JPH0292624A - Manufacture of reinforced string-rod of long fiber-reinforced resin - Google Patents

Manufacture of reinforced string-rod of long fiber-reinforced resin

Info

Publication number
JPH0292624A
JPH0292624A JP63247655A JP24765588A JPH0292624A JP H0292624 A JPH0292624 A JP H0292624A JP 63247655 A JP63247655 A JP 63247655A JP 24765588 A JP24765588 A JP 24765588A JP H0292624 A JPH0292624 A JP H0292624A
Authority
JP
Japan
Prior art keywords
resin
long fiber
grooves
viscosity
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63247655A
Other languages
Japanese (ja)
Inventor
Toshihiro Asai
浅井 俊博
Akira Shimamoto
島本 明
Katsunori Shimazaki
嶋崎 勝乗
Wataru Shimomura
下村 弥
Akio Miyashita
宮下 明男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63247655A priority Critical patent/JPH0292624A/en
Publication of JPH0292624A publication Critical patent/JPH0292624A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively present reinforced long fiber in an engaging protrusion by narrowing long fiber-immersed composite resin material of uncured or unsolidified state in which is viscosity is adjusted to a specific value between pressing members with grooves while moving the material in an axially central direction, filling resin and long fiber in the grooves, and forming a protrusion part. CONSTITUTION:Nylon of thermoplastic resin is filled in a resin bath having heating means, heated to be melted, and immersed with carbon fiber bundle to obtain a long fiber-immersed composite resin material 1 having, for example, 3mm in diameter. The material 1 of uncured or unsolidified state is narrowed between pressing rolls 2 and 2 with grooves while moving the material 1 in an axially central direction, and the resin R of the material and long fiber F are filled in grooves 3 to form a protrusion 5. In this case, the viscosity etaof the material 1 at the time of reception of narrowing pressure is so adjusted as to satisfy the relation of a formula [I], where (d) is diameter (mm) of the fiber, L is the whole length of the narrowed part by the pressing members with grooves, deltaF rupture strength (kgf/mm<2>) of the fiber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、土木、建築分野で使用される鉄筋、pc鋼線
、pc鋼線等の代用品として、或はその他各種マトリッ
クス中に補強材として埋設される長繊維強化樹脂製補強
用線・棒体の製法に関し、特にマトリックスとの一体性
を高めるため表面に多数の係止用突起が形成された線・
棒体を製造する新規な方法に関するものモある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention can be used as a substitute for reinforcing bars, PC steel wire, PC steel wire, etc. used in the civil engineering and construction fields, or as a reinforcing material in various other matrices. Regarding the manufacturing method of reinforcing wires and rods made of long fiber reinforced resin that are buried as embeddings, especially wires and rods with many locking protrusions formed on the surface to enhance the integrity with the matrix.
Some relate to new methods of manufacturing rods.

[従来の技術] 最近、炭素繊維やガラス繊維等の繊維を強化材として含
有する繊維強化樹脂複合材料が注目を集め、例えば鉄筋
、pc鋼線、pc鋼線の代用品として利用しようとする
研究が盛んに進められている(特開昭83−551、同
63−552、同63−4158等)。即ちこれらの複
合材料は、鉄筋等に見られる欠点(例えば高比重で錆が
発生し易いといった欠点)を克服するものであり、特に
厳しい腐食環境が形成される海浜地域における土木建築
構造物や海洋構造物等の補強材等として徐々にその用途
を拡大してきている。
[Prior Art] Recently, fiber-reinforced resin composite materials containing fibers such as carbon fibers and glass fibers as reinforcing materials have attracted attention, and research is underway to use them as substitutes for reinforcing bars, PC steel wires, and PC steel wires, for example. (Japanese Patent Application Laid-open No. 83-551, 63-552, 63-4158, etc.). In other words, these composite materials overcome the drawbacks found in reinforcing bars (for example, high specific gravity and easy rusting), and are particularly suitable for civil engineering and architectural structures in coastal areas where severe corrosive environments are formed, as well as for marine applications. Its use as a reinforcing material for structures, etc. is gradually expanding.

ところでこれらの複合材料は、長繊維を強化材として使
用し、これを様々の樹脂に含浸して線状あるいは棒状に
成形したものであり、強化繊維としては炭素1All維
(グラファイト1a維を含む二以下同じ)やガラス繊維
等の無機ia維あるいはアラミド繊に、IL等の各種有
機繊維が使用され、樹脂としては不飽和ポリエステル樹
脂、エポキシ樹脂、フェノール樹脂、エリア樹脂、メラ
ミン樹脂等の熱硬化性樹脂や、ポリアミド樹脂、ポリオ
レフィン系樹脂、ポリスチレン樹脂等の熱可塑性樹脂が
例示される。
By the way, these composite materials use long fibers as reinforcing materials, which are impregnated with various resins and molded into wire or rod shapes. Various organic fibers such as IL are used in inorganic IA fibers such as glass fibers or aramid fibers, and thermosetting resins such as unsaturated polyester resins, epoxy resins, phenol resins, area resins, and melamine resins are used. Examples include resins and thermoplastic resins such as polyamide resins, polyolefin resins, and polystyrene resins.

[発明が解決しようとする課題] ところで通常の長繊維強化樹脂製補強用線・棒体は、多
数の長繊維を長手方向に引き揃えて収束しこれに樹脂を
含浸して硬化もしくは固化させたものであり、引張り方
向の外力に対しては強化繊維の作用によって優れた強度
を発揮する。ところがこれらの線・棒体はこれを長手方
向に見た場合平滑性が非常に高く、これをコンクリート
等の補強材として使用しても満足のいく強化効果は得ら
れない。即ち上記の様な線・棒体は、その長手方向に見
てマトリックス材との間で噛合効果を期待することがで
きないので、線・棒体とマトリックス材の境界面に前記
長手方向への剪断力が作用したとぎに簡単に滑り現象を
起こし、マトリックス材と強化材の複合効果が十分に発
揮されないからである。
[Problem to be solved by the invention] By the way, ordinary reinforcing wires and rods made of long fiber-reinforced resin are made by aligning and converging a large number of long fibers in the longitudinal direction, and then impregnating the fibers with resin and hardening or solidifying them. It exhibits excellent strength against external forces in the tensile direction due to the action of reinforcing fibers. However, these wires and rods have very high smoothness when viewed in the longitudinal direction, and even if they are used as reinforcing materials for concrete, etc., a satisfactory reinforcing effect cannot be obtained. In other words, the above-mentioned wires/rods cannot be expected to have an interlocking effect with the matrix material when viewed in the longitudinal direction, so shear in the longitudinal direction is generated at the interface between the wires/rods and the matrix material. This is because slipping easily occurs when force is applied, and the combined effect of the matrix material and reinforcing material is not fully exhibited.

本発明者らはこうした欠点を解消するため、たとえば第
4図に示す様な方法で長繊維強化樹脂製補強用線・棒体
の外周に係止用突起を形成する方法を考えた。即ち線・
棒状に予備成形された未硬化乃至非未固化状態の長繊維
含浸複合樹脂材料1を軸心方向へ走行させながら、これ
を溝付き抑圧ロール2.2間に挟圧し、該ロール2.2
に形成された溝3内に樹脂Rを充填し、しかもそのとき
の樹脂の移動に伴なわせて長繊維Fをたわませる様に溝
内3に充填させることによって(第3図のA状態)、係
止用突起5の形成された線・棒体6を得るものである。
In order to eliminate these drawbacks, the present inventors have devised a method of forming locking protrusions on the outer periphery of a reinforcing wire/rod made of long fiber reinforced resin, for example, as shown in FIG. In other words, the line
While running the long fiber-impregnated composite resin material 1 preformed into a rod shape in an uncured or unsolidified state in the axial direction, it is compressed between grooved suppression rolls 2.2.
By filling the grooves 3 formed in the grooves 3 with resin R, and filling the grooves 3 in such a way as to bend the long fibers F as the resin moves (state A in Fig. 3). ), a wire/rod body 6 on which a locking protrusion 5 is formed is obtained.

ところがこの様にして製造される突起部ぎ線・棒体6に
は次の様な問題があることが分かった。即ち係止用突起
5の形成に当たって、複合樹脂材料1が溝付き押圧ロー
ル2゜2間に挟圧された時点をとらえると、前述の如く
長繊維Fは樹脂Rの流動に伴なわれて溝3内に入る。と
ころが押圧ロール2.2から解放された後の線・棒体6
には長手方向の張力がかなり強く作用しているので、B
状態、さらにはC,D状態に示す如く長fa維Fは張力
により突起5から抜は出して再び胴部側へ引き揃えられ
、最終的に突起5は樹脂Rだけで構成されることととな
ってしまう。
However, it has been found that the protruding wire/rod body 6 manufactured in this manner has the following problems. That is, when forming the locking protrusion 5, when the composite resin material 1 is pressed between the grooved pressure rolls 2.2, the long fibers F become grooved as the resin R flows as described above. Enter within 3. However, the wire/rod 6 after being released from the pressure roll 2.2
Since there is a fairly strong longitudinal tension acting on B,
In addition, as shown in states C and D, the long fa fibers F are pulled out of the protrusion 5 by tension and are pulled toward the body again, and finally the protrusion 5 is composed only of the resin R. turn into.

そうなると長繊維Fによる補強効果は突起5に及ばなく
なり、マトリックスに例えば矢印方向への引張り力が作
用したとき、第5図に示す如く突起5がその付根から剪
断破壊を起こし、突起5形成の目的が果たせなくなる。
In this case, the reinforcing effect of the long fibers F will no longer reach the protrusions 5, and when a tensile force is applied to the matrix, for example in the direction of the arrow, the protrusions 5 will undergo shear failure from their bases as shown in FIG. becomes impossible.

本発明はこの様な問題点に着目してなされたものであっ
て、その目的は、前記係止用突起内に強化用長ia維を
確実に存在せしめることのできる様な製造技術を確立し
ようとするものである。
The present invention has been made with attention to such problems, and its purpose is to establish a manufacturing technology that can ensure the presence of reinforcing long ia fibers within the locking protrusion. That is.

[課題を解決するための手段] 上記の課題を解決することのできた本発明に係る方法の
構成は、長繊維強化樹脂によって構成され、且つ任意ピ
ッチで係止用突起が形成された補強用線・棒体を製造す
るにお当たり、下記[I]式の関係を満たす粘度に調整
された未硬化乃至非固化状態の長繊維含浸複合樹脂材料
を軸心方向へ走行させながら溝付押圧部材間に挟圧し、
前記溝の内部に前記樹脂及び長繊維を充填させることに
よって突起部を形成し、次いで樹脂を硬化もしくは固化
させるところに要旨を有するものである。
[Means for Solving the Problems] The structure of the method according to the present invention that was able to solve the above problems is that the reinforcing wire is made of a long fiber reinforced resin and has locking protrusions formed at arbitrary pitches.・When manufacturing the rod, an uncured or unsolidified long fiber-impregnated composite resin material adjusted to a viscosity that satisfies the relationship of formula [I] below is run in the axial direction between the grooved pressing members. Pressure is applied to the
The gist is that a protrusion is formed by filling the resin and long fibers inside the groove, and then the resin is cured or solidified.

但しd :長繊維の径(mm) L :溝付押圧部材による挟圧部全長 δ、:長繊維の破断強度(にgf 7mm2)γ :溝
付押圧部材による剪断速度 (1/5ec) [作用] 本発明では、たとえば第1図(要部縦断面説明図)及び
第2図(第1図のII −II線線断面相面図に示す様
な方法で、未硬化乃至非固化状態の長繊維含浸複合樹脂
材料1を軸心方向へ走行させながら、溝付は抑圧ロール
2.2間に挟圧し、溝3の内部に複合樹脂材料を構成す
る樹脂Rと長繊維Fを充填させることによって突起5を
形成する際に、挟圧を受ける時点における複合樹脂材料
1の粘度(η)を、前記[I]式の関係が満たされる様
に調整する。この場合、複合樹脂材料1中に含まれる樹
脂Rが熱硬化性樹脂である場合は、予備硬化条件をコン
トロールすることにより挟圧加工時の粘度(η)が前記
[II式を満たす様に調整すればよく、また樹脂Rが熱
硬化性樹脂である場合は、挟圧加工時の温度を低めに抑
え、粘度(η)が前記[I]式の右辺の値を下回ること
のない様に調整する。
However, d: Diameter of the long fiber (mm) L: Total length of the pinched part by the grooved pressing member δ, : Breaking strength of the long fiber (gf 7mm2) γ: Shear rate by the grooved pressing member (1/5 ec) [Effect ] In the present invention, for example, the length of the uncured or non-solidified state is While running the fiber-impregnated composite resin material 1 in the axial direction, the grooves are formed by pressing between the pressing rolls 2 and 2 and filling the grooves 3 with resin R and long fibers F that make up the composite resin material. When forming the protrusions 5, the viscosity (η) of the composite resin material 1 at the time of receiving the clamping pressure is adjusted so that the relationship of the above formula [I] is satisfied. If the resin R to be used is a thermosetting resin, the viscosity (η) at the time of pressing may be adjusted to satisfy the above formula [II] by controlling the preliminary curing conditions, and if the resin R is a thermosetting resin. In the case of a polyurethane resin, the temperature during pressure processing is kept low, and the viscosity (η) is adjusted so as not to fall below the value on the right side of the formula [I].

そうすると長繊維Fは高粘性樹脂Rの挟圧加工時の流動
に伴なって横3内へ充填されると共に第4図で述べた張
力に抗して溝3内にとどまろうとする。この時の力は線
・棒体を挟圧保持している長さ(L)に比例し、このと
ぎの保持力(f)は下記式で与えられる。が発生する。
Then, the long fibers F are filled into the lateral parts 3 as the highly viscous resin R flows during the pressing process, and also try to stay in the grooves 3 against the tension described in FIG. The force at this time is proportional to the length (L) of the wire/bar held under pressure, and the holding force (f) at this time is given by the following formula. occurs.

f=τ・π・d−L       ・・・[II ]こ
こでては樹脂Rにかかる剪断応力を示し、これは複合樹
脂材料の粘度(η)と挟圧加工時の剪断速度(:f)の
積で表わすことができる(τ=η・γ)ので、これらの
関係を上記[I]1式にとり人れると下記[+11]式
が導かれ、 f=η ・γ・π・ d−L      ・・・ [I
ll ]これに前記[II式のηを代入すると、下記[
!V]式が求められる。
f=τ・π・d−L ... [II] Here, the shear stress applied to the resin R is shown, and this is determined by the viscosity of the composite resin material (η) and the shear rate during pressure processing (:f) (τ=η・γ), so if these relationships are taken into equation [I]1 above, the following equation [+11] is derived, and f=η ・γ・π・d−L ... [I
] By substituting η of the above-mentioned formula [II] into this, the following [
! V] formula is obtained.

4 ・ L ・ γ 即ち前記[II式の関係を満たす高粘性複合樹脂材料に
より生ずる長繊維Fの保持力(f)は、い値となり、長
繊維Fは溝3内で破断する。その結果、長繊維Fの長平
方向にかかる張力は当該破断部で解放されることになり
、従来例の様にその後長繊維Fが突起5から抜は出すと
いったことはなくなる。従って、たとえば第3図に示す
如く、長繊維Fの破断伸び(j2c)を上回る伸び長さ
(A1)が与えられる様に溝3の深さ(h)及び長さ(
J23)を設定してやれば、長繊維Fは突起5内で破断
してその中に確実にとり残されることになり、突起5は
線・棒体の胴体部分との一体性が高められるので、第5
図で説明した様な突起5のみの剪断破壊はなくなる。
4.L.γ In other words, the holding force (f) of the long fibers F produced by the high viscosity composite resin material satisfying the relationship of formula II takes a low value, and the long fibers F break within the grooves 3. As a result, the tension applied in the longitudinal direction of the long fibers F is released at the fractured portion, and the long fibers F are no longer pulled out from the projections 5 as in the conventional example. Therefore, as shown in FIG. 3, for example, the depth (h) and length (
If J23) is set, the long fibers F will be broken within the protrusion 5 and will be definitely left behind, and the protrusion 5 will be more integrated with the body part of the wire/rod.
The shear failure of only the protrusion 5 as explained in the figure is eliminated.

尚上記の例では、いずれも複合樹脂材料の粘性を利用し
た保持力(f)により長繊維Fを破断して突起5内に残
存させる場合について説明したが、このほか前記C11
式の要件を満たす条件下で挟圧加工を行なって溝3内に
長繊維Fを充填した直後に、複合樹脂材料を加熱硬化も
しくは冷却固化させれば、長繊維Fを連続繊維のままで
突起5内に残留させることもできる。尚複合樹脂材料の
粘度や挟圧加工条件等によっては、突起5内に存在する
長1a維Fの一部のみが破断し残部は連続繊維のままで
存在するといった場合も生じるが、この様な態様が本発
明の技術的範囲に含まれることは言うまでもない。また
挟圧加工によって突起5を形成する際に、抑圧ロール2
.2へ送り込まれる複合樹脂材料をオーバーフィード気
味にしてやれば、長!1a m Fに作用する引張り力
が緩和されるので、溝3内への樹脂R及び長繊維Fの充
填をより円滑に進めることができる。
In the above examples, the long fibers F are broken by the holding force (f) using the viscosity of the composite resin material and remain in the protrusion 5, but in addition to the above C11
If the composite resin material is heat-cured or cooled and solidified immediately after filling the long fibers F into the groove 3 by performing pressure processing under conditions that satisfy the requirements of the formula, the long fibers F remain continuous fibers and become protrusions. It can also be left within 5. Note that depending on the viscosity of the composite resin material, the pressing conditions, etc., there may be cases where only a part of the long 1a fibers F existing in the protrusion 5 breaks and the rest remains as continuous fibers. It goes without saying that these embodiments are included within the technical scope of the present invention. In addition, when forming the protrusion 5 by pressure processing, the suppression roll 2
.. If you overfeed the composite resin material sent to 2, it will be long! Since the tensile force acting on 1a m F is relaxed, filling of the resin R and the long fibers F into the groove 3 can proceed more smoothly.

本発明はたとえば上記の様にして実施されるが、その特
徴は、挟圧加工により樹脂Rと長繊f、ItFを溝3内
へ充填して突起5を形成する際の条件として、挟圧加工
時における複合樹脂材料の粘度を特定し、その保持力を
利用して長繊維Fを突起5内へ確実に残留させる様にし
たところにある。
The present invention is carried out, for example, as described above, but the feature is that, as a condition when forming the protrusion 5 by filling the resin R, the long fibers f, and ItF into the groove 3 by pressing, The viscosity of the composite resin material at the time of processing is specified, and its holding force is utilized to ensure that the long fibers F remain within the protrusions 5.

従ってこうした特徴が有効に発揮される限り線・棒体を
構成する長繊維や樹脂の種類、線・棒体の寸法、断面形
状、突起の形状や数等には一切制限がなく、用途、目的
に応じて自由に変更することができ、また突起形成のた
めの溝付押圧部材もロール状のものが最も一般的である
が、線・棒体の形状や突起の形状あるいは樹脂の種類等
によっては往復駆動式の挟圧成形装置等を使用すること
も可能である。
Therefore, as long as these characteristics are effectively exhibited, there are no restrictions on the type of long fibers or resin that make up the wire or rod, the dimensions of the wire or rod, the cross-sectional shape, the shape or number of protrusions, etc., and there are no restrictions on the use or purpose. It can be freely changed depending on the shape of the wire/bar, the shape of the protrusion, the type of resin, etc. Although the most common type of pressing member with grooves for forming protrusions is a roll type. It is also possible to use a reciprocating drive type pressure forming device or the like.

[実施例] 比較例1 硬化剤を含むエポキシ樹脂をレジンバースに入れ、この
中に、直径d=7μm、  δ、=300kgf/mm
’のカーボン繊維よりなる束(3600本)を浸漬して
含浸し、3mmφのノズルを通すことによって、カーボ
ン長ia維が平行に並んだ繊維強化樹脂棒状体(3mI
IIφ)を得た。
[Example] Comparative Example 1 Epoxy resin containing a curing agent was placed in a resin berth, and the diameter d = 7 μm, δ, = 300 kgf/mm was placed in the resin berth.
A fiber-reinforced resin rod-like body (3 mI
IIφ) was obtained.

この棒状体を約5IImの長さにカットし、キャピラリ
式の粘度計により粘度を測定したところ、約103ボイ
ズ(= 1 x 10−5kgf−see/mm’ )
であった。
When this rod-shaped body was cut to a length of about 5 IIm and the viscosity was measured using a capillary viscometer, the viscosity was about 103 boids (= 1 x 10-5 kgf-see/mm').
Met.

得られた長尺棒状体を使用し、第1図の方式に準拠して
表面に係止用突起を形成した。このとき、棒状体は賦形
性がある(即ち未硬化である)ので、予熱器を通さずに
抑圧ロールへ供給した。
Using the obtained elongated rod-shaped body, locking protrusions were formed on the surface according to the method shown in FIG. At this time, since the rod-shaped body had shapeability (that is, it was not cured), it was supplied to the pressure roll without passing through a preheater.

押圧ロールは最外径が60ma+で、係止用突起形成用
の溝は深さ0.2mm 、長さ2+nmとし、挟圧加工
時における挟圧部全長(L)は5mm、ロール回転数(
N)は60 rpmとした。棒状体の直径(do)は3
mmである。
The outermost diameter of the pressure roll is 60 ma+, the groove for forming the locking protrusion is 0.2 mm deep and 2+ nm long, the total length of the pinching part (L) during the pinching process is 5 mm, and the number of roll rotations (
N) was set at 60 rpm. The diameter (do) of the rod-shaped body is 3
It is mm.

これらの挟圧加工条件を、下記[Vl式で示されるロー
ル圧延時の歪速度算出式に当てはめて抑圧ロール表面の
剪断歪速度(γA)を求めると、γ、 =21+、45
ec−’となる。
Applying these pressing conditions to the formula for calculating the strain rate during roll rolling shown in the following formula [Vl] to determine the shear strain rate (γA) on the surface of the suppressing roll, γ, = 21 +, 45
ec-'.

方、前記[I]式に上記のdl δP、L及びγ^を代
入することによって求められる、繊維の保持に必要な粘
度ηは となるが、この実験で用いた棒状体の挟圧加工時の粘度
は前述の如< r 1 x 10−’ kgf−sec
/mm’」であり、この粘度は上記計算に求められる必
要粘度(η)を下回っているため、得られる係止用突起
加工棒状体の突起内にはカーボン繊維は殆んど残ってお
らず、fa維は羽部のみに集中していることが確認され
た。
On the other hand, the viscosity η necessary for holding the fiber, which is obtained by substituting the above dl δP, L and γ^ into the above formula [I], is as follows. As mentioned above, the viscosity of < r 1 x 10-' kgf-sec
/mm', and since this viscosity is lower than the required viscosity (η) determined by the above calculation, almost no carbon fibers remain in the protrusions of the obtained locking protrusion-processed rod-like body. It was confirmed that fa fibers were concentrated only in the feathers.

夫A■ユ 加熱手段を備えたレジンバースに、熱可塑性樹脂である
ナイロン(融点:265℃)を入れて加熱溶融し、比較
例1で用いたのと同じカーボン繊維束を含浸して3mm
φの繊維強化樹脂棒状体を得た。
Nylon (melting point: 265°C), which is a thermoplastic resin, was put into a resin berth equipped with a heating means, heated and melted, and the same carbon fiber bundle used in Comparative Example 1 was impregnated to form a 3mm piece.
A fiber-reinforced resin rod-shaped body having a diameter of φ was obtained.

得られた棒状体の半溶融時(250℃)の粘度を下記の
方法により求めたところ、下記の値が得られた。
The viscosity of the obtained rod-shaped body when semi-molten (250° C.) was determined by the following method, and the following values were obtained.

η(at250℃) =1.5 X 10’ボイズ’=
 0.Q15  kgf−sec/m+n2[粘度の測
定法] 棒状体を適当な長さにカットして数十本を一方向に並べ
、加熱プレス(270℃)によって平板状に成形した後
、直径a=30mm、厚さり。=2mmの円板を切り出
す。この円板を、250℃に加熱された平板間に挟み、
これを万能試験機にかけて荷重(f)を加え、下記[V
l ]式より粘度(η)を求める。
η (at 250℃) = 1.5 x 10'voices' =
0. Q15 kgf-sec/m+n2 [Method for measuring viscosity] Cut rod-shaped bodies into appropriate lengths, arrange dozens of them in one direction, and form them into a flat plate using a hot press (270°C), with a diameter of a = 30 mm. , thickness. = Cut out a 2mm disk. This disk was sandwiched between flat plates heated to 250°C,
This was applied to a universal testing machine, a load (f) was applied, and the following [V
1] Find the viscosity (η) from the formula.

・・・ [Vl ] ho :試料の最初の厚さ(m+n) h :荷重付加後の厚さ(mm) t :時間 (sec ) f :荷重 (kgf ) a コ円板直径(m+n) 上記で得た棒状体を、比較例1と同様にして突起形成加
工を行なった。但し棒状体は挟圧加工に先立って250
℃に加熱し、押圧ロールは水冷構造とすることにより、
突起形成後直ちに冷却する方法を採用した。抑圧ロール
の形状や運転条件は比較例1と同じであり、この加工条
件から求められる必要粘度(η)は比較例1の場合と同
様4×10−3kgLsec/+n+++’であるが、
本例で用いた棒状体の粘度は前述の如< 0.015 
kglsec/mm2であって上記必要粘度を超えてい
る。そして得られた突起加工棒状体表面に形成された係
止用突起内には、カーボンta維が湾曲した状態で多数
存在していることが確認された。
... [Vl] ho: Initial thickness of sample (m+n) h: Thickness after load (mm) t: Time (sec) f: Load (kgf) a Disc diameter (m+n) In the above The obtained rod-shaped body was processed to form protrusions in the same manner as in Comparative Example 1. However, the rod-shaped body is
℃, and the pressure roll has a water-cooled structure.
A method of cooling immediately after the formation of protrusions was adopted. The shape and operating conditions of the suppression roll are the same as those in Comparative Example 1, and the required viscosity (η) determined from these processing conditions is 4 x 10-3 kgLsec/+n+++' as in Comparative Example 1.
The viscosity of the rod-shaped body used in this example was <0.015 as described above.
kglsec/mm2, which exceeds the above-mentioned required viscosity. It was confirmed that a large number of carbon TA fibers were present in a curved state within the locking protrusions formed on the surface of the obtained protrusion-processed rod-like body.

[発明の効果] 本発明は以上の様に構成されており、突起部も長繊維に
よって強化された補強用線・棒体を、簡単な操作で連続
的に製造し得ることになフた。その結果書られる線・棒
体は、突起部のみが剪断破壊を起こすといった問題を生
じることがなく、コンクリートをはじめとするマトリッ
クス材との一体性を高めることができ、繊1.(を強化
樹脂製補強材としての特徴を極めて有効に発揮させるこ
とができる。
[Effects of the Invention] The present invention is configured as described above, and reinforcing wires and rods in which the protrusions are also reinforced with long fibers can be continuously produced with simple operations. The resulting wires/rods do not have the problem of shear failure occurring only at the protrusions, and can improve their integrity with matrix materials such as concrete. (can exhibit its characteristics as a reinforced resin reinforcing material extremely effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す要部断面説明図、第2図
は第1図におけるII −11断面相当図、第3図は挟
圧加工時における長繊維Fの破断状況を示す説明図、第
4図は本発明の基本となった突起形成法を示す縦断面説
明図、第5図は第4図の方法によって得た突起付き線・
棒体の破断状況を示す説明図である。 1:長繊維強化樹脂製複合材料 2:挟圧加工用押圧ロール 3:溝 5:突起 6:長繊維強化樹脂製補強用線・棒体
Fig. 1 is an explanatory cross-sectional view of a main part showing an embodiment of the present invention, Fig. 2 is a cross-sectional view corresponding to II-11 in Fig. 1, and Fig. 3 is an explanatory diagram showing the state of breakage of long fibers F during pressure processing. Figure 4 is a vertical cross-sectional explanatory view showing the protrusion forming method that is the basis of the present invention, and Fig. 5 is a line with protrusions obtained by the method shown in Fig. 4.
It is an explanatory view showing the fracture situation of a rod. 1: Composite material made of long fiber reinforced resin 2: Press roll for pressure processing 3: Groove 5: Protrusion 6: Reinforcement wire/rod made of long fiber reinforced resin

Claims (1)

【特許請求の範囲】 長繊維強化樹脂によって構成され、且つ任意ピッチで係
止用突起が形成された補強用線・棒体を製造する方法で
あって、下記[ I ]式の関係を満たす粘度に調整され
た未硬化乃至非固化状態の長繊維含浸複合樹脂材料を軸
心方向へ走行させながら溝付押圧部材間に挟圧し、前記
溝の内部に前記樹脂及び長繊維を充填させることによっ
て突起部を形成し、次いで樹脂を硬化もしくは固化させ
ることを特徴とする長繊維強化樹脂製補強用線・棒体の
製造方法。 ▲数式、化学式、表等があります▼・・・[ I ] 但しd:長繊維の径(mm) L:溝付押圧部材による挟圧部全長 δ_F:長繊維の破断強度(Kgf/mm^2) ■:溝付押圧部材による剪断速度(l/sec)
[Claims] A method for manufacturing a reinforcing wire/rod made of a long fiber reinforced resin and having locking protrusions formed at arbitrary pitches, the viscosity of which satisfies the relationship of the following formula [I]. A composite resin material impregnated with uncured or non-solidified long fibers, adjusted to 1. A method for producing reinforcing wires and rods made of long fiber reinforced resin, the method comprising forming a long fiber-reinforced resin and then curing or solidifying the resin. ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[I] However, d: Diameter of long fibers (mm) L: Total length of the clamping part by grooved pressing member δ_F: Breaking strength of long fibers (Kgf/mm^2 ) ■: Shearing rate by grooved pressing member (l/sec)
JP63247655A 1988-09-30 1988-09-30 Manufacture of reinforced string-rod of long fiber-reinforced resin Pending JPH0292624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63247655A JPH0292624A (en) 1988-09-30 1988-09-30 Manufacture of reinforced string-rod of long fiber-reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247655A JPH0292624A (en) 1988-09-30 1988-09-30 Manufacture of reinforced string-rod of long fiber-reinforced resin

Publications (1)

Publication Number Publication Date
JPH0292624A true JPH0292624A (en) 1990-04-03

Family

ID=17166710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247655A Pending JPH0292624A (en) 1988-09-30 1988-09-30 Manufacture of reinforced string-rod of long fiber-reinforced resin

Country Status (1)

Country Link
JP (1) JPH0292624A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362542A (en) * 1992-03-13 1994-11-08 Komatsu Plastics Industry Co., Ltd. Fiber reinforced plastic reinforcement for concrete
US5749211A (en) * 1992-11-06 1998-05-12 Nippon Steel Corporation Fiber-reinforced plastic bar and production method thereof
DE102014102861A1 (en) * 2014-03-04 2015-09-10 Technische Universität Dresden Reinforcement grid for concrete construction, high-performance filament yarn for concrete construction and process for its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362542A (en) * 1992-03-13 1994-11-08 Komatsu Plastics Industry Co., Ltd. Fiber reinforced plastic reinforcement for concrete
US5749211A (en) * 1992-11-06 1998-05-12 Nippon Steel Corporation Fiber-reinforced plastic bar and production method thereof
DE102014102861A1 (en) * 2014-03-04 2015-09-10 Technische Universität Dresden Reinforcement grid for concrete construction, high-performance filament yarn for concrete construction and process for its production

Similar Documents

Publication Publication Date Title
Li et al. Effect of high temperature on the bond performance between basalt fibre reinforced polymer (BFRP) bars and concrete
JP4776687B2 (en) Bicomponent plastic fiber for use in cement-bonded building materials
US5613334A (en) Laminated composite reinforcing bar and method of manufacture
CA2437934C (en) Method for manufacturing fiber reinforced rod
US4648224A (en) Tendon for prestressed concrete
JP6035129B2 (en) Composite FRP short wire for cement reinforcement and method for producing the same
JPH0657407B2 (en) Fiber reinforced pellet structure
WO2015141588A1 (en) Hollow structural body and component for vehicles
EP2857607A1 (en) FRP reinforcing bar
US5422150A (en) Substrate clad with fiber-reinforced polymer composite
EP2137362A1 (en) Fiber reinforced rebar
TW201945442A (en) FRP rebar and method of making same
WO2022017106A1 (en) Exposed continuous deformation composite material profile
JPH0292624A (en) Manufacture of reinforced string-rod of long fiber-reinforced resin
Apitz et al. New thermoplastic carbon fiber reinforced polymer rebars and stirrups
Kalamkarov et al. Experimental and analytical studies of smart composite reinforcement
CA1253019A (en) Fastening device
JPH0132058B2 (en)
US6269599B1 (en) Construction component or construction with a composite structure, associated composite construction element, and method of production
Won et al. Tensile fracture and bond properties of ductile hybrid FRP reinforcing bars
JP3510356B2 (en) Method for forming terminal fixing part of high strength fiber composite tension material
Razali et al. Effect of fiber misalignment on mechanical and failure response of kenaf composite under compressive loading
JP4257020B2 (en) Thermoplastic resin-coated CFRP reinforcing bar connection method
Naskar Polymer nanocomposites for structure and construction applications
US20220144701A1 (en) Ultra-high-molecular-weight polyethylene concrete reinforcing bar