JPH029641B2 - - Google Patents

Info

Publication number
JPH029641B2
JPH029641B2 JP61237847A JP23784786A JPH029641B2 JP H029641 B2 JPH029641 B2 JP H029641B2 JP 61237847 A JP61237847 A JP 61237847A JP 23784786 A JP23784786 A JP 23784786A JP H029641 B2 JPH029641 B2 JP H029641B2
Authority
JP
Japan
Prior art keywords
container
powder
metal
metal powder
hot isostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61237847A
Other languages
Japanese (ja)
Other versions
JPS6393802A (en
Inventor
Heiki Hoshi
Yukio Nagayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP23784786A priority Critical patent/JPS6393802A/en
Publication of JPS6393802A publication Critical patent/JPS6393802A/en
Publication of JPH029641B2 publication Critical patent/JPH029641B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱間静水圧プレス(以下HIPと呼
ぶ)により高密度焼結体を製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a high-density sintered body by hot isostatic pressing (hereinafter referred to as HIP).

〔従来の技術〕 TbFe、GdTbFe、TbFeCo、GdDyFeCo等の
希土類金属を含むFe系あるいはCo系の磁性材料
は、光磁気デイスクの記録媒体として用いられて
いる。この記録媒体は、アクリル系又はエポキシ
系の基板上にスパツタ法によつて薄膜として形成
される。この種の薄膜記録媒体は、成分の均一性
が要求されるとともに、高純度及び低酸素含有率
であることが必要とされる。そのためスパツター
ターゲツト基板は、高密度、高純度、低酸素含有
率の材料であることが強く要求される。
[Prior Art] Fe-based or Co-based magnetic materials containing rare earth metals such as TbFe, GdTbFe, TbFeCo, and GdDyFeCo are used as recording media for magneto-optical disks. This recording medium is formed as a thin film on an acrylic or epoxy substrate by sputtering. This type of thin film recording medium is required to have uniformity of components, as well as high purity and low oxygen content. Therefore, it is strongly required that the sputter target substrate be made of a material with high density, high purity, and low oxygen content.

従来、スパツターターゲツト基板を製造する方
法として鋳造法や、粉砕粉末をホツトプレスする
方法が知られているが、緻密なものが得られない
という致命的欠陥がある。
Conventionally, casting methods and methods of hot-pressing pulverized powder have been known as methods for manufacturing sputter target substrates, but these methods have a fatal flaw in that dense products cannot be obtained.

このような致命的欠陥を克服する方法として、
コンテナを用いたHIP法が知られているが、希土
類金属を含有したFe系あるいはCo系合金は、酸
素親和力が大きいため単純にHIP法を適用するこ
とはできない。
As a way to overcome this fatal flaw,
Although the HIP method using a container is known, the HIP method cannot simply be applied to Fe-based or Co-based alloys containing rare earth metals because they have a large oxygen affinity.

このため本出願人は、既に、特願昭60−190930
号で、希土類金属を含有したFe系あるいはCo系
合金の高密度焼結体をHIP法によつて得る際、第
1図〔〕に示すように合金粉末12を、コンテ
ナ11に入れて密封する前に、10-6torr以上の真
空度にて、850〜1050℃の温度で真空加熱するこ
とにより、吸着しているガスや水分、油分等を除
去した後、コンテナ11を密封してHIP処理する
方法を提案した。
For this reason, the applicant has already filed the patent application No. 60-190930.
When obtaining a high-density sintered body of Fe-based or Co-based alloy containing rare earth metals by the HIP method, alloy powder 12 is placed in a container 11 and sealed as shown in Figure 1 [ ]. First, the adsorbed gas, moisture, oil, etc. are removed by vacuum heating at a temperature of 850 to 1050°C at a vacuum degree of 10 -6 torr or higher, and then the container 11 is sealed and subjected to HIP treatment. proposed a method to do so.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらその方法では、HIP処理後に、第
1図〔〕に示すように、密封したコンテナ11
が均一に圧縮されないため、鎖線にて囲まれた部
分のみが製品として用いられ得るにすぎず、した
がつてかなり歩留が悪い。また希土類金属はかな
り高価であるため製品価格に対する材料費の占め
る割合が高くなることは避けられず、したがつて
効率よく製品を製造することが必須である。
However, in that method, after the HIP treatment, as shown in Figure 1 [], the sealed container 11
Since it is not compressed uniformly, only the area surrounded by the chain line can be used as a product, and therefore the yield is quite low. Furthermore, since rare earth metals are quite expensive, it is inevitable that the material cost will account for a high proportion of the product price, and therefore it is essential to manufacture the product efficiently.

それ故に本発明の課題は、上記の問題点に鑑
み、希土類金属を含有するFe系あるいはCo系合
金の高密度焼結体をHIP法を用いて容易にかつ効
率良く製造できる方法を提供することにある。
Therefore, in view of the above-mentioned problems, an object of the present invention is to provide a method for easily and efficiently producing a high-density sintered body of an Fe-based or Co-based alloy containing rare earth metals using the HIP method. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、所定の形状の金属製コンテナ
に被処理物となる金属粉末を充てんし、該コンテ
ナを脱気密封し、しかる後に、該コンテナに高温
高圧の熱間静水圧プレス処理を施す方法におい
て、金属粉末の上、下にのみ、上記被処理物の相
対密度とほぼ一致した相対密度の耐火物粉末のプ
レス成形体をスペーサーとして用い、サンドイツ
チ状に構成することを特徴とする熱間静水圧プレ
ス成形方法が得られる。
According to the present invention, a metal container having a predetermined shape is filled with metal powder to be treated, the container is degassed and sealed, and then the container is subjected to a hot isostatic press treatment at high temperature and high pressure. In the method, a press molded body of refractory powder having a relative density almost matching the relative density of the object to be treated is used as a spacer only above and below the metal powder to form a sandwich-like structure. A hydrostatic press molding method is obtained.

〔実施例〕〔Example〕

従来法と同じく密封コンテナを用いて、希土類
金属を含むFe系あるいはCo系合金の高密度焼結
体のHIP処理を行うわけであるが、その際、本発
明では、第1図〔〕の上、下面の研摩、研削、
切断等により除去していた希土類金属を含むFe
系あるいはCo系合金部分を、耐火性セラミツク
スプレス成形体に置き換える。これによると、効
率の良い、スパツターターゲツトの製造方法を提
供できる。
Similar to the conventional method, a sealed container is used to perform HIP treatment on a high-density sintered body of Fe-based or Co-based alloy containing rare earth metals. , lower surface polishing, grinding,
Fe containing rare earth metals that had been removed by cutting etc.
or Co-based alloy part is replaced with a refractory ceramic press molded body. According to this, an efficient method for manufacturing a sputter target can be provided.

即ち、第1図〔〕の上、下のムダな部分に耐
火性セラミツクスプレス成形体をスペーサーとし
て用い、研摩、研削、切断等の工程をできるだけ
省略しまた、余分な希土類金属を含むFe系ある
いはCo系合金粉末を用いることなく、歩留の良
い製品を製造可能にした。
That is, by using a fire-resistant ceramic press molded body as a spacer in the wasteful parts at the top and bottom of Figure 1 [], steps such as polishing, grinding, and cutting can be omitted as much as possible, and Fe-based or It has become possible to manufacture products with good yield without using Co-based alloy powder.

ここで耐火性セラミツクスとしては、酸化アル
ミニウム、酸化マグネシウム、窒化ホウ素、窒化
アルミニウム等の金属との反応性の乏しいセラミ
ツクス粉末を用いる。プレス体成形方法は通常の
金型プレスやラバープレスが一般的である。
Here, as the refractory ceramic, ceramic powder having poor reactivity with metals such as aluminum oxide, magnesium oxide, boron nitride, and aluminum nitride is used. The press body is generally formed using a conventional mold press or rubber press.

重要なことは、金属粉末のHIP処理後の密度に
対する相対粉末充てん密度D1と耐火性セラミツ
クスプレス成形体のHIP処理後の密度に対するプ
レス成形体の相対圧粉密度D2をほぼ一致させて
おくことである。(0.9≦D2/D1≦1.1が好まし
い。)0.9≦D2/D1の場合には、従来法と同様に
製品歩留が悪く、D2/D1≦1.1の場合は、収縮率
の違いが原因とみられるクラツクの発生が見られ
る。
The important thing is to make the relative powder packing density D 1 of the metal powder after HIP treatment almost equal to the relative powder density D 2 of the press molded body with respect to the density of the refractory ceramic press molded body after HIP treatment. That's true. (0.9≦D 2 /D 1 ≦1.1 is preferable.) When 0.9≦D 2 /D 1 , the product yield is poor as in the conventional method, and when D 2 /D 1 ≦1.1, the shrinkage rate is low. There are cracks that appear to be caused by differences in the

以下に、本発明の具体的な実施例を説明する。 Below, specific examples of the present invention will be described.

第2図〔〕を参照して、φ200mmのステンレ
ス製のコンテナ11の内部に配した二枚のスペー
サー13の間に30メツシユアンダーに粉砕した
Gd0.5Tb0.5Fe2.5合金粉末12をD1=70%にて充て
んし、排気管を有する蓋をコンテナ11に溶接し
排気管を真空ポンプに接続し、コンテナ11内を
5×10-6Torrまで脱気した。ここでスペーサー
12としては、D2=68%のラバープレス法より
作製した厚み15mmの窒化ホウ素プレス成形体を用
いた。
Referring to Figure 2 [], 30 meshes were crushed between two spacers 13 placed inside a stainless steel container 11 with a diameter of 200 mm.
Gd 0.5 Tb 0.5 Fe 2.5 alloy powder 12 is filled with D 1 = 70%, a lid with an exhaust pipe is welded to the container 11, the exhaust pipe is connected to a vacuum pump, and the inside of the container 11 is heated to 5×10 -6 Torr. I degassed until Here, as the spacer 12, a 15 mm thick boron nitride press molded body produced by a rubber press method with D 2 =68% was used.

次いで温度1000℃まで加熱昇温させ、1000℃に
て2時間保持し加熱真空引処理を施した。保持後
真空脱気を続けながら排気管の一部を加熱圧着
し、しかる後排気管を切断し密封コンテナを作製
した。
Next, the temperature was raised to 1000°C, maintained at 1000°C for 2 hours, and heated and vacuumed. After holding, a part of the exhaust pipe was heat-pressed while continuing vacuum degassing, and then the exhaust pipe was cut to produce a sealed container.

さらにこのコンテナをHIP炉内に設置し、温度
1000℃、圧力1000気圧、保持時間2時間の条件に
てHIP処理を施した。
Furthermore, this container is placed in a HIP furnace and the temperature is
HIP treatment was performed under the conditions of 1000°C, 1000 atm pressure, and 2 hours of holding time.

このような工程を経た後、コンテナより
GdTbFe合金を取り出しその合金の周囲部分のみ
を第2図〔〕の破線に沿つて旋盤で削除し、上
下面は切断することなく、研摩するのみでスパツ
ターターゲツト基板を作製することができた。ま
た、GdTbFe合金の組織はボイド及びクラツク等
の欠陥はみられず、相対密度99.5%の高密度の材
料となつていた。また酸素含有量を測定した所
950ppmの含有量を示し、粉砕粉末時の酸素含有
量970ppmと比較して同等の酸素含有量であつた。
本材料を鏡面加工仕上げし、導電金属にろう付け
し、スパツターターゲツト基板を作製し、スパツ
ター膜を形成した所、良好な光磁気記録用媒体膜
が得られた。
After going through this process, the container
A sputter target substrate was fabricated by taking out a GdTbFe alloy and removing only the surrounding area of the alloy using a lathe along the broken line in Figure 2 [ ], and simply polishing the top and bottom surfaces without cutting them. Furthermore, the structure of the GdTbFe alloy was free of defects such as voids and cracks, and was a high-density material with a relative density of 99.5%. Also, where the oxygen content was measured
The oxygen content was 950 ppm, which was equivalent to the oxygen content in the pulverized powder, which was 970 ppm.
When this material was polished to a mirror finish, brazed to a conductive metal, a sputter target substrate was prepared, and a sputter film was formed, a good magneto-optical recording medium film was obtained.

〔発明の効果〕〔Effect of the invention〕

以上、述べた通り、本発明によれば、効率よく
歩留の良好な高密度焼結体を得ることができる。
As described above, according to the present invention, a high-density sintered body with a good yield can be obtained efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱間静水圧プレス成形法を示
し、〔〕はHIP処理前、〔〕はHIP処理後であ
る。第2図は本発明の熱間静水圧プレス成形法の
一実施例を説明するための図で、〔〕はHIP処
理前、〔〕はHIP処理後である。 11…コンテナ、12…金属粉末、13…スペ
ーサー。
FIG. 1 shows the conventional hot isostatic press molding method, with [ ] being before HIP treatment and [ ] being after HIP treatment. FIG. 2 is a diagram for explaining an embodiment of the hot isostatic press molding method of the present invention, where [] is before HIP treatment and [] is after HIP treatment. 11... Container, 12... Metal powder, 13... Spacer.

Claims (1)

【特許請求の範囲】 1 所定の形状の金属製コンテナに被処理物とな
る金属粉末を充てんし、該コンテナを脱気密封
し、しかる後に、該コンテナに高温高圧の熱間静
水圧プレス処理を施す方法において、金属粉末の
上、下にのみ、上記被処理物の相対密度とほぼ一
致した相対密度の耐火物粉末のプレス成形体をス
ペーサとして用い、サンドイツチ状に構成するこ
とを特徴とする熱間静水圧プレス成形方法。 2 上記金属粉末は、希土類金属を含むFe系あ
るいはCo系金属粉末であることを特徴とする特
許請求の範囲第1項記載の熱間静水圧プレス成形
方法。 3 上記耐火物粉末は、酸化アルミニウム、酸化
マグネシウム、窒化ホウ素、窒化アルミニウム等
の耐火性セラミツクス粉末である特許請求の範囲
第1項又は第2項記載の熱間静水圧プレス成形方
法。
[Claims] 1. A metal container having a predetermined shape is filled with metal powder to be treated, the container is degassed and sealed, and then the container is subjected to hot isostatic pressing at high temperature and pressure. The heating method is characterized in that a press-molded body of refractory powder with a relative density almost matching the relative density of the object to be treated is used as a spacer only above and below the metal powder to form a sandwich-like structure. Isostatic press molding method. 2. The hot isostatic press forming method according to claim 1, wherein the metal powder is Fe-based or Co-based metal powder containing a rare earth metal. 3. The hot isostatic press molding method according to claim 1 or 2, wherein the refractory powder is a refractory ceramic powder such as aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, or the like.
JP23784786A 1986-10-08 1986-10-08 Hot isostatic press molding method Granted JPS6393802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23784786A JPS6393802A (en) 1986-10-08 1986-10-08 Hot isostatic press molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23784786A JPS6393802A (en) 1986-10-08 1986-10-08 Hot isostatic press molding method

Publications (2)

Publication Number Publication Date
JPS6393802A JPS6393802A (en) 1988-04-25
JPH029641B2 true JPH029641B2 (en) 1990-03-02

Family

ID=17021290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23784786A Granted JPS6393802A (en) 1986-10-08 1986-10-08 Hot isostatic press molding method

Country Status (1)

Country Link
JP (1) JPS6393802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123541U (en) * 1989-03-23 1990-10-11

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283303A (en) * 1988-05-10 1989-11-14 Tokin Corp Production of target for magneto-optical recording medium
GB0921896D0 (en) 2009-12-16 2010-01-27 Rolls Royce Plc A method of manufacturing a component
GB201015267D0 (en) 2010-09-14 2010-10-27 Rolls Royce Plc An object forming assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499014A (en) * 1978-01-20 1979-08-04 Kobe Steel Ltd Hot hydrostatic pressing method using cured mold
JPS57116702A (en) * 1981-01-12 1982-07-20 Mitsubishi Heavy Ind Ltd Hot hydrostatic pressure molding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499014A (en) * 1978-01-20 1979-08-04 Kobe Steel Ltd Hot hydrostatic pressing method using cured mold
JPS57116702A (en) * 1981-01-12 1982-07-20 Mitsubishi Heavy Ind Ltd Hot hydrostatic pressure molding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123541U (en) * 1989-03-23 1990-10-11

Also Published As

Publication number Publication date
JPS6393802A (en) 1988-04-25

Similar Documents

Publication Publication Date Title
US4568516A (en) Method of manufacturing an object of a powdered material by isostatic pressing
US4824481A (en) Sputtering targets for magneto-optic films and a method for making
US4478789A (en) Method of manufacturing an object of metallic or ceramic material
JPH029641B2 (en)
GB2048952A (en) Isostatic Hot Pressing Metal or Ceramic
JPH0354189B2 (en)
JPH0248623B2 (en)
EP0289316B1 (en) Alloy target for manufacturing a magneto-optical recording medium
JP2681807B2 (en) Manufacturing method of metal compact by hot isostatic pressing
JPH052721B2 (en)
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
JPH0678561B2 (en) Method for manufacturing substrate for sputtering target
JPS6254002A (en) Hot hydrostatic press forming method
JPS6350469A (en) Manufacture of alloy target for sputtering
JPH01283303A (en) Production of target for magneto-optical recording medium
JPH01215972A (en) Production of target for magneto-optical medium
JPS63290272A (en) Production of rare earth element-transition metal target material
EP0448875B1 (en) Method of making discs of material
JP2677068B2 (en) Method for manufacturing alloy target
JPH0663002B2 (en) Sintering method of rare earth metal
JPS6299937A (en) Photomagnetic recording medium
JPH0518899B2 (en)
JPS63235407A (en) Production of highly brittle alloy target for sputtering
JPS63312974A (en) Production of sputtering target
JPH02145764A (en) Sputtering target