JPH029269Y2 - - Google Patents

Info

Publication number
JPH029269Y2
JPH029269Y2 JP1985057790U JP5779085U JPH029269Y2 JP H029269 Y2 JPH029269 Y2 JP H029269Y2 JP 1985057790 U JP1985057790 U JP 1985057790U JP 5779085 U JP5779085 U JP 5779085U JP H029269 Y2 JPH029269 Y2 JP H029269Y2
Authority
JP
Japan
Prior art keywords
heating element
heat generating
resistance
generating part
molybdenum silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985057790U
Other languages
Japanese (ja)
Other versions
JPS60185861U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5779085U priority Critical patent/JPS60185861U/en
Publication of JPS60185861U publication Critical patent/JPS60185861U/en
Application granted granted Critical
Publication of JPH029269Y2 publication Critical patent/JPH029269Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は内燃機関のグロープラグ、特にデイー
ゼル機関に好適なグロープラグ等のセラミツクヒ
ーターに関するものである。 現在、デイーゼル機関には低温時の始動用部品
としてグロープラグが用いられており、デイーゼ
ル機関の始動性向上のために小型速熱性のグロー
プラグが要求されている。 従来のグロープラグはそのほとんどがシーズ型
であつて、Ni−Cr合金などの発熱線をコイル状
に巻き、これをステンレスあるいはインコンネル
などの耐熱腐食性合金よりなる一端閉鎖の外筒内
に設置し、更に発熱体まわりを酸化マグネシウム
などの絶縁材で充填した構造となつている。従つ
てこの形式では発熱線と外筒との間の熱伝導は絶
縁材を介してなされるために外筒の表面が混合気
を着火すべく赤熱されるには時間がかかり、予熱
時間が長くなるという問題がある。そこでグロー
プラグの外表面自体を発熱体で構成することが提
案され、発熱体としてタングステンW、ニツケル
Ni、白金Pt、モリブデンMoなどの耐熱金属発熱
体を用いた事例が報告されているが、このような
金属では白金を除きすべてが1000℃程度で酸化に
より材質が劣化し、実用的でない。また白金も高
価であるために量産品への適用に問題がある。 考案者らは上記の実情に鑑み、セラミツクヒー
ターの発熱体として用いるに適した材料を見出す
べく種々の実験研究を重ねた結果、セラミツクヒ
ーターの発熱体として珪化モリブデンMoSi2は高
温耐酸化性を充分に満足せしめるとともに速熱性
にもすぐれた材料であることを確認した。 しかして本考案は、外表面に珪化モリブデンの
発熱体を具備したセラミツクヒーターを提供する
ものである。 本考案者らは、セラミツクヒーターの外表面に
露出して用いる発熱体としての適正をみるために
珪化モリブデン、その他種々の高融点材料につい
て耐酸化テストを行なつた。共通の大きさに切出
したテスト品を1000℃、15時間大気中に放置し、
重量変化により耐酸化性を調査した。結果を第1
表に示す。
(Field of Industrial Application) The present invention relates to a ceramic heater such as a glow plug for an internal combustion engine, particularly a glow plug suitable for a diesel engine. Currently, glow plugs are used in diesel engines as starting parts at low temperatures, and there is a demand for small, quick-heating glow plugs to improve the startability of diesel engines. Most conventional glow plugs are sheathed type, in which a heating wire made of Ni-Cr alloy is wound into a coil, and this is placed inside an outer cylinder with one end closed and made of stainless steel or a heat-corrosion-resistant alloy such as Inconel. Furthermore, the area around the heating element is filled with an insulating material such as magnesium oxide. Therefore, in this type, heat conduction between the heating wire and the outer cylinder occurs through the insulating material, so it takes time for the surface of the outer cylinder to become red-hot to ignite the air-fuel mixture, and the preheating time is long. There is a problem with becoming. Therefore, it was proposed that the outer surface of the glow plug itself be made of a heating element.
Cases have been reported in which heat-resistant metal heating elements such as Ni, platinum (Pt), and molybdenum (Mo) are used, but with the exception of platinum, all of these metals deteriorate due to oxidation at around 1000°C, making them impractical. Furthermore, since platinum is also expensive, there are problems in its application to mass-produced products. In view of the above circumstances, the inventors conducted various experimental studies to find materials suitable for use as heating elements in ceramic heaters, and found that molybdenum silicide MoSi 2 has sufficient high-temperature oxidation resistance as a heating element in ceramic heaters. It was confirmed that the material satisfies the above requirements and also has excellent rapid heating properties. Therefore, the present invention provides a ceramic heater having a molybdenum silicide heating element on its outer surface. The present inventors conducted oxidation resistance tests on molybdenum silicide and various other high melting point materials in order to determine their suitability as heating elements exposed on the outer surface of ceramic heaters. The test pieces cut out to a common size were left in the air at 1000℃ for 15 hours.
Oxidation resistance was investigated by weight change. Results first
Shown in the table.

【表】 第1表より知られるように、重量変化が極めて
少なく耐酸化性にすぐれているのはSiCとMoSi2
である。これ等に比べ耐熱金属系統は耐酸化性に
劣り、セラミツクヒーターの外表面発熱体として
使用した場合、経時変化が大きく実用的とはいえ
ない。Ptは耐酸化テスト結果は良好であるが、
高価なため量産品には適さない。SiCは酸化テス
ト結果は良好であるが抵抗が200Ω−cmと高く、
セラミツクヒーターのように小型発熱体で入力電
力が12〜24Vという低いものには使用不能であ
る。これに対してMoSi2は、4.2×10-5Ω−cmと
低く、セラミツクヒーターのように小型の発熱体
で要求抵抗値が0.1〜1.5Ωを充分達成することが
できる。またMoSi2は耐酸化性も良好で、セラミ
ツクヒーターの外表面発熱体として充分に使用で
きる。 セラミツクヒーター用発熱体としては、抵抗温
度係数が大きい方が望ましい。抵抗温度係数が大
きい場合、通電初期に大電流が流れ、発熱体の温
度上昇とともに抵抗が上昇して電流値が制限さ
れ、過熱が防止される。第1図は抵抗温度係数が
異なる発熱体の温度と通電時間の関係を示すもの
で、抵抗温度係数が大きいもの(線a)は小さい
もの(線b)に比べ、初期に大電流を流すことが
でき急速過熱が可能である。 次に主たる高融点材料の抵抗温度係数を第2表
に示す。
[Table] As shown in Table 1, SiC and MoSi 2 have extremely low weight changes and excellent oxidation resistance.
It is. Compared to these, heat-resistant metals have inferior oxidation resistance, and when used as the outer surface heating element of a ceramic heater, they change over time and are not practical. Although Pt has good oxidation resistance test results,
Due to its high price, it is not suitable for mass production. SiC has good oxidation test results, but has a high resistance of 200Ω-cm.
It cannot be used with small heating elements such as ceramic heaters whose input power is as low as 12 to 24V. On the other hand, MoSi 2 has a low resistance value of 4.2×10 -5 Ω-cm, and a required resistance value of 0.1 to 1.5 Ω can be sufficiently achieved with a small heating element such as a ceramic heater. MoSi 2 also has good oxidation resistance and can be used satisfactorily as the outer surface heating element of ceramic heaters. As a heating element for a ceramic heater, it is desirable that the temperature coefficient of resistance is large. When the temperature coefficient of resistance is large, a large current flows in the initial stage of energization, and as the temperature of the heating element rises, the resistance increases, limiting the current value and preventing overheating. Figure 1 shows the relationship between the temperature and energization time of heating elements with different temperature coefficients of resistance, and those with a large temperature coefficient of resistance (line a) are able to initially pass a large current compared to those with a small temperature coefficient of resistance (line b). and rapid overheating is possible. Next, Table 2 shows the temperature coefficient of resistance of the main high melting point materials.

【表】 第2表で知られるようにMoSi2は大きな抵抗温
度係数を有し、従来のNi−Cr発熱体に比べ初期
電流値を大きくして急速加熱することが可能とな
る。 このようにMoSi2はすぐれた耐酸化性を有し、
比抵抗も低く、抵抗温度係数も大きく急速加熱が
可能であり、発明者らのテスト結果では、MoSi2
は外表面発熱方式のセラミツクヒーターの発熱体
として実用に適した唯一のものであると認められ
た。 更に、MoSi2にSi3N4、SiC、A2O3の少なく
とも一種を混合した混合体(焼結体)はMoSi2
体よりも強度が向上し、セラミツクヒーター発熱
体として有効である。 第3表はこれ等混合体および比較材の特性を示
すものである。テスト条件は次の通りである。耐
酸化テスト:1000℃×15hr空気中高温強度;試料
40×3×3mm、 荷重速度0.5mm/min 1300℃、空気中の3点曲げ試験で、試料が破
壊もしくは大幅に変形した際の荷重を示す。 熱膨脹係数:室温〜800℃の平均熱膨脹係数サン
プルはすべて、MoSi270重量%と他の混合物
(Si3N4,SiC,A2O3)30重量%で調整した。
混合体はいずれも耐酸化性が良好で、高温強度は
MoSi2単体よりも大きい。常温比抵抗は上昇し、
熱膨脹係数はSi2N4,SiCとの混合体の場合は減
少する。
[Table] As shown in Table 2, MoSi 2 has a large temperature coefficient of resistance, making it possible to increase the initial current value and rapidly heat it compared to conventional Ni-Cr heating elements. In this way, MoSi 2 has excellent oxidation resistance,
MoSi 2
was recognized as the only heating element suitable for practical use as a heating element for external surface heating type ceramic heaters. Furthermore, a mixture (sintered body) in which MoSi 2 is mixed with at least one of Si 3 N 4 , SiC, and A 2 O 3 has improved strength compared to MoSi 2 alone, and is effective as a ceramic heater heating element. Table 3 shows the properties of these mixtures and comparative materials. The test conditions are as follows. Oxidation resistance test: 1000℃ x 15hr high temperature strength in air; sample
40 x 3 x 3 mm, loading rate 0.5 mm/min, 1300°C, 3-point bending test in air, showing the load when the sample was destroyed or significantly deformed. Coefficient of Thermal Expansion: Average coefficient of thermal expansion from room temperature to 800<0>C. All samples were prepared with 70% by weight MoSi2 and 30% by weight of other mixtures ( Si3N4 , SiC , A2O3 ) .
All mixtures have good oxidation resistance and high temperature strength.
Larger than MoSi 2 alone. The specific resistance at room temperature increases,
The coefficient of thermal expansion decreases in the case of mixtures with Si 2 N 4 and SiC.

【表】 以下本考案を図に示す実施例について説明す
る。第2図は珪化モリブデンまたは珪化モリブデ
ンを主成分とする発熱体を有する発熱部を、第3
図は該発熱部を具備したグロープラグの一例を示
すものである。 第2図に示すように発熱部1は珪化モリブデン
の焼結板11a,11b、電気絶縁セラミツク材
例えば窒化珪素の焼結板12a,12bおよび耐
熱性金属、例えばタングステンよりなる。金属線
13a,13bにより構成されている窒化珪素焼
結板12a,12bには段部が形成され基端側が
厚肉となつている。また一方の焼結板12bの表
面には縦方向に溝121bが形成されている。金
属線13a,13bの先端には直角方向の折曲部
131a,131bが形成されている。 そして、発熱部1を製造するには、金属線13
a,13bを窒化珪素焼結板13bの溝131b
にセツトしてその上に焼結板12aを重ねる。そ
のとき金属線13a,13bの折曲部131a,
131bを焼結板12a,12bの先端に設けた
孔122a,122bにそれぞれ貫通させ、先端
を折り曲げる。このようにして重ねられた窒化珪
素焼結板12a,12bの上下の先端側に珪化モ
リブデン焼結板11a,11bを重ね、はさみつ
ける方向に加圧焼成(ホツトプレス)することに
より焼結板11a,12a,12b,11bを互
に接合一体化せしめる。 このようにして得られた発熱部1を組付けた第
3図に示すグロープラグにおいて、取付部2は主
としてエンジンヘツドに取付け得るように構成し
た金属製ハウジング21とその内部に絶縁材22
を介して固定された正端子23とよりなる。発熱
部1はその基端がハウジング21の先端開口に挿
入され、金属カバー24を介して発熱体たる珪化
モリブデン焼結板11a,11bはハウジング2
1と開口とが固着され、ボデーアースを構成して
いる。ハウジング21内に挿入された発熱部1の
基端には窒化珪化焼結板12a,12bの端面に
金属キヤツプ25が金属線13a,13bと接触
するように接合され、またこのキヤツプ25と上
記端子23とはステンレス線により電気的に接続
されている。 しかして上記構造のプラグにおいて、電流は正
端子23よりステンレス線26、金属キヤツプ2
5、金属線13a,13bを通じて珪化モリブデ
ン焼結板11a,11bの先端へ到り、該焼結板
11a,11bを経てカバー24よりハウジング
21へボデーアースされる。 上記のように構成した本発明の実施例におい
て、発熱体抵抗を0.1Ωとした場合、12V印加し
外表面が800℃に到達する時間を測定したところ
1.4秒と極めて小さい値を示した。また発熱体外
表面を1000℃に加熱し連続通電時間200時間の耐
久テストを行つた後の抵抗値も全く変化せず、耐
酸化性もよく、更に継続発熱が充分に可能であつ
た。 なお、発熱部の製造方法として、発熱材および
絶縁材として粉末またはグリーンシトを用い、所
定形状の型内に発熱材、絶縁材、金属線、絶縁
材、発熱材と順次積層し、ホツトプレスにより加
圧焼成してもよい。 上記の如く、発熱体として珪化モリブデンを用
いるときは、珪化モリブデンの特性より耐酸化性
が良好で耐久性にすぐれ、低抵抗であるためにセ
ラミツクヒーターを小型化することができ、か
つ、抵抗温度係数が大きいので速熱性にすぐれて
いる。 本考案のセラミツクヒーターにおいては、発熱
部がホツトプレス焼結発熱部であるため、その発
熱部を構成する発熱体および絶縁材はほぼ理論密
度まで焼結された構成となり、発熱部自体が緻密
な構造になるので、その発熱部内部への酸素の侵
入を回避することができる。この結果、発熱部の
酸化を抑制可能となり、加えて発熱部の内部のリ
ード部材の酸化をも抑制可能となるという優れた
効果を奏する。従つて、本考案のセラミツクヒー
ターは耐酸化性に優れる。
[Table] Examples of the present invention shown in the drawings will be described below. Figure 2 shows a heat generating section having molybdenum silicide or a heat generating element mainly composed of molybdenum silicide.
The figure shows an example of a glow plug equipped with the heat generating part. As shown in FIG. 2, the heat generating portion 1 is made of sintered plates 11a and 11b of molybdenum silicide, sintered plates 12a and 12b of an electrically insulating ceramic material such as silicon nitride, and a heat-resistant metal such as tungsten. The silicon nitride sintered plates 12a and 12b constituted by the metal wires 13a and 13b have stepped portions and are thicker on the proximal end side. Moreover, a groove 121b is formed in the vertical direction on the surface of one of the sintered plates 12b. Bent portions 131a, 131b in the right angle direction are formed at the tips of the metal wires 13a, 13b. In order to manufacture the heat generating part 1, the metal wire 13
a, 13b in the groove 131b of the silicon nitride sintered plate 13b.
The sintered plate 12a is placed on top of the sintered plate 12a. At that time, the bent portion 131a of the metal wires 13a, 13b,
131b are passed through holes 122a and 122b provided at the tips of the sintered plates 12a and 12b, respectively, and the tips are bent. The molybdenum silicide sintered plates 11a, 11b are stacked on the upper and lower tip sides of the silicon nitride sintered plates 12a, 12b stacked in this way, and the sintered plates 11a, 11b are pressed and fired (hot pressed) in the sandwiching direction. 12a, 12b, and 11b are joined together and integrated. In the glow plug shown in FIG. 3 in which the heat generating part 1 thus obtained is assembled, the mounting part 2 mainly consists of a metal housing 21 configured to be attached to an engine head, and an insulating material 22 inside the metal housing 21.
The positive terminal 23 is fixed via the positive terminal 23. The base end of the heat generating part 1 is inserted into the tip opening of the housing 21, and the molybdenum silicide sintered plates 11a and 11b, which are heat generating elements, are inserted into the housing 2 through the metal cover 24.
1 and the opening are fixed to form a body ground. At the base end of the heat generating part 1 inserted into the housing 21, a metal cap 25 is joined to the end faces of the sintered nitrided sintered plates 12a, 12b so as to be in contact with the metal wires 13a, 13b. It is electrically connected to 23 by a stainless steel wire. However, in the plug having the above structure, the current flows from the positive terminal 23 to the stainless steel wire 26 and the metal cap 2.
5. It reaches the tips of the molybdenum silicide sintered plates 11a, 11b through the metal wires 13a, 13b, and is connected to the body ground from the cover 24 to the housing 21 via the sintered plates 11a, 11b. In the example of the present invention configured as described above, when the resistance of the heating element is 0.1Ω, the time taken for the outer surface to reach 800°C with 12V applied was measured.
It showed an extremely small value of 1.4 seconds. Furthermore, after a durability test in which the outer surface of the heating element was heated to 1000°C and continuous current was applied for 200 hours, the resistance value did not change at all, the oxidation resistance was good, and continuous heat generation was sufficiently possible. In addition, as a manufacturing method for the heat generating part, powder or green sheet is used as the heat generating material and the insulating material, and the heat generating material, the insulating material, the metal wire, the insulating material, and the heat generating material are sequentially laminated in a mold of a predetermined shape, and then hot pressed. Pressure firing may be used. As mentioned above, when molybdenum silicide is used as a heating element, it has better oxidation resistance and durability than the characteristics of molybdenum silicide, and has low resistance, so the ceramic heater can be made smaller, and the resistance temperature Since the coefficient is large, it has excellent rapid heating properties. In the ceramic heater of the present invention, the heat generating part is a hot press sintered heat generating part, so the heat generating element and insulating material that make up the heat generating part are sintered to almost the theoretical density, and the heat generating part itself has a dense structure. Therefore, it is possible to prevent oxygen from entering the inside of the heat generating part. As a result, it is possible to suppress oxidation of the heat generating part, and in addition, it is possible to suppress oxidation of the lead member inside the heat generating part, which is an excellent effect. Therefore, the ceramic heater of the present invention has excellent oxidation resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は抵抗温度係数の異る発熱体と温度と通
電時間の関係を示す図、第2図および第3図は本
発明の一実施例を示すもので、第2図はグロープ
ラグの発熱部構成部材を示す図、第3図はグロー
プラグの縦断面図である。 1……発熱部、11a,11b…発熱体、12
a,12b……中心部材、13a,13b,26
……金属線、2……取付部、21……ハウジン
グ。
Figure 1 shows heating elements with different temperature coefficients of resistance and the relationship between temperature and energization time. Figures 2 and 3 show an embodiment of the present invention. Figure 2 shows the heat generated by a glow plug. FIG. 3 is a longitudinal sectional view of the glow plug. 1...Heating part, 11a, 11b...Heating element, 12
a, 12b... central member, 13a, 13b, 26
...Metal wire, 2...Mounting part, 21...Housing.

Claims (1)

【実用新案登録請求の範囲】 (1) エンジン本体に取り付ける取付部と、該取付
部に保持されて燃料に着火せしめるホツトプレ
ス焼結発熱部とを具備し、上記発熱部を、電気
絶縁性セラミツクの中心部材と、該中心部材の
外面に設けられた珪化モリブデンの発熱体とに
より構成し、前記中心部材の内部にリード部材
を配設し、該リード部材を前記発熱体に接触せ
しめた状態でリード部材を介して前記発熱体を
通電手段に接続せしめたセラミツクヒーター。 (2) 前記発熱体は、珪化モリブデンに窒化珪素、
炭化珪素およびアルミナの少なくとも1種が添
加された混合物の焼結体で構成されている実用
新案登録請求の範囲第1項記載のセラミツクヒ
ーター。
[Claims for Utility Model Registration] (1) A mounting part that is attached to the engine body, and a hot press sintered heat generating part that is held in the mounting part and ignites fuel, and the heat generating part is made of electrically insulating ceramic. It is composed of a central member and a heating element made of molybdenum silicide provided on the outer surface of the central member, and a lead member is disposed inside the central member, and the lead is placed in contact with the heating element. A ceramic heater in which the heating element is connected to a current supply means through a member. (2) The heating element is composed of molybdenum silicide, silicon nitride,
The ceramic heater according to claim 1, which is constituted by a sintered body of a mixture to which at least one of silicon carbide and alumina is added.
JP5779085U 1985-04-18 1985-04-18 ceramic heater Granted JPS60185861U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5779085U JPS60185861U (en) 1985-04-18 1985-04-18 ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5779085U JPS60185861U (en) 1985-04-18 1985-04-18 ceramic heater

Publications (2)

Publication Number Publication Date
JPS60185861U JPS60185861U (en) 1985-12-09
JPH029269Y2 true JPH029269Y2 (en) 1990-03-07

Family

ID=30582655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5779085U Granted JPS60185861U (en) 1985-04-18 1985-04-18 ceramic heater

Country Status (1)

Country Link
JP (1) JPS60185861U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620929A (en) * 1979-07-30 1981-02-27 Ngk Spark Plug Co Ltd Glow plug heating element and its manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158470U (en) * 1979-05-01 1980-11-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620929A (en) * 1979-07-30 1981-02-27 Ngk Spark Plug Co Ltd Glow plug heating element and its manufacture

Also Published As

Publication number Publication date
JPS60185861U (en) 1985-12-09

Similar Documents

Publication Publication Date Title
JPH0155368B2 (en)
JPS6362660B2 (en)
JP3658770B2 (en) Ceramic glow plug
JP3766786B2 (en) Ceramic heater and glow plug including the same
JPH029269Y2 (en)
JPH0210557B2 (en)
JP3078418B2 (en) Ceramic heating element
JP3426678B2 (en) Ceramic heating element
JP2004061041A (en) Ceramic glow plug
JPH031580B2 (en)
JPS58150716A (en) Glow plug
JPH031014A (en) Self-controlled type ceramic glow plug
JPS6351356B2 (en)
JPH0311576Y2 (en)
JPH09112904A (en) Glow plug for diesel engine
JPH08273813A (en) Ceramic heater
JPS6350606Y2 (en)
JPH0155369B2 (en)
JPH0233015Y2 (en)
JP3874581B2 (en) Ceramic heater and glow plug using the same
JPS62140386A (en) Ceramic heater
JPH07139737A (en) Ceramic heater
JPH0318857Y2 (en)
JPH07151332A (en) Ceramic glow plug
JP3964305B2 (en) Ceramic heater