JPH0293104A - Three-way servo valve - Google Patents

Three-way servo valve

Info

Publication number
JPH0293104A
JPH0293104A JP24580788A JP24580788A JPH0293104A JP H0293104 A JPH0293104 A JP H0293104A JP 24580788 A JP24580788 A JP 24580788A JP 24580788 A JP24580788 A JP 24580788A JP H0293104 A JPH0293104 A JP H0293104A
Authority
JP
Japan
Prior art keywords
spool
control
valve chamber
high pressure
pressure valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24580788A
Other languages
Japanese (ja)
Other versions
JP2793603B2 (en
Inventor
Nobuo Kondo
信雄 近藤
Hiroyuki Fukuya
福屋 浩幸
Kuninobu Uki
宇木 邦順
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP24580788A priority Critical patent/JP2793603B2/en
Publication of JPH0293104A publication Critical patent/JPH0293104A/en
Application granted granted Critical
Publication of JP2793603B2 publication Critical patent/JP2793603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)
  • Multiple-Way Valves (AREA)

Abstract

PURPOSE:To offset the axial force of a spool and improve its control accuracy by connecting respective control rooms to each other on both sides of a high pressure valve room by a displacement of a spool to one side and both control valve rooms to respective low pressure valve rooms by the displacement of the spool to the other side. CONSTITUTION:In a three-way servo valve, control ports 8a, 8b of fluid are connected to a high pressure port 7 and tank ports 19a, 19b selectively in response to displacement of a spool 3 by an electro-magnetic drive part. Control valve rooms 15, 16 connecting to the control ports are positioned in both adjacent places of a high pressure valve room 6 connecting to the high pressure port 7, low pressure valve rooms 17, 18 connecting to the tank ports are positioned on both outsides thereof, lands 4, 5 of the spool 3 are positioned in the high pressure valve room 6 and bucket parts 13, 14 for axial force compensation are formed respectively on both outsides thereof. Lands 20, 21 are arranged so that respective control valve rooms 15, 16 may be connected to each other on both sides of the high pressure valve room 6 by the displacement of the spool 3 to one side and both control valve rooms 15, 16 may be connected to low pressure valve rooms 17, 18 respectively by its displacement to the other side. Thus, the axial forces acting on the spool are offset each other and accurate control can be performed regardless of a flow amount.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高圧流体の制御に最適な三方向サーボ弁の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement of a three-way servo valve that is most suitable for controlling high-pressure fluid.

(従来の技術) 高圧のラムまたはツヤツキなどに対する作動流体の流量
あるいは圧力を制御する三方向サーボ弁として、特開昭
56−101466号公報に開示されたものがある。
(Prior Art) A three-way servo valve for controlling the flow rate or pressure of a working fluid for a high-pressure ram or gloss is disclosed in Japanese Patent Laid-Open No. 101466/1983.

三方向サーボ弁は、ラムやジヤツキの作動室を高圧の圧
力源と低圧のタンクとに選択的に接続することにより、
伸長動作させたり収縮動作させたりするもので、その作
動速度を正確に制御できるように、弁スプールは電磁駆
動部に連結されていて、外部からの制御電流に応じて微
少ストロークして作動流体の流量や圧力を精度よくコン
トロールする。
A three-way servo valve selectively connects the working chamber of a ram or jack to a high-pressure source and a low-pressure tank.
The valve spool is connected to an electromagnetic drive unit so that the operating speed can be accurately controlled, and the valve spool makes small strokes in response to an external control current to control the flow of working fluid. Precisely control flow rate and pressure.

(発明が解決しようとする課題) ところが制御流体が高圧であるため、スプールには制御
流体の流れに伴い大きな軸力が作用し、スプールの変位
が制御電流値に正確に対応できず、制御の混乱を招きや
すい。
(Problem to be solved by the invention) However, since the control fluid is at high pressure, a large axial force acts on the spool along with the flow of the control fluid, and the displacement of the spool cannot accurately correspond to the control current value, causing control problems. Easy to cause confusion.

これを補償するために、スプールには軸力補償用のバケ
ット部(流体噴出曲面部)が形成しである。
In order to compensate for this, the spool is formed with a bucket portion (fluid ejection curved surface portion) for axial force compensation.

しかし、従来は流量制御と軸力補償とを同一エツジ部分
で行うため、軸力補償機能が必ずしも十分とは言えず、
特に低流量域では補償能力が小さく、高流量域では逆に
補償能力が大き過ぎるという傾向があった。
However, in the past, flow control and axial force compensation were performed at the same edge, so the axial force compensation function was not necessarily sufficient.
In particular, there was a tendency for the compensation ability to be small in low flow areas, and on the contrary, to be too large in high flow areas.

本発明はこのような問題を解決することを目的とする。The present invention aims to solve such problems.

(課題を解決するための手段) 本発明は電磁駆動部を介して摺動するスプールを設け、
このスプールの変位に応じて流体の制御ポートを高圧ポ
ートとタンクポートに選択的に接続する三方向サーボ弁
において、前記高圧ポートに接続する高圧弁室の両隣に
前記制御ポートに接続する制御弁室をそれぞれ形成し、
さらに各制御弁室の両外側にタンクポートに接続する低
圧弁室をそれぞれ形成し、スプールに形成した2つのラ
ンドを前記高圧弁室に位置させ、これらランドの両外側
に軸力補償用のバケット部をそれぞれ形成し、かつ一方
のバケット部を一方の制御弁室、他方のバケット部を一
方の低圧弁室に位置させ、さらにバケット部が位置する
制御弁室と低圧弁室との間に位置してスプールにランド
を設け、スプールの一方への変位により高圧弁室の両側
で各制御弁室と連通し、他方への変位により両制御弁室
を各低圧弁室と連通させるように構成した。
(Means for Solving the Problems) The present invention provides a spool that slides via an electromagnetic drive section,
In a three-way servo valve that selectively connects a fluid control port to a high pressure port and a tank port according to the displacement of the spool, control valve chambers connected to the control port are located on both sides of a high pressure valve chamber connected to the high pressure port. are formed respectively,
Further, low pressure valve chambers connected to the tank port are formed on both outsides of each control valve chamber, two lands formed on the spool are located in the high pressure valve chamber, and buckets for axial force compensation are placed on both outsides of these lands. one bucket part is located in one control valve chamber, the other bucket part is located in one low pressure valve chamber, and further located between the control valve chamber in which the bucket part is located and the low pressure valve chamber. A land is provided on the spool, and displacement of the spool to one side communicates with each control valve chamber on both sides of the high-pressure valve chamber, and displacement to the other side causes both control valve chambers to communicate with each low-pressure valve chamber. .

(作用) ラムやジヤツキなどの負荷に対する高圧流体の供給時、
高圧弁室からの高圧流体は一方の流体計量部と他方の軸
力補償部とから2つに分流し、スプールに互いに反対方
向の軸力を及ぼす、このため、流量の大小にかかわらず
、軸力は互いに相殺される。
(Function) When supplying high pressure fluid to loads such as rams and jacks,
The high-pressure fluid from the high-pressure valve chamber is divided into two parts, one fluid measuring part and the other axial force compensating part, and exerts axial forces on the spool in opposite directions. The forces cancel each other out.

また、高圧流体の排出時にも、制御弁室からの高圧流体
は2つの低圧弁室へと分流し、このときスプールに互い
に反対方向の軸力を及ぼすため、軸力は前記と同様に相
殺される。
Also, when high-pressure fluid is discharged, the high-pressure fluid from the control valve chamber is divided into two low-pressure valve chambers, and at this time, axial forces are exerted on the spool in opposite directions, so the axial forces are canceled out in the same way as above. Ru.

また制御される流量は2つの流れに分流するので、大流
量の制御が行える。
Furthermore, since the controlled flow rate is divided into two flows, a large flow rate can be controlled.

(実施例) 図面は本発明の実施例を示す断面図である。(Example) The drawings are cross-sectional views showing embodiments of the present invention.

バルブボディ1に形成した摺動孔2にはスプール3が摺
動自由に挿入される。スプール3の一端には図示しない
電磁駆動部が連結され、この電磁駆動部の励磁電流に応
じてスプール3が左右に摺動変位する。
A spool 3 is slidably inserted into a sliding hole 2 formed in a valve body 1. An electromagnetic drive unit (not shown) is connected to one end of the spool 3, and the spool 3 slides left and right in response to an exciting current of the electromagnetic drive unit.

スプール3の中央部分には2つのランド4.5が形成さ
れ、このランド4と5で囲まれた部分が高圧弁室6とな
っており、圧力源と接続する高圧ポート7が開口してい
る。
Two lands 4.5 are formed in the center of the spool 3, and the area surrounded by these lands 4 and 5 is a high pressure valve chamber 6, and a high pressure port 7 connected to a pressure source is opened. .

高圧弁室6の左右に位置して摺動孔2には制御ボー)8
Aと8Bが開口し、これら制御ポート8A、8Bは互い
に合流して制御通路8を形成し、この制御通路8が高圧
のラムあるいはジヤツキ等を構成するシリンダ9の作動
室10と接続する。
Located on the left and right sides of the high pressure valve chamber 6, the sliding hole 2 has a control bow) 8
A and 8B are open, and these control ports 8A and 8B merge with each other to form a control passage 8, which is connected to a working chamber 10 of a cylinder 9 constituting a high-pressure ram or jack.

シリング9は作動室10に供給される作動流体によって
ピストン11が移動し、負荷12を上下方向に駆動する
In the cylinder 9, a piston 11 is moved by a working fluid supplied to a working chamber 10, and drives a load 12 in the vertical direction.

前記スプール3のランド4.5のそれぞれ両外側に隣接
して、スプール3には軸力補償用の曲面形状をしたバケ
ット部13と14が形成される。
Adjacent to both outer sides of the lands 4.5 of the spool 3, the spool 3 is formed with curved bucket portions 13 and 14 for axial force compensation.

前記制御ボー)8Aと8Bがそれぞれ開口する制御弁室
15と16の両隣に位置して、低圧弁室17と18が形
成される。これら低圧弁室17と18にはそれぞれタン
クボー)19Aと19Bが開口し、これらタンクポート
19Aと19Bは互いに合流しで、図示しないタンクと
接続するタンク通路19を形成する。
Low-pressure valve chambers 17 and 18 are formed on both sides of control valve chambers 15 and 16, which are opened by the control valves 8A and 8B, respectively. Tank ports 19A and 19B open in these low pressure valve chambers 17 and 18, respectively, and these tank ports 19A and 19B merge with each other to form a tank passage 19 that connects to a tank (not shown).

タンクボー)19A、19Bの近傍に位置してスプール
3にはランド20と21が形成される。
Lands 20 and 21 are formed on the spool 3 near the tank bows 19A and 19B.

そして、スプール3の変位に伴い中央のランド4と5の
うち、一方のランド4はその右端の軸力補償部となるエ
ツジAの部分で高圧弁室6から制御弁室15への流れを
制御し、他方のランド5は右端の流量計量部となるエツ
ジBで高圧弁室6がら制御弁室16への流れを制御する
と共に、左端の軸力補償部となるエツジCにより制御弁
室16から低圧弁室18への流れを制御し、また、ラン
ド20の左端の流量計量部となる工ンノDは制御弁室1
5から低圧弁室17への流れを制御するように構成され
ている。
As the spool 3 is displaced, one of the lands 4 and 5 in the center controls the flow from the high pressure valve chamber 6 to the control valve chamber 15 at the edge A, which is the axial force compensator at the right end. However, the other land 5 controls the flow from the high pressure valve chamber 6 to the control valve chamber 16 with an edge B serving as a flow metering portion on the right end, and controls flow from the control valve chamber 16 through an edge C serving as an axial force compensation portion on the left end. The control valve D controls the flow to the low pressure valve chamber 18 and serves as the flow metering section at the left end of the land 20.
5 to the low pressure valve chamber 17.

次に作用について説明する。Next, the effect will be explained.

スプール3が図示状態にあるときは左右の制御弁室15
と16はいずれも遮断され、したがってシリング9の作
動室10には作動流体が封し込められ、ピストン11は
その位置に保持され、負荷12が静止している。
When the spool 3 is in the state shown, the left and right control valve chambers 15
and 16 are both shut off, so that the working chamber 10 of the syringe 9 is filled with working fluid, the piston 11 is held in its position, and the load 12 is stationary.

負荷12を上昇させるときは、図示しなり・電磁駆動部
によりスプール3が図中左方向に駆動される。これによ
り高圧弁室6と左右の制御弁室15.16とが同時に連
通し、エツジA、Bの部分から高圧の作動流体が制御弁
室15.16へと噴出し、制御ボー)8’A、8Bから
シリング9へと送り込まれ、ピストン11を上方へ移動
させる。
When raising the load 12, the spool 3 is driven to the left in the figure by an electromagnetic drive section (not shown). As a result, the high-pressure valve chamber 6 and the left and right control valve chambers 15.16 communicate simultaneously, and high-pressure working fluid is ejected from the edges A and B into the control valve chambers 15.16. , 8B to the shilling 9 to move the piston 11 upward.

この場合、エツジBの部分から制御弁室16に噴出する
流体力によりスプール3は図中左方向への軸力を受ける
。これに対してエツジAの部分から制御弁室15に噴出
する流体は、バケット部13に沿って高速で流れる際に
、スプール3を図中右方向へ向ける軸力を発生させる。
In this case, the spool 3 receives an axial force to the left in the figure due to the fluid force ejected from the edge B to the control valve chamber 16. On the other hand, when the fluid ejected from the edge A portion into the control valve chamber 15 flows at high speed along the bucket portion 13, it generates an axial force that directs the spool 3 to the right in the figure.

これら互いに反対方向の軸力は、弁開度、すなわち流量
の変化に対応して増減し、流量が増大するほどそれぞれ
大きくなる。
These axial forces in opposite directions increase and decrease in response to changes in the valve opening degree, that is, the flow rate, and each increases as the flow rate increases.

これらの結果、反対方向の軸力は流量のいかんにかかわ
らず常に互いに相殺され、スプール3の変位が制御流体
によって発生する軸力の影響を受けることがなくなり、
流体の流量または圧力制御が正確に行える。
As a result, the axial forces in opposite directions always cancel each other out regardless of the flow rate, and the displacement of the spool 3 is no longer affected by the axial force generated by the control fluid.
Accurate fluid flow or pressure control.

負荷12を降下させるときは、スプール3を図中右方向
に変位させる。これにより制御弁室15と16はそれぞ
れ低圧弁室17と18に連通する。
When lowering the load 12, the spool 3 is displaced to the right in the figure. The control valve chambers 15 and 16 thereby communicate with the low pressure valve chambers 17 and 18, respectively.

このため、シリング9の作動室10の作動流体は、負荷
12に応じて発生する圧力によって押し出され、ピスト
ン11が下方へと移動する。
Therefore, the working fluid in the working chamber 10 of the syringe 9 is pushed out by the pressure generated according to the load 12, and the piston 11 moves downward.

このとき、制御弁室15.16からはエツジDとCの部
分を通って低圧弁室17.18へ流体が噴出し、この噴
出流量に応じてピストン11の降下速度が決まる。
At this time, fluid is ejected from the control valve chamber 15.16 through the edges D and C to the low pressure valve chamber 17.18, and the descending speed of the piston 11 is determined according to the flow rate of this ejection.

そして、スプール3はエツジDの部分において噴出流体
による右方向への軸力を受けるが、エツジCの部分から
の噴出流体が軸力補償用のバケット部14により、左方
向への軸力を発生させるため、前記と同様に発生軸力は
互いに相殺され、スプール3の変位に及ぼす影響が消失
するのである。
The spool 3 receives a rightward axial force from the ejected fluid at the edge D, but the ejected fluid from the edge C generates a leftward axial force by the axial force compensation bucket part 14. As a result, the generated axial forces cancel each other out, and their influence on the displacement of the spool 3 disappears, as described above.

このようにして、スプール3をいずれの方向に変位させ
る場合も、流体による軸力の影響を取り除くことができ
るのであり、また、制御される流体の流量は2つの制御
ボー)8A、8Bに分流するので、通常の弁に比較して
2倍の流量まで制御することができる。
In this way, when the spool 3 is displaced in any direction, the influence of the axial force due to the fluid can be removed, and the flow rate of the controlled fluid is divided into two control bows 8A and 8B. Therefore, it is possible to control up to twice the flow rate compared to a normal valve.

なお、各ランドに形成するエツジAとBあるいはエツジ
CとDのラップ量を適度にずらすことにより、流量ゲイ
ンの調整操作が可能となる。
Note that by appropriately shifting the amount of overlap between edges A and B or edges C and D formed on each land, it is possible to adjust the flow rate gain.

(発明の効果) 以上のように本発明によれば、スプールの変位に伴い高
圧流体の供給側と戻り側のいずれについても、作動流体
は流体計量部と軸力補償部とに分流するため、流量のい
かんにかかわらず、スプールに作用する軸力は互いに相
殺され、精度の高い制御を行うことができる。また、流
体が2つの経路に分流されるため、同一の弁サイズで2
倍の流量まで制御できるという効果もある。
(Effects of the Invention) As described above, according to the present invention, the working fluid is divided into the fluid measuring section and the axial force compensating section on both the supply side and the return side of the high-pressure fluid as the spool is displaced. Regardless of the flow rate, the axial forces acting on the spool cancel each other out, allowing highly accurate control. Also, since the fluid is divided into two paths, the same valve size can
It also has the effect of being able to control up to double the flow rate.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例の断面図である。 1・・・バルブボディ、3・・・スプール、4,5・・
・ランド、6・・・高圧弁室、7・・・高圧ポート、8
 A、8 B・・・制御ポート、9・・・シリング、1
3.14・・・バケット部、15.16・・・制御弁室
、17.18・・・低圧弁室、19A、19B・=タン
クポート、20・・・ランド。 1−一一バルアボディ 3−−一又プール 9−m−シリンダ 7−−−高、圧−ポート シ、8B−−−常1イエロポート 20−一一ランド
The figure is a sectional view of an embodiment of the invention. 1... Valve body, 3... Spool, 4, 5...
・Land, 6...High pressure valve chamber, 7...High pressure port, 8
A, 8 B...Control port, 9...Schilling, 1
3.14...Bucket part, 15.16...Control valve chamber, 17.18...Low pressure valve chamber, 19A, 19B=tank port, 20...Land. 1-11 Valor body 3--Product pool 9-m-Cylinder 7--High, pressure-port, 8B--Constant 1 Yellow port 20-11 Land

Claims (1)

【特許請求の範囲】[Claims] 電磁駆動部を介して摺動するスプールを設け、このスプ
ールの変位に応じて流体の制御ポートを高圧ポートとタ
ンクポートに選択的に接続する三方向サーボ弁において
、前記高圧ポートに接続する高圧弁室の両隣に前記制御
ポートに接続する制御弁室をそれぞれ形成し、さらに各
制御弁室の両外側にタンクポートに接続する低圧弁室を
それぞれ形成し、スプールに形成した2つのランドを前
記高圧弁室に位置させ、これらランドの両外側に軸力補
償用のバケット部をそれぞれ形成し、かつ一方のバケッ
ト部を一方の制御弁室、他方のバケット部を一方の低圧
弁室に位置させ、さらにバケット部が位置する制御弁室
と低圧弁室との間に位置してスプールにランドを設け、
スプールの一方への変位により高圧弁室の両側で各制御
弁室と連通し、他方への変位により両制御弁室を各低圧
弁室と連通させるように構成したことを特徴する三方向
サーボ弁。
A three-way servo valve that includes a spool that slides via an electromagnetic drive unit and selectively connects a fluid control port to a high pressure port and a tank port according to displacement of the spool, the high pressure valve connected to the high pressure port. Control valve chambers connected to the control port are formed on both sides of the chamber, and low pressure valve chambers connected to the tank port are formed on both sides of each control valve chamber, and two lands formed on the spool are connected to the high pressure located in the valve chamber, forming bucket portions for axial force compensation on both outsides of these lands, and positioning one bucket portion in one control valve chamber and the other bucket portion in one low pressure valve chamber, Furthermore, a land is provided on the spool located between the control valve chamber where the bucket portion is located and the low pressure valve chamber,
A three-way servo valve characterized in that the displacement of the spool to one side causes the high-pressure valve chamber to communicate with each control valve chamber on both sides, and the displacement to the other side causes both control valve chambers to communicate with each low-pressure valve chamber. .
JP24580788A 1988-09-29 1988-09-29 Three-way servo valve Expired - Fee Related JP2793603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24580788A JP2793603B2 (en) 1988-09-29 1988-09-29 Three-way servo valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24580788A JP2793603B2 (en) 1988-09-29 1988-09-29 Three-way servo valve

Publications (2)

Publication Number Publication Date
JPH0293104A true JPH0293104A (en) 1990-04-03
JP2793603B2 JP2793603B2 (en) 1998-09-03

Family

ID=17139135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24580788A Expired - Fee Related JP2793603B2 (en) 1988-09-29 1988-09-29 Three-way servo valve

Country Status (1)

Country Link
JP (1) JP2793603B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851160A1 (en) * 1996-12-26 1998-07-01 Ebara Corporation Flow force compensating method and flow control valve of spool type using the same method
EP1729014A2 (en) 2005-06-02 2006-12-06 Bosch Rexroth AG Control block and section of a control block
JP2007107677A (en) * 2005-10-17 2007-04-26 Komatsu Ltd Flow control valve
DE10110700B4 (en) * 2001-03-06 2012-10-31 Linde Material Handling Gmbh control valve
WO2017017650A1 (en) * 2015-07-30 2017-02-02 Metal Work S.P.A. Solenoid valve system with an increased flow rate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851160A1 (en) * 1996-12-26 1998-07-01 Ebara Corporation Flow force compensating method and flow control valve of spool type using the same method
US5944042A (en) * 1996-12-26 1999-08-31 Ebara Corporation Flow force compensating method and flow control valve of spool type using the same method
DE10110700B4 (en) * 2001-03-06 2012-10-31 Linde Material Handling Gmbh control valve
EP1729014A2 (en) 2005-06-02 2006-12-06 Bosch Rexroth AG Control block and section of a control block
EP1729014A3 (en) * 2005-06-02 2008-03-12 Bosch Rexroth AG Control block and section of a control block
JP2007107677A (en) * 2005-10-17 2007-04-26 Komatsu Ltd Flow control valve
WO2017017650A1 (en) * 2015-07-30 2017-02-02 Metal Work S.P.A. Solenoid valve system with an increased flow rate
CN107850226A (en) * 2015-07-30 2018-03-27 迈特沃克股份有限公司 Solenoid valve system with increase flow
CN107850226B (en) * 2015-07-30 2019-07-26 迈特沃克股份有限公司 With the solenoid valve system for increasing flow
US10400908B2 (en) 2015-07-30 2019-09-03 Metal Work S.P.A. Solenoid valve system with an increased flow rate

Also Published As

Publication number Publication date
JP2793603B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
US7487707B2 (en) Hydraulic valve assembly with a pressure compensated directional spool valve and a regeneration shunt valve
US4699571A (en) Control valve for a variable displacement pump
KR100797729B1 (en) Actuater controller for hydraulic drive machine
US6357276B1 (en) System and method for calibrating a independent metering valve
US4407122A (en) Power transmission
JP2744004B2 (en) Hydraulic pressure control device
US5170692A (en) Hydraulic control system
JP3549126B2 (en) Directional control valve
JPH0293104A (en) Three-way servo valve
US4753157A (en) Power transmission
JPH0374605A (en) Pressure oil feeder for working machine cylinder
KR0146708B1 (en) Hydraulic valve capable of pressure compensation
JPH0768962B2 (en) Directional switching valve with load sensing function
JPH07167109A (en) Hydraulic control valve and hydraulic cylinder circuit
JP2637437B2 (en) Hydraulic pressure control circuit
JPH0614081Y2 (en) Three-way servo valve
JP2667880B2 (en) Hydraulic control system
JP2000283109A (en) Actuator controller
WO2020119948A1 (en) Hydraulic control circuit for a construction machine
US3872883A (en) Spool-type relief valve
JP2643957B2 (en) Hydraulic pressure control device
JPH0331841Y2 (en)
JPH0320562Y2 (en)
JPS58216899A (en) Fluid circuit
JP2002327706A (en) Hydraulic control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees