JPH0296711A - Production of optical shutter element - Google Patents

Production of optical shutter element

Info

Publication number
JPH0296711A
JPH0296711A JP24952788A JP24952788A JPH0296711A JP H0296711 A JPH0296711 A JP H0296711A JP 24952788 A JP24952788 A JP 24952788A JP 24952788 A JP24952788 A JP 24952788A JP H0296711 A JPH0296711 A JP H0296711A
Authority
JP
Japan
Prior art keywords
resist
substrate
electrode
optical shutter
shutter element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24952788A
Other languages
Japanese (ja)
Inventor
Yukio Toyoda
幸夫 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP24952788A priority Critical patent/JPH0296711A/en
Publication of JPH0296711A publication Critical patent/JPH0296711A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form the optical shutter element without having damages even if the light transmission surface is of an intricate shape and is very small by previously subjecting the surface of a base plate intended with be formed with the light transmission surface to mirror finishing, then removing the resist applied over the entire surface at the time of required machining and providing electrode metal films by plating. CONSTITUTION:Planar substrate surfaces 11a, 11b are previously subjected to mirror finishing and thereafter, the resist 12 is applied on the surfaces to form rugged parts 13a, 13b consisting of a required shape at the time of depositing and forming electrodes to the prescribed position of the substrate surfaces which have an electro-optic effect and are formed with the required rugged parts. The metallic film 14 for the electrodes is formed on the substrate surface from which the resist 12 is removed by an electroless plating method and the resist 12 remaining on the substrate surface is removed by a chemical treatment. Since the metallic film sticking to the parts exclusive of the electrode parts is deposited via the resist, the unnecessary metallic film can be removed by the chemical treatment which dissolves the resist. The need for machining to remove the film is eliminated and the film is efficiently removed.

Description

【発明の詳細な説明】 利用産業分野 この発明は、電気光学効果を利用した光シャ・ツタ素子
、特に、光透過面及び電極部が比較的複雑な形状で小形
な光シャッタ素子の製造方法番こ係り、鏡面仕上げして
レジストを塗布した板4大基板に、所要凹凸面の形成加
工を施した後、電極用無電解めっき膜を被着し、さらに
残余のレジストを除去することにより、複雑形状の所定
位置番こ均一な電極膜を形成した光シャッタの製造方法
(こ関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to a method for manufacturing a light shutter element that utilizes the electro-optic effect, particularly a small light shutter element whose light transmitting surface and electrode portion have a relatively complicated shape. In this regard, the four major substrates are mirror-finished and coated with resist, and after forming the required uneven surfaces, an electroless plating film for electrodes is applied, and the remaining resist is removed. A method of manufacturing an optical shutter in which a uniform electrode film is formed at a predetermined position of a shape (this invention relates).

背景技術 電気光学効果を利用した光シャ・ツタは、偏光方向が相
互に直交する一対の偏光子間に、(PbLaXZrTi
)Oa (以下PI、ZTという)、LiNbO3、B
i128i020等のセラミックス基板からなり、電界
方向が入射光の偏光方向と45°の交差角度を形成した
光シャッタ素子を配置して構成し、光学式プリンタの書
込みデバイス、光学カメラのシャ・ツタなど多方面に用
いられている。
BACKGROUND TECHNOLOGY Optical shields using electro-optic effects are produced by using (PbLaXZrTi) between a pair of polarizers whose polarization directions are orthogonal to each other.
) Oa (hereinafter referred to as PI, ZT), LiNbO3, B
It is made of a ceramic substrate such as i128i020, and is constructed by arranging an optical shutter element whose electric field direction forms an intersection angle of 45° with the polarization direction of incident light. It is used in various directions.

光シャッタ素子としては、第2図の示す如く、基板(1
)に形成した凹状溝部(2X2)に、所要の電極材料(
3X3)を被着してなる溝型電極を有する構成が知られ
ている。
As the optical shutter element, as shown in Fig. 2, a substrate (1
) into the concave groove (2x2) formed in the electrode material (
A structure having a groove-shaped electrode formed by depositing 3×3) is known.

かかる溝型電極構成では、電界が基板(1)内部まで有
効に浸透分布するため、駆動電圧の低減を図ることがで
きるが、基板(1)に形成した凹状溝部(2)(2)に
、効率良く均一な電極材料(3X3)を被着させる方法
がないため、前記溝部(2)(2)の深さ及び幅す法に
制約が生じ、近年の小型化、低駆動電圧の要求を満足さ
せることができなかった。
In such a groove-shaped electrode configuration, the electric field effectively penetrates and distributes to the inside of the substrate (1), so it is possible to reduce the driving voltage. Since there is no way to efficiently and uniformly deposit the electrode material (3x3), there are restrictions on the depth and width of the grooves (2) and (2), which satisfies the recent demands for miniaturization and low driving voltage. I couldn't let it go.

そこで、発明者は先に、前記問題を解消した製造方法と
して、予め溝部(2X2)を形成した基板(1)全面に
無電解めっき法にて電極用の金属膜を被着させ、その後
、溝部(2X2)内の金属膜を残して、他面の金属膜を
研削除去するとともに光透過面(4)を鏡面仕上げする
方法を提案(特開昭62−231212号)した。
Therefore, as a manufacturing method that solves the above problem, the inventor first deposited a metal film for electrodes on the entire surface of the substrate (1) on which grooves (2×2) were formed in advance by electroless plating, and then A method was proposed (Japanese Patent Laid-Open No. 62-231212) in which the metal film on the other side (2×2) is left and the metal film on the other side is polished away and the light transmitting surface (4) is polished to a mirror finish.

従来技術の問題点 この方法によれば、従来公知のスパッタ、蒸着方法など
の手段では形成が困難であった溝幅が狭くかつ深い溝部
にも高い密着強度で均一に電極材料を付着することがで
き、電気抵抗及び駆動電圧の低減、さらには透過損失の
低減をも可能にした光シャッタ素子を提供できる。
Problems with the Prior Art According to this method, it is possible to uniformly adhere electrode material with high adhesion strength even to narrow and deep grooves, which have been difficult to form using conventional methods such as sputtering and vapor deposition. Therefore, it is possible to provide an optical shutter element that can reduce electric resistance and drive voltage, and further reduce transmission loss.

しかし、この分野においては益々小型化が要求されると
ともに1.種々のシャッタ機能が要求されることから光
透過面、溝部の寸法が一層制限され、しかも形状も複雑
となる傾向にある。
However, in this field, as miniaturization is increasingly required, 1. Since various shutter functions are required, the dimensions of the light transmitting surface and the groove are becoming more restricted, and the shape tends to become more complicated.

しかし上記提案の方法では、電極部の形成に種々の長所
を有するが、不要な金属膜の除去並びに光透過面の形成
をすべて機械的加工に頼ることから作業性、歩留り等の
点で必ずしも効率的な方法とは言い難く、特に光透過面
が小さく複雑な形状の場合は、実質的に鏡面仕上げが困
難となり、また光透過面の一部に欠けが発生する懸念が
あった。
However, although the method proposed above has various advantages in forming electrode parts, it is not necessarily efficient in terms of workability, yield, etc. because it relies on mechanical processing for removing unnecessary metal films and forming light-transmitting surfaces. This is not a practical method, especially when the light-transmitting surface is small and has a complicated shape, making it virtually difficult to achieve a mirror finish, and there is also a concern that a portion of the light-transmitting surface may be chipped.

発明の目的 この発明は、上記問題点の解決を目的とし、特に、きわ
めて小型の光シャッタ素子を製造するに際し、溝幅が狭
くかつ深い溝部などの複雑形状にも均一で密着強度の高
い電極膜を形成でき、また鏡面研摩を施した小さく複雑
な形状の光透過面の形成を効率よく行うことができる光
シャッタ素子の製造方法を目的としている。
Purpose of the Invention The present invention aims to solve the above-mentioned problems, and in particular, to provide an electrode film that is uniform and has high adhesion strength even in complex shapes such as narrow and deep grooves when manufacturing extremely small optical shutter elements. The object of the present invention is to provide a method for manufacturing an optical shutter element that can form a mirror-polished light-transmitting surface with a small and complicated shape.

発明の概要 この発明は、 電気光学効果を有し所要凹凸部を形成した基板面の所定
位置に電極を被着形成するに際し、■板状基板表面に予
め鏡面仕上げを施したのち、レジストを塗布する ■レジストを塗布した基板表面に所要形状からなる凹凸
部を形成する ■無電解めっき法にて前記加工にてレジストが除去され
た基板面に、電極用金属膜を形成する■基板表面に残存
するレジストを化学的処理にて除去する 上Δ己順序の手段にて電極形成することを特徴とする光
シャッタ素子の製造方法である。
Summary of the Invention This invention provides the following methods: - When forming an electrode at a predetermined position on a substrate surface that has an electro-optical effect and has a required unevenness, the surface of the plate-shaped substrate is mirror-finished in advance, and then a resist is applied. ■ Form an uneven part of the desired shape on the surface of the substrate coated with resist ■ Form an electrode metal film on the substrate surface from which the resist has been removed by electroless plating ■ Remain on the substrate surface This is a method of manufacturing an optical shutter element, characterized in that electrodes are formed by a method in which a resist is removed by chemical treatment, and then a resist is removed by chemical treatment.

すなわち、この発明は、 光透過面の形成予定基板表面に予め鏡面仕上げを施して
おくことにより、光透過面が溝加工や切削加工などを経
て最終寸法になった時点での鏡面仕上げを必要とせず、 また、鏡面仕上げ面にレジストを塗布したのち、溝加工
などの所要の切削加工を行なって所定部のみレジストを
除去し、無電解めっきすることにより、所要電極部にの
み金属膜を強固に付着させることができ、 電極部以外に付着する金属膜はレジストを介して被着す
るため、レジストを溶解する化学的な処理にてレジスト
を除去することにより、不要金属膜を除去でき、除去に
伴なう機械加工を不要にし、効率良く除去することがで
き、上記目的を達成するものである。
In other words, the present invention eliminates the need for mirror finishing when the light transmitting surface has reached its final dimensions through groove processing, cutting, etc. by applying a mirror finish in advance to the surface of the substrate on which the light transmitting surface is to be formed. In addition, after applying resist to the mirror-finished surface, we perform necessary cutting processes such as groove machining to remove the resist only in designated areas, and perform electroless plating to firmly form the metal film only on the required electrode areas. Since the metal film that adheres to areas other than the electrode area is deposited through the resist, unnecessary metal films can be removed by removing the resist using a chemical process that dissolves the resist. This eliminates the need for accompanying machining, allows for efficient removal, and achieves the above object.

発明の構成 この発明に用いる基板としては、ポッケルス効果、カー
効果等の電気光学効果を有する、PLZT、 LiNb
O3、B112Si020等の公知のセラミックス基板
を採用できる。
Structure of the Invention Substrates used in this invention include PLZT and LiNb, which have electro-optic effects such as Pockels effect and Kerr effect.
A known ceramic substrate such as O3, B112Si020, etc. can be used.

最終的に光透過面となる基板表面は、公知のラッピング
技術にて鏡面仕上げを施すことができる。
The surface of the substrate, which will eventually become a light-transmitting surface, can be given a mirror finish using a known lapping technique.

レジストとしては、アルカリ現像型及び溶剤型レジスト
等、公知の利料が採用でき、その塗布方法もスピンコー
ド等が採用できる。
As the resist, known resists such as alkali-developed resists and solvent-based resists can be used, and as the coating method, a spin code or the like can be used.

基板表面に所要形状からなる凹凸部を形成する方法とし
ては、外周刃カッターによる機械加工、レーザー加工等
が採用でき、該加工にて電極部を形成する溝部や光透過
面を所要形状に加工する。
Mechanical processing using a peripheral blade cutter, laser processing, etc. can be used as a method for forming uneven portions of the desired shape on the substrate surface, and the grooves and light transmitting surfaces that form the electrode portions are processed into the desired shape by this processing. .

さらに凹凸部を有する基板全体に、無電解めっき法にて
、Ni、 Cu、 Au等の電極用金属を通常1〜3p
m程度の膜厚で被着させると、特に前記加工部、すなわ
ちレジスト除去部に均一に、かつ所定の密着強度で電極
部を形成することができる。
Furthermore, an electrode metal such as Ni, Cu, or Au is typically 1-3p coated on the entire substrate having uneven parts by electroless plating.
When deposited with a film thickness of approximately m, the electrode portion can be formed uniformly and with a predetermined adhesion strength, particularly in the processed portion, that is, the resist removed portion.

次いで、前記レジストをアルカリまたは溶剤にて化学的
に除去すると、前記工程にてレジスト表面に被着された
不要な金属膜が除去され、電極部を形成する所定位置に
のみ金属膜が被着されることとなる。
Next, when the resist is chemically removed with an alkali or a solvent, the unnecessary metal film deposited on the resist surface in the step is removed, and the metal film is deposited only at predetermined positions where electrode portions will be formed. The Rukoto.

また、鏡面仕上げ後にレジストにて被覆された光透過面
も該処理にて損傷を受けることなく、レジスト除去を完
了することができる。
Further, the light transmitting surface coated with resist after mirror finishing is not damaged by the process, and the resist removal can be completed.

図面に基づ〈発明の開示 第1図a−1はこの発明による製造工程を示す斜視説明
図である。
Based on the Drawings (Disclosure of the Invention) FIG. 1 a-1 is a perspective explanatory view showing a manufacturing process according to the present invention.

ここでは光シャッタ素子は、最も簡単な構成からなるも
のを例に説明す、るが、この発明はさらに複雑な構成を
始めいかなる構成の光シャッタ素子の製造にも適用でき
、レジストにアルカリ現1象型レジスト田立化成工業社
製 PHT  )を用い、電極用金属膜にNiめつき層
を被着した例を説明する。また、図面においては、基板
に成形する凹凸部を誇張して図示しである。
Here, the optical shutter element will be explained using the simplest configuration as an example, but the present invention can be applied to the production of optical shutter elements of any configuration including more complex configurations, An example will be described in which a Ni plating layer is applied to a metal film for an electrode using a quadrangular resist (PHT manufactured by Tadachi Kasei Kogyo Co., Ltd.). Furthermore, in the drawings, the uneven portions formed on the substrate are exaggerated.

a図に示す基板(10)は、9 / 65 / 35の
組成比にて表わされるPLZT焼結体より、スライス加
工にて切出したのち、両主面(lla)(Ilb)をラ
ップ加工にて鏡面仕上げした一辺10mm、厚さ0.5
mmの方形板である。
The substrate (10) shown in Fig. a is cut out by slicing from a PLZT sintered body having a composition ratio of 9/65/35, and then both main surfaces (lla) (Ilb) are cut out by lapping. Mirror finished, 10mm on each side, 0.5mm thick
It is a square plate of mm.

b図に示す如く、両主面を鏡面仕上げした基板全面に、
レジスト(12)を、厚さlpm程度、塗布する。
As shown in figure b, the entire surface of the board with both main surfaces mirror-finished,
A resist (12) is applied to a thickness of about lpm.

前記基板を用いて、基板表面に凹状溝部を形成する場合
は、c−e図に示す工程で、凸状突起部を形成する場合
は、r−h図に示す工程で、極めて小さな光透過面を形
成する場合は、i−1図に示す工程にて製造する。
When forming concave grooves on the surface of the substrate using the above substrate, the process shown in diagrams CE is performed, and when forming convex protrusions, the process shown in diagrams rh is performed to form an extremely small light transmitting surface. When forming, it is manufactured through the steps shown in Figure i-1.

c−e図に示す凹状溝部を形成する工程凹状溝部を形成
する場合は、基板(10)表面に外周刃カッターにて溝
部(13aX13b)を加工する(0図参照)。
Step of forming a concave groove shown in figures ce When forming a concave groove, a groove (13aX13b) is formed on the surface of the substrate (10) using a peripheral blade cutter (see figure 0).

この際、加工された溝部(13aX13b)からは、前
記レジスト(12)が加工と同時に機械的に除去される
At this time, the resist (12) is mechanically removed from the processed grooves (13aX13b) at the same time as the processing.

さらに、基板(10)全面に無電解めっき法にて厚さI
pmのNiめっき層(14)を被着する(d図参照)。
Furthermore, the entire surface of the substrate (10) is coated with a thickness of I by electroless plating.
pm Ni plating layer (14) is deposited (see figure d).

この際、特に溝部(13aX13b)には均一に、かつ
所定の密着強度で電極用Ni層が被着構成される。
At this time, the Ni layer for the electrode is formed to adhere uniformly to the groove portions (13aX13b) with a predetermined adhesion strength.

このように全面にNiめっき層(14)を有する基板(
10)を、アルカリ溶液中に浸漬することによって、レ
ジスト(12)とともにレジスト(12)上に被着した
不用のNiめっき層(14)を除去すると、所定の溝(
13aX13b)内にのみ電極用のNiめっき層(14
)が残り、鏡面仕上げの光透過面(15)を有する所望
の溝型電極を有する光シャッタ素子が得られる(0図参
照)。
In this way, a substrate (
When the unnecessary Ni plating layer (14) deposited on the resist (12) is removed together with the resist (12) by immersing the resist (10) in an alkaline solution, a predetermined groove (
Ni plating layer for electrodes (14
) remains, and an optical shutter element having a desired groove-shaped electrode having a mirror-finished light transmitting surface (15) is obtained (see Figure 0).

上述の方法によれば、輻10¥Imの光透過面(15)
を挾んで、幅10pm、深さ500pmの良好なる溝型
電極を形成することができた。
According to the above method, the light transmitting surface (15) with a radiation of 10\Im
A good groove-shaped electrode with a width of 10 pm and a depth of 500 pm could be formed by sandwiching the .

f〜 に−す凸状 起 を形成する工程側に示す如く、
基板(10)表面に外周刃カッターにて凸状突起部(1
6aX16b)を形成する。
As shown on the process side of forming a convex shape on f~,
A convex protrusion (1) is cut on the surface of the board (10) using a peripheral blade cutter.
6aX16b).

この際、加工された凸状突起部(16a)(16b)の
上面を除く全面の前記レジスト(12)が加工と同時に
機械的に除去される。
At this time, the entire resist (12) except for the upper surfaces of the processed convex projections (16a) and (16b) is mechanically removed at the same time as the processing.

ついで、基板(10)の全面に無電解めっき法にて電極
用の金属膜(14)を被着する。(g図参照)さらに、
適当な溶剤にてレジスト(12)を除去すると、−肘の
凸状突起部(16aX16b)の上面が光透過面(15
aX15b)となり、凸状突起部(16aX16b)の
各々側面を含む溝部(13)及び平面部(17a)(1
7b)に電極層を形成することができる(h図参照)。
Next, a metal film (14) for an electrode is deposited on the entire surface of the substrate (10) by electroless plating. (See figure g) Furthermore,
When the resist (12) is removed using an appropriate solvent, the upper surface of the elbow convex projection (16aX16b) becomes the light transmitting surface (15).
aX15b), and the groove portion (13) and the flat portion (17a) (1
7b), an electrode layer can be formed (see figure h).

i=1図に示す極めて小さな光透過面を形成する工程以
下の工程はこの発明の効果が最も発揮される極少面積の
光透過面を形成する場合であり、まず、i図に示す如く
、基板(10)表面に外周刃力・ツタ−にて凸状突起部
(16)を形成する。
i = 1 The process of forming an extremely small light transmitting surface shown in Figure i and the following steps are for forming a light transmitting surface with an extremely small area in which the effects of this invention are most exhibited. (10) Form a convex protrusion (16) on the surface with a peripheral edge.

基板(10)の全面に無電解めっき法により、電極用の
Niめっき層(14)を被着する0図参照)。
A Ni plating layer (14) for electrodes is deposited on the entire surface of the substrate (10) by electroless plating (see Figure 0).

その後、レジスト(12)の除去(k図参照)を行ない
、さらに、必要な光透過面(15)寸法となるまで外周
刃カッターにて加工することによって、図示のごとき極
少面積の光透過面(15)を有する光シャッタ素子を得
ることができる。
Thereafter, the resist (12) is removed (see figure k), and the light transmitting surface (15) is further processed with a peripheral blade cutter until the required dimensions of the light transmitting surface (15) are obtained. 15) can be obtained.

i−1図に示す工程によれば、高さ500pmの凸状突
起部先端に、−辺10pmの方形状の光透過面を形成す
ることができた。
According to the process shown in Figure i-1, a rectangular light-transmitting surface with a negative side of 10 pm could be formed at the tip of a convex projection with a height of 500 pm.

上述の各工程では、いずれも凹凸部の加工に際し、外周
刃カッターを用いた例を説明したが、レーザー加工法を
用いることにより、−層複雑な形状で微小な光透過面を
有する光シャッタ素子を製造することができる。
In each of the above-mentioned processes, an example was explained in which a peripheral blade cutter was used to process the uneven parts, but by using the laser processing method, it is possible to create an optical shutter element with a complex shape and a minute light-transmitting surface. can be manufactured.

発明の効果 以上に示す如く、この発明による製造方法は、全面に塗
布したレジストを所要の機械加工時に除去した後、めっ
きにて電極金属膜を設けることを特徴とし、かかる電極
被着処理により、予め鏡面仕上げを施した基板を用いて
所要形状寸法に加工できるため、加工後に光透過面を鏡
面仕上げする必要がなく、該光透過面が複雑な形状でか
つ微小であっても損傷することなく形成することができ
る。
Effects of the Invention As shown above, the manufacturing method according to the present invention is characterized in that after the resist coated on the entire surface is removed during required machining, an electrode metal film is provided by plating, and by such electrode deposition treatment, Since it can be processed into the required shape and dimensions using a substrate that has been mirror-finished in advance, there is no need to mirror-finish the light-transmitting surface after processing, and even if the light-transmitting surface has a complex shape and is minute, it will not be damaged. can be formed.

また、この発明は、電極用金属膜の被着に無電解めっき
法を採用して、効率よく幅の狭く深い溝型電極を形成す
ることができるため、駆動電圧を低減した光シャッタ素
子を提供できる。
In addition, the present invention employs an electroless plating method to deposit the metal film for the electrode, and can efficiently form a narrow and deep groove-shaped electrode, thereby providing an optical shutter element with reduced driving voltage. can.

さらに、不要部分に被着した金属膜はレジストを介して
被着しているため、化学的処理にて容易に除去すること
ができ、作業性が良く、安価に光シャッタ素子を提供す
ることができる。
Furthermore, since the metal film deposited on unnecessary parts is deposited through a resist, it can be easily removed by chemical treatment, making it easy to work and providing optical shutter elements at low cost. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a−1はこの発明による製造工程を示す斜視説明
図である。 第2図は光シャッタ素子の斜視説明図である。 1.10・・・基板、2・・・溝部、3・・・電極材料
、11a、llb・・・主面、12・・・レジスト、1
3.13a、13b−溝部、14−Niめっき層、15
.15a、15b−光透過面、16a、16b=−凸状
突起部、17a、17b・・・平面部。
FIG. 1 a-1 is a perspective explanatory view showing the manufacturing process according to the present invention. FIG. 2 is a perspective explanatory view of the optical shutter element. 1.10...Substrate, 2...Groove portion, 3...Electrode material, 11a, llb...Main surface, 12...Resist, 1
3.13a, 13b-grooves, 14-Ni plating layer, 15
.. 15a, 15b--light transmitting surface, 16a, 16b=-convex protrusion, 17a, 17b...flat surface.

Claims (1)

【特許請求の範囲】 1 電気光学効果を有し所要凹凸部を形成した基板面の所定
位置に電極を被着形成するに際し、 (1)予め鏡面仕上げを施した板状基板表面に、レジス
トを塗布する (2)レジストを塗布した基板表面に所要形状からなる
凹凸部を形成する (3)無電解めっき法にて前記加工にてレジストが除去
された基板面に、電極用金属膜を形成する (4)基板表面に残存するレジストを化学的処理にて除
去する 上記順序の手段にて電極形成することを特徴とする光シ
ャッタ素子の製造方法。
[Claims of Claims] 1. When forming an electrode at a predetermined position on a substrate surface having an electro-optic effect and having a required unevenness, (1) a resist is applied to the surface of a plate-shaped substrate which has been mirror-finished in advance; Coating (2) Forming irregularities of the desired shape on the surface of the substrate coated with resist (3) Forming a metal film for electrodes on the substrate surface from which the resist has been removed by electroless plating (4) A method for manufacturing an optical shutter element, characterized in that electrodes are formed by the above-mentioned procedure of removing resist remaining on the substrate surface by chemical treatment.
JP24952788A 1988-10-03 1988-10-03 Production of optical shutter element Pending JPH0296711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24952788A JPH0296711A (en) 1988-10-03 1988-10-03 Production of optical shutter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24952788A JPH0296711A (en) 1988-10-03 1988-10-03 Production of optical shutter element

Publications (1)

Publication Number Publication Date
JPH0296711A true JPH0296711A (en) 1990-04-09

Family

ID=17194308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24952788A Pending JPH0296711A (en) 1988-10-03 1988-10-03 Production of optical shutter element

Country Status (1)

Country Link
JP (1) JPH0296711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342876A (en) * 1992-01-24 1994-08-30 Misuzawa Industrial Chemicals, Ltd. Spherical granules of porous silica or silicate, process for the production thereof, and applications thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138927A (en) * 1984-07-31 1986-02-25 Matsushita Electric Ind Co Ltd Production of optical shutter
JPS62231212A (en) * 1986-03-31 1987-10-09 Sumitomo Special Metals Co Ltd Production of optical shutter element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138927A (en) * 1984-07-31 1986-02-25 Matsushita Electric Ind Co Ltd Production of optical shutter
JPS62231212A (en) * 1986-03-31 1987-10-09 Sumitomo Special Metals Co Ltd Production of optical shutter element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342876A (en) * 1992-01-24 1994-08-30 Misuzawa Industrial Chemicals, Ltd. Spherical granules of porous silica or silicate, process for the production thereof, and applications thereof

Similar Documents

Publication Publication Date Title
KR0171092B1 (en) Method of manufacturing substrate
CA2331044A1 (en) Display substrate electrodes with auxiliary metal layers for enhanced conductivity
US4033027A (en) Dividing metal plated semiconductor wafers
TW396449B (en) Method for manufacturing semiconductor wafer
KR101679034B1 (en) Etching Method, Mask, Functional Component, and Method for Manufacturing Functional Component
JPS637476B2 (en)
JPH0296711A (en) Production of optical shutter element
US3543362A (en) Abrading device or file
JP4750969B2 (en) Method for manufacturing flat display device
US6068781A (en) Electrode for optical waveguide element and method of forming the same
US6355496B2 (en) Electrode for optical waveguide element
JPS61280660A (en) Manufacture of semiconductor device
JP4667544B2 (en) Etching method
KR19980702423A (en) Method of repairing and repairing defects on the surface of the substrate and micro galvanic device for performing the same
JPH04130810A (en) Manufacture of at cut crystal oscillating piece
JPH03114310A (en) Substrate for surface acoustic wave filter and manufacture thereof
JPS62231212A (en) Production of optical shutter element
JPS59165425A (en) Pattern formation
JPH1010554A (en) Wiring board, production of this wiring board, liquid crystal element having this wiring board and production of this liquid crystal element
JPH01123215A (en) Production of optical shutter
JPH032725A (en) Liquid crystal device
KR920006202B1 (en) Method of manufacturing electrode rad of hall element
JPH03288828A (en) Formation of spacer
JP2020181174A (en) Method for manufacturing optical image forming device
JPH01162783A (en) Surface machining method