, in the burner method, since it is difficult to control the combustion temperature, there are problems such as filter melting and cracking due to abnormally high temperatures. Furthermore, in the heater method, combustion remains in the vicinity of the heater, making it impossible to burn the entire filter, and it is also difficult to attach electrical resistance wires to the entire filter. especially,
The problem with filters made of materials with high thermal conductivity such as silicon carbide is that heat applied locally spreads throughout the body, making it difficult to reach the ignition temperature of 500 to 600 degrees Celsius, which is the ignition temperature of fine carbon particles, resulting in no combustion. There is.

これに対し、自己発熱性を備えたフィルターならば、上
記したような問題がなく全体を均一に加熱、することが
でき、かつ、短時間で燃焼が完了する6そこで、炭化ケ
イ素等を材料とし、直接通電により自己発熱可能とした
ものが考えられている。
On the other hand, if the filter is self-heating, the entire body can be heated uniformly without the above-mentioned problems, and the combustion can be completed in a short time6. , devices that can self-heat by direct energization are being considered.

しかしながら、従来の炭化ケイ素を材料とするフィルタ
ーは、通電抵抗特性としての比抵抗が10s〜1010
Ω・cotと高く、実質的に通電させることが不可能で
あり、自己発熱効果を得ることはできなかった。
However, conventional filters made of silicon carbide have a specific resistance of 10s to 1010s as a current carrying resistance characteristic.
The resistance was as high as Ω·cot, and it was virtually impossible to conduct electricity, making it impossible to obtain a self-heating effect.

不発明は、上記問題点を解消し、比抵抗が低く自己発熱
性に優れた導電性炭化ケイ素焼結多孔体及びその製造方
法の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a conductive sintered porous silicon carbide body having low resistivity and excellent self-heating properties, and a method for manufacturing the same.

[課題を解決するための手段] 本発明者らは、−F配回的を達成するため鋭意研究を重
ねた結果、比抵抗が高い原因は、出発原料である炭化ケ
イ素粉末の表面が極めて活性であるため、その表面に形
成されている酸化被膜に起因する酸素や雰囲気中の酸素
が、焼結時に炭化ケイ素結晶の粒界や粒界の付近に残存
(固溶)することによるものであると考えた。そこで、
焼結後さらに減圧下(真空中)において高温度処理を行
なうことにより、該酸素を除去すれば、比抵抗の低い導
電性が優れた炭化ケイ素焼結多孔体を得ることかできる
と考え1本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive research to achieve -F distribution, the present inventors found that the reason for the high specific resistance is that the surface of the silicon carbide powder, which is the starting material, is extremely active. Therefore, oxygen from the oxide film formed on the surface and oxygen in the atmosphere remain (solid solution) in the grain boundaries and vicinity of the silicon carbide crystals during sintering. I thought. Therefore,
After sintering, we thought that if the oxygen was removed by further high-temperature treatment under reduced pressure (vacuum), we could obtain a sintered silicon carbide porous body with low resistivity and excellent conductivity. The invention was completed.

すなわち、本発明の炭化ケイ素焼結多孔体は、比抵抗が
10−1〜103Ω・cmであることを特徴とする。
That is, the silicon carbide sintered porous body of the present invention is characterized by having a specific resistance of 10<-1> to 10<3 >[Omega].cm.

抵抗発熱体として利用する際の比抵抗は、10−1〜1
03Ω・cmの範囲が好ましい、比抵抗が10−1Ω・
C11より低いと、一定量の熱量を得るために多(の電
流を消費する必要があり経済的でなく、また、比抵抗が
103Ω・Cff1を超えると、一定量の熱量を得るた
めには高電圧を印加する必要がある。通常の自動車用電
源12Vまたは24■、工業用電源100Vまたは20
0Vなどを利用することから、比抵抗としては10−1
〜103Ω・cmが好ましい。
The specific resistance when used as a resistance heating element is 10-1 to 1.
The range of 03Ω・cm is preferable, and the specific resistance is 10−1Ω・cm.
If it is lower than C11, it is necessary to consume a large amount of current to obtain a certain amount of heat, which is not economical, and if the resistivity exceeds 103Ω・Cff1, it will be necessary to consume a large amount of current to obtain a certain amount of heat. It is necessary to apply voltage. Normal automotive power supply 12V or 24V, industrial power supply 100V or 20V
Since 0V is used, the specific resistance is 10-1.
~10 3 Ω·cm is preferable.

比抵抗が10−1〜103Ω・cmと低(なる理由は、
後述する条件下、三次焼結処理を行なうことにより、炭
化ケイ素結晶の粒界や粒界付近に残存している酸素が、
SiCと反応して、例えば(S i C+ 02→Si
O↑十C0T)あるいは(S i C+ S i O2
−2S i O↑+CO丁)などで除去され、酸素含有
量が1重量%以下となり比抵抗が低くなるものと考えら
れる。
The specific resistance is as low as 10-1 to 103Ω・cm (the reason is
By performing the tertiary sintering treatment under the conditions described below, the oxygen remaining at and near the grain boundaries of silicon carbide crystals is removed.
For example, (S i C+ 02→Si
O↑10C0T) or (S i C+ S i O2
It is considered that the oxygen content is reduced to 1% by weight or less and the specific resistance is lowered.

また、かかる処理により、同時に表面部分の炭化ケイ素
が熱分解して(S i C−4S i T 十c)表面
部分に炭素が多く含まれた層が形成されることも、比抵
抗を低(する要因と考えられる。
In addition, due to this treatment, silicon carbide in the surface portion is simultaneously thermally decomposed (S i C-4S i T 10c) and a layer containing a large amount of carbon is formed in the surface portion, which lowers the specific resistance ( This is considered to be a factor.

また、本発明の焼結多孔体の構造は、目を細か(しても
圧力損失が少なく、またコンパクトである等の理由から
、ハニカム構造とすることが好ましい。
Further, the structure of the sintered porous body of the present invention is preferably a honeycomb structure because even if the porous body has fine pores, there is little pressure loss and it is compact.

次に1本発明の製造方法について説明する。Next, a manufacturing method of the present invention will be explained.

本発明の導電性炭化ケイ素焼結多孔体の製造方法は、炭
化ケイ素粉末を出発原料とし、必要により結晶成長助剤
を添加し混合物を得る第1工程:該混合物に成形用結合
剤を添加し所定の形状に成形した生成形体を得る第2工
程;該生成形体を耐熱性の容器内に挿入して外気の侵入
を遮断しつつ、1500〜1900℃の温度範囲内で一
次焼結を行ない一次焼結体を得る第3工程:該一次焼結
体を酸化雰囲気下において500〜900℃の温度範囲
内で加熱し脱炭処理を行なった後、耐熱性の容器内に挿
入して外気の侵入を遮断しつつ2000〜2400℃の
温度範囲内で二次焼結を行ない二次焼結体を得る第4工
程:該二次焼結体を200〜10−”t o・r rの
減圧下、1700〜2300℃の温度範囲内で三次焼結
を行ない三次焼結体を得る第5工程:よりなることを特
徴とする。
The method for producing a conductive sintered porous silicon carbide body of the present invention includes using silicon carbide powder as a starting material and adding a crystal growth aid as necessary to obtain a mixture.The first step is to obtain a mixture by adding a molding binder to the mixture. A second step of obtaining a green body formed into a predetermined shape; the green body is inserted into a heat-resistant container to block outside air from entering, and primary sintering is performed within a temperature range of 1500 to 1900°C. Third step of obtaining a sintered body: After decarburizing the primary sintered body by heating it in an oxidizing atmosphere within a temperature range of 500 to 900°C, it is inserted into a heat-resistant container and exposed to outside air. 4th step of obtaining a secondary sintered body by performing secondary sintering within a temperature range of 2000 to 2400°C while blocking the , a fifth step of performing tertiary sintering within a temperature range of 1700 to 2300°C to obtain a tertiary sintered body.

まず、第1工程においては、β型の炭化ケイ素粉末を出
発原料とすることが好ましい、その理由は、βをの炭化
ケイ素結晶は比較的低温で合成される低温安定型結晶で
あり、しかも板状結晶の成長性にも優れているからであ
る。特に60重量%以上がβ型炭化ケイ素からなる出発
原料を用いることにより本発明の目的とする焼結多孔体
を好適に製造することができる。なかでも、70重量%
以上のβ型炭化ケイ素を含有する出発原料を使用するこ
とが有利である。
First, in the first step, it is preferable to use β-type silicon carbide powder as the starting material.The reason is that β-type silicon carbide crystals are low-temperature stable crystals synthesized at relatively low temperatures, and are This is because it also has excellent growth properties of crystals. In particular, by using a starting material containing 60% by weight or more of β-type silicon carbide, the sintered porous body targeted by the present invention can be suitably produced. Among them, 70% by weight
It is advantageous to use starting materials containing the above β-type silicon carbide.

結晶成長助剤としては1例えば、アルミニウム、ホウ素
、鉄、炭素等が挙げられる。
Examples of crystal growth aids include aluminum, boron, iron, carbon, and the like.

次に、第2工程において、第1工程において得られた混
合物にメチルセルロース、ポリビニルアルコール、水ガ
ラス等の成形用結合剤を添加し、押出し成形、シート成
形、プレス成形等の方法により所定の形状、例えばハニ
カム状の生成形体を得る。
Next, in the second step, a molding binder such as methyl cellulose, polyvinyl alcohol, or water glass is added to the mixture obtained in the first step, and the mixture is shaped into a predetermined shape by extrusion molding, sheet molding, press molding, etc. For example, a honeycomb shaped product is obtained.

次に、第3工程において、第2工程で得られた生成形体
を耐熱性の容器内に封入し、外気の侵入を遮断しつつ1
500〜1900’cの温度範囲内で焼結して一次焼結
体を得る。
Next, in the third step, the formed body obtained in the second step is sealed in a heat-resistant container, and while blocking the intrusion of outside air,
A primary sintered body is obtained by sintering within a temperature range of 500 to 1900'c.

第3工程において、比較的低温で一次焼結するのは、加
工あるいは表面処理等を容易にするためである。
In the third step, the primary sintering is performed at a relatively low temperature in order to facilitate processing, surface treatment, etc.

また焼結温度を1500〜1900’Cの温度範囲とす
るのは、加工する上において容易な強度とするとともに
生成形体中の炭素に影響のない温度とするためである。
The reason why the sintering temperature is set in the range of 1500 to 1900'C is to obtain strength that is easy to process and to set the temperature at a temperature that does not affect the carbon in the formed body.

例えば、コーティング処理や連続生成形した後切断ある
いは充填等により成形加工を行なう場合において、生成
形体の状態では処理及び加工が難しく、また、これを後
加工する場合には、二次焼結した後に加工を施すと、セ
ラミック材質のため硬く機械加工等が非常に困難となり
コスト面より経済的でない。
For example, when forming by cutting or filling after coating or continuous forming, it is difficult to process and process the formed form, and when post-processing it, after secondary sintering. When processed, the ceramic material is hard and difficult to machine, making it uneconomical in terms of cost.

なお、−次焼結を行なうにあたっては、生成形体に脱脂
処理を施した後に行なってもよい、この脱脂は生成形体
中に混入させた有機物を前もって除去するために行なう
処理であり、脱脂を行なう場合には急眼な加熱と焼結は
避は徐々に有機物を消失させることがよい。
In addition, when performing the second sintering, it may be carried out after degreasing the formed body. This degreasing is a process performed in advance to remove organic matter mixed into the formed body, and degreasing is performed. In such cases, it is better to avoid rapid heating and sintering and to gradually eliminate the organic matter.

第4工程においては、まず、一次焼結体を、酸化雰囲気
下、500〜900℃の温度範囲内で1〜4時間加熱し
脱炭処理を行なう。これは、次焼結体に残留している炭
素を除去するために行なう処理である。
In the fourth step, first, the primary sintered body is heated in an oxidizing atmosphere within a temperature range of 500 to 900°C for 1 to 4 hours to perform decarburization treatment. This is a process performed to remove carbon remaining in the secondary sintered body.

次に、脱炭処理を行なった一次焼結体を耐熱性の容器内
に封入し、外気の侵入を遮断しつつ2000〜2400
℃の温度範囲内で1〜2時間時間位結処理を行なう。
Next, the decarburized primary sintered body is sealed in a heat-resistant container, and heated to 2000 to 2400 ml while blocking the intrusion of outside air.
The setting treatment is carried out for 1 to 2 hours within the temperature range of .degree.

なお、ハニカム構造体の場合には、通常、ハニカム状の
一次焼結体の脱炭処理を行なった後、所定の貫通孔の端
部に、例えば該生成形体と同材料から成る封止材を充填
して、二次焼結処理を行なうことになる。
In the case of a honeycomb structure, after the honeycomb-shaped primary sintered body is decarburized, a sealing material made of, for example, the same material as the formed body is usually placed at the end of a predetermined through hole. After filling, a secondary sintering process will be performed.

耐熱性の容器内に封入し、外気の侵入を遮断しつつ焼結
することにより、隣接する炭化ケイ素結晶同士を融合さ
せ、かつ、炭化ケイ素の板状結晶の成長を促進させるこ
とができる。したがって、焼結多孔体を板状結晶が複雑
な状態で絡み合った三次元の網目構造とすることができ
、その結果、流体(排ガス)と接触する有効表面積が大
きくなり、微粒炭素の捕集効率を高めることができる。
By enclosing it in a heat-resistant container and sintering it while blocking the intrusion of outside air, adjacent silicon carbide crystals can be fused together and the growth of plate-shaped silicon carbide crystals can be promoted. Therefore, the sintered porous body can be made into a three-dimensional network structure in which plate crystals intertwine in a complicated state, and as a result, the effective surface area that comes into contact with the fluid (exhaust gas) increases, and the collection efficiency of fine carbon particles increases. can be increased.

また、ハニカム構造体の場合には、ハニカムの軸方向か
らの流れを隔壁内に取り込み易くなり、また、隔壁表面
で生じる流体の流れが乱流となるため、流れ内における
拡散、撹拌等による均一化が促進され、隔壁表面で生じ
る熱移動、化学反応、物質移動等を有効に行なわせしめ
ることができる。
In addition, in the case of a honeycomb structure, it is easier to incorporate the flow from the axial direction of the honeycomb into the partition walls, and since the fluid flow generated on the partition wall surface becomes turbulent, it is possible to achieve uniformity by diffusion, stirring, etc. within the flow. The heat transfer, chemical reaction, mass transfer, etc. that occur on the surface of the partition wall can be effectively carried out.

次に、かくして得られた二次焼結体を第5工程において
、さら三次焼結する。かかる処理を施すことにより、比
抵抗の低い焼結多孔体が得られる。
Next, the thus obtained secondary sintered body is further tertiary sintered in a fifth step. By performing such treatment, a sintered porous body with low resistivity can be obtained.

焼結は、200〜10−”torrの減圧下(真空中)
、1700〜2300℃の温度範囲で行なうことが好ま
しい。
Sintering is performed under reduced pressure (in vacuum) of 200 to 10-” torr.
, it is preferable to carry out at a temperature range of 1700 to 2300°C.

200〜10−”torrの減圧下(真空中)とする理
由は、200torrを超えると1700〜2300 
℃の温度範囲において、例えば。
The reason for using it under reduced pressure (vacuum) of 200 to 10 torr is that if it exceeds 200 torr, the
For example, in the temperature range of °C.

SIC+SiO2;=2SiO+CO の反応平衡に到達せず1反応が実質的に進行しないから
であり、一方、10−”torrより低いと、上記温度
範囲において上記反応は十分に進行するが、装置が複雑
となりコストが高くなって好ましくないからである。
This is because the reaction equilibrium of SIC+SiO2;=2SiO+CO is not reached and one reaction does not substantially proceed.On the other hand, if the temperature is lower than 10-"torr, the above reaction proceeds satisfactorily in the above temperature range, but the apparatus becomes complicated. This is because the cost increases, which is undesirable.

また、上記温度を1700〜2300℃の温度範囲とす
る理由は、1700℃より低いと反応平衡定数と反応速
度が低く長時間かかるとともに十分な酸素除去が不可能
となるからであり、一方、2300℃を超えると1反応
速度は速いが、制御が困難となり、かつ、SiCのマト
リックスに悪影響を及ぼすことになるからである。より
好ましくは、1850〜2150’Cの範囲である。
The reason why the above temperature is set in the temperature range of 1700 to 2300°C is that if it is lower than 1700°C, the reaction equilibrium constant and reaction rate are low and it takes a long time and sufficient oxygen removal becomes impossible. If the temperature exceeds .degree. C., the reaction rate will be fast, but it will be difficult to control and will have an adverse effect on the SiC matrix. More preferably, it is in the range of 1850 to 2150'C.

なお、焼結時間は1〜6時間が好ましい。Note that the sintering time is preferably 1 to 6 hours.

[実施例1 実施例 出発原料として使用した炭化ケイ素微粉末は、80重量
%がβ型結晶からなるものを用いた。この出発原料には
不純物としてBが0.01.Cが0.5.Affが0.
01.Nが0.2.Feが0.08原子m?、その他の
元素は痕跡置きまれており、これらの不純物総量は0.
81原子量部であった。また、この出発原料の平均粒径
は0.3um、比表面積は18.7rn”/gであった
[Example 1 The silicon carbide fine powder used as the starting material in the example consisted of 80% by weight of β-type crystals. This starting material contains 0.01% of B as an impurity. C is 0.5. Aff is 0.
01. N is 0.2. Fe is 0.08 atom m? , traces of other elements are present, and the total amount of these impurities is 0.
It was 81 parts by atomic weight. Further, the average particle size of this starting material was 0.3 um, and the specific surface area was 18.7 rn''/g.

この出発原料に成形用結合剤としてメチルセルロースを
10重量部、水分を20重量部添加した。これを混練し
て、押出し成形法により直径130mm、長さ120m
n+、貫通孔の隔壁の厚さ0.3mm、1平方インチ当
りの貫通孔数的200のハニカム状の生成形体を得た。
To this starting material were added 10 parts by weight of methylcellulose as a molding binder and 20 parts by weight of water. This was kneaded and extruded into a shape with a diameter of 130 mm and a length of 120 m.
A honeycomb-like formed body was obtained, in which the thickness of the partition walls of the through-holes was 0.3 mm and the number of through-holes was 200 per square inch.

この生成形体をArガス雰囲気中で0.5℃/分の昇温
速度で750℃まで昇温し最高温度で1時間保持し前記
結合剤を酸化除去し脱脂を完了した。
This formed body was heated to 750° C. at a heating rate of 0.5° C./min in an Ar gas atmosphere and held at the maximum temperature for 1 hour to oxidize and remove the binder, completing degreasing.

その後、この成形体を20%の黒鉛ルツボに入れ1気圧
のArガス雰囲気中で一次焼結した。焼結は、2℃/分
で1700℃まで昇温し最高温度で1時間保持した。
Thereafter, this compact was placed in a 20% graphite crucible and primary sintered in an Ar gas atmosphere of 1 atm. For sintering, the temperature was raised to 1700°C at a rate of 2°C/min and held at the maximum temperature for 1 hour.

ついで、貫通孔の一方の端部に縦横−つおきに封止材を
充填し、また、該封止材が充填されていない貫通孔の他
方の端部にも同じ(封止材を充填した。
Next, one end of the through hole is filled with a sealing material in every row and column, and the other end of the through hole that is not filled with the sealing material is also filled with the same (filling with the sealing material). .

ついで、この封止された一次焼結体を1’C/分の昇温
速度で700℃まで酸化雰囲気中で加熱する脱炭処理を
行なった。
Next, this sealed primary sintered body was subjected to a decarburization treatment in which it was heated to 700° C. in an oxidizing atmosphere at a temperature increase rate of 1′C/min.

その後、この脱炭処理を施した一次焼結体を気孔率20
%の黒鉛ルツボに入れ1気圧のArガス雰囲気中で二次
焼結処理を行なった。焼結は、1.5℃/分で2150
℃まで昇温し、最高温度で4時間保持した。
After that, the primary sintered body subjected to this decarburization treatment was
% graphite crucible and subjected to secondary sintering treatment in an Ar gas atmosphere of 1 atm. Sintering at 2150°C at 1.5°C/min
The temperature was raised to .degree. C. and maintained at the maximum temperature for 4 hours.

しかる後、冷却後黒鉛ルツボから取り出し0.4tor
rの減圧下において三次焼結処理を行なった。
After that, after cooling, it was taken out from the graphite crucible and heated to 0.4 torr.
Tertiary sintering treatment was performed under reduced pressure of r.

三次焼結は真空ポンプにて前記0.4torrまで減圧
した後10℃/分で1900℃まで昇温し最高温度で1
時間保持した。
For tertiary sintering, the pressure was reduced to 0.4 torr using a vacuum pump, and then the temperature was raised to 1900 °C at a rate of 10 °C/min, and the maximum temperature was 1.
Holds time.

得られたハニカム状の炭化ケイ素焼結多孔体は根状結晶
構造であり、開放気孔径23μm、開放気孔率50容量
%であった。
The obtained honeycomb-shaped sintered silicon carbide porous body had a root-like crystal structure, an open pore diameter of 23 μm, and an open porosity of 50% by volume.

また、この焼結多孔体中の遊離炭素は4重量%であり、
酸素含有量は0.8重量%であった。
In addition, the free carbon in this sintered porous body is 4% by weight,
The oxygen content was 0.8% by weight.

その結果、比抵抗は3.0Ω・cmであった。As a result, the specific resistance was 3.0 Ω·cm.

±較皿ユ 実施例と同様であるが、二次焼結まで行なったのみで三
次焼結処理を行なわずにハニカム状の炭化ケイ素焼結多
孔体とした。
This was the same as the comparison example, except that only the secondary sintering was performed and the tertiary sintering process was not performed to form a honeycomb-shaped sintered porous body of silicon carbide.

得られた焼結多孔体は板状結晶構造であり、開放気孔径
20μm、開放気孔率52容量%であった。
The obtained sintered porous body had a plate-like crystal structure, an open pore diameter of 20 μm, and an open porosity of 52% by volume.

また、この焼結多孔体中の遊離炭素は0.2重量%であ
り、酸素含有量はO,1重量%であった。
Furthermore, the free carbon in this sintered porous body was 0.2% by weight, and the oxygen content was O.1% by weight.

その結果、比抵抗は5XlO’Ω・cmであった。As a result, the specific resistance was 5XlO'Ω·cm.

比較例2 実施例と同様であるが、三次焼結処理における焼結温度
を2400℃で行ないハニカム状の炭化ケイ素焼結多孔
体とした。
Comparative Example 2 This was the same as in the example, but the sintering temperature in the tertiary sintering treatment was 2400° C. to obtain a honeycomb-shaped sintered porous body of silicon carbide.

得られた焼結多孔体は、板状結晶構造であり、開放気孔
径30um、開放気孔率60容量%であった。
The obtained sintered porous body had a plate-like crystal structure, an open pore diameter of 30 um, and an open porosity of 60% by volume.

また、この焼結多孔体中の酸素含有量は0.2重量%で
あった。
Further, the oxygen content in this sintered porous body was 0.2% by weight.

その結果、比抵抗は0.3Ω・cmであり、導電性を有
していたが、ハニカム状焼結多孔体としての強度がな(
炉より取り出した際に崩壊した。
As a result, the specific resistance was 0.3 Ωcm, and although it had electrical conductivity, it lacked the strength as a honeycomb-shaped sintered porous body (
It collapsed when removed from the furnace.

[発明の効果] 本発明の導電性炭化ケイ素焼結多孔体は、比抵抗が低い
ので、低電圧でも通電発熱して排ガス中の微粒炭素を効
率よく燃焼除去することができる。したがって、ディー
ゼルエンジンを始めとする各種燃焼機器のフィルターと
して有用である。
[Effects of the Invention] Since the conductive silicon carbide sintered porous body of the present invention has a low specific resistance, it can generate heat even at a low voltage and can efficiently burn and remove particulate carbon in exhaust gas. Therefore, it is useful as a filter for various combustion equipment including diesel engines.

Claims (4)

【特許請求の範囲】[Claims] (1)比抵抗が10^−^1〜10^3Ω・cmである
ことを特徴とする導電性炭化ケイ素焼結多孔体。
(1) A conductive silicon carbide sintered porous body characterized by having a specific resistance of 10^-^1 to 10^3 Ω·cm.
(2)該多孔体の構造がハニカム構造である請求項1記
載の導電性炭化ケイ素焼結多孔体。
(2) The conductive silicon carbide sintered porous body according to claim 1, wherein the porous body has a honeycomb structure.
(3)該多孔体の酸素含有量が1重量%以下である請求
項1または2記載の導電性炭化ケイ素焼結多孔体。
(3) The conductive silicon carbide sintered porous body according to claim 1 or 2, wherein the porous body has an oxygen content of 1% by weight or less.
(4)炭化ケイ素粉末を出発原料とし、必要により結晶
成長助剤を添加し混合物を得る第1工程; 該混合物に成形用結合剤を添加し所定の形状に成形した
生成形体を得る第2工程; 該生成形体を耐熱性の容器内に挿入して外気の侵入を遮
断しつつ、1500〜1900℃の温度範囲内で一次焼
結を行ない一次焼結体を得る第3工程; 該一次焼結体を酸化雰囲気下において500〜900℃
の温度範囲内で加熱し脱炭処理を行なった後、耐熱性の
容器内に挿入して外気の侵入を遮断しつつ2000〜2
400℃の温度範囲内で二次焼結を行ない二次焼結体を
得る第4工程;該二次焼結体を200〜10^−^3t
orrの減圧下、1700〜2300℃の温度範囲内で
三次焼結を行ない三次焼結体を得る第5工程; よりなることを特徴とする導電性炭化ケイ素焼結多孔体
の製造方法。
(4) First step using silicon carbide powder as a starting material and adding a crystal growth aid if necessary to obtain a mixture; Second step adding a molding binder to the mixture to obtain a product molded into a predetermined shape. A third step of obtaining a primary sintered body by inserting the formed body into a heat-resistant container to block outside air from entering and performing primary sintering within a temperature range of 1500 to 1900°C; The body is heated to 500-900℃ under an oxidizing atmosphere.
After decarburizing by heating within the temperature range of 2,000 to 2,000
Fourth step of performing secondary sintering within a temperature range of 400°C to obtain a secondary sintered body;
A method for manufacturing a conductive sintered porous silicon carbide body, comprising: a fifth step of performing tertiary sintering under a reduced pressure of 1,700 to 2,300° C. to obtain a tertiary sintered body.
JP63245883A 1988-10-01 1988-10-01 Method for producing sintered conductive silicon carbide porous body Expired - Fee Related JP2728457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63245883A JP2728457B2 (en) 1988-10-01 1988-10-01 Method for producing sintered conductive silicon carbide porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63245883A JP2728457B2 (en) 1988-10-01 1988-10-01 Method for producing sintered conductive silicon carbide porous body

Publications (2)

Publication Number Publication Date
JPH0297472A true JPH0297472A (en) 1990-04-10
JP2728457B2 JP2728457B2 (en) 1998-03-18

Family

ID=17140224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63245883A Expired - Fee Related JP2728457B2 (en) 1988-10-01 1988-10-01 Method for producing sintered conductive silicon carbide porous body

Country Status (1)

Country Link
JP (1) JP2728457B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0796830A1 (en) * 1996-03-23 1997-09-24 Thomas Josef Heimbach GmbH & Co. Porous permeable body and method for its preparation
JP2001524451A (en) * 1997-12-02 2001-12-04 コーニング インコーポレイテッド Method for firing ceramic honeycomb body
JP2011226761A (en) * 2009-11-25 2011-11-10 Ibiden Co Ltd Method for manufacturing of ceramic sintered compact and method for manufacturing of honeycomb structure
JP2012051749A (en) * 2010-08-31 2012-03-15 Tokyo Yogyo Co Ltd Porous quality silicon carbide ceramic sintered compact having conductivity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153163A (en) * 1984-08-18 1986-03-17 信越化学工業株式会社 Porous silicon carbide sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153163A (en) * 1984-08-18 1986-03-17 信越化学工業株式会社 Porous silicon carbide sintered body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0796830A1 (en) * 1996-03-23 1997-09-24 Thomas Josef Heimbach GmbH & Co. Porous permeable body and method for its preparation
JP2001524451A (en) * 1997-12-02 2001-12-04 コーニング インコーポレイテッド Method for firing ceramic honeycomb body
JP4771590B2 (en) * 1997-12-02 2011-09-14 コーニング インコーポレイテッド Method for firing ceramic honeycomb body
JP2011226761A (en) * 2009-11-25 2011-11-10 Ibiden Co Ltd Method for manufacturing of ceramic sintered compact and method for manufacturing of honeycomb structure
JP2012051749A (en) * 2010-08-31 2012-03-15 Tokyo Yogyo Co Ltd Porous quality silicon carbide ceramic sintered compact having conductivity

Also Published As

Publication number Publication date
JP2728457B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
EP0761279B1 (en) Honeycomb structure
US6187256B1 (en) Method of producing a conductive silicon carbide-based sintered compact
JP4246802B2 (en) Honeycomb structure, manufacturing method and use thereof, and heating device
JPWO2007015550A1 (en) Silicon carbide firing jig and method for producing porous silicon carbide body
US6746748B2 (en) Honeycomb structure and process for production thereof
US4633051A (en) Stable conductive elements for direct exposure to reactive environments
JPH0297472A (en) Conductive silicon carbide sintered porous body and production thereof
WO2007056739A2 (en) Polycrystalline sic electrical devices and methods for fabricating the same
JP3642836B2 (en) Silicon carbide honeycomb structure and manufacturing method thereof
US20150351159A1 (en) Carbon heater, heater unit, firing furnace, and method for manufacturing silicon-containing porous ceramic fired body
JPH09275078A (en) Silicon wafer retaining jig
CN111512695A (en) Resistor, honeycomb structure, and electrically heated catalyst device
JP2612878B2 (en) Method for producing silicon carbide honeycomb structure
JPS6245344A (en) Catalyst carrier and its preparation
JP2012051748A (en) Method for manufacturing conductive silicon carbide porous body
JP2001031473A (en) Graphite heater
EP0885858B1 (en) Recrystallized silicon carbide sintered material and manufacturing method thereof
JP4458692B2 (en) Composite material
JP4394345B2 (en) Non-oxide ceramic sintering furnace and non-oxide ceramic sintered body manufacturing method
JP2002226271A (en) Method for manufacturing porous silicon carbide compact
JP3622854B2 (en) Method for producing conductive ceramic sintered body
JP2001261441A (en) Production process of electrically conductive silicon carbide sintered body
KR101734472B1 (en) Microwave heating element using silicon carbide fibers and heating device thereof
JPH01194916A (en) Production of silicon carbide honeycomb filter
KR101732573B1 (en) Fiber-type ceramic heating element and method for manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees