JP3510356B2 - Method for forming terminal fixing part of high strength fiber composite tension material - Google Patents

Method for forming terminal fixing part of high strength fiber composite tension material

Info

Publication number
JP3510356B2
JP3510356B2 JP30011594A JP30011594A JP3510356B2 JP 3510356 B2 JP3510356 B2 JP 3510356B2 JP 30011594 A JP30011594 A JP 30011594A JP 30011594 A JP30011594 A JP 30011594A JP 3510356 B2 JP3510356 B2 JP 3510356B2
Authority
JP
Japan
Prior art keywords
tension material
fiber composite
steel pipe
strength fiber
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30011594A
Other languages
Japanese (ja)
Other versions
JPH08135090A (en
Inventor
浩 木村
健一 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Rope Manufacturing Co Ltd
Original Assignee
Tokyo Rope Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Rope Manufacturing Co Ltd filed Critical Tokyo Rope Manufacturing Co Ltd
Priority to JP30011594A priority Critical patent/JP3510356B2/en
Publication of JPH08135090A publication Critical patent/JPH08135090A/en
Application granted granted Critical
Publication of JP3510356B2 publication Critical patent/JP3510356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/085Tensile members made of fiber reinforced plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/12Anchoring devices
    • E04C5/127The tensile members being made of fiber reinforced plastics

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高強力繊維複合緊張材の
端末定着部形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a terminal fixing portion of a high strength fiber composite tension material.

【0002】[0002]

【従来の技術】高強力繊維撚合型緊張材は高強度、高弾
性かつ非磁性で耐食性に富むなどのすぐれた特性を有す
るため、構造物や建築物の補強材たとえばプレストレス
トコンクリート用やプレテンション・ポストテンション
式コンクリート用の緊張材などとしての汎用されつつあ
る。この高強力繊維複合緊張材は、長手方向の引張りに
対してはPC鋼撚線並みの高強度を有するが、直径方向
の局部的な剪断力や表面の傷などに対して弱い。このた
め、緊張力を導入する際に、通常のPC鋼撚線の定着法
として採用されているようなくさびを直接かませて定着
させるといった方法では、剪断破壊による切断が生じた
り、緊張材表面組織の破壊に伴うすべりが起って高い定
着効率が得られない。この対策として、定着時に局部的
な応力の集中が発生しないように高強度繊維複合緊張材
の端末部に定着部を加工する方法が種々提案されてい
る。その代表的なものとしては、特開平1−24930
4号公報や実開平3−120598号公報のように、ソ
ケット型金具に緊張材端部を挿入し、緊張材外周とソケ
ット型金具とのあいだに熱硬化性樹脂を注入硬化させて
樹脂封止型端末とするタイプと、特開平4−2893号
公報のように、緊張材端部を金型に挿入して緊張材端部
の回りに低融点合金を射出成形し、低融点合金付き緊張
材端部を金属パイプに挿入して圧着させるタイプが知ら
れている。
2. Description of the Related Art High-strength fiber-twisted tension materials have excellent properties such as high strength, high elasticity, non-magnetic properties, and excellent corrosion resistance. Therefore, they are reinforcing materials for structures and buildings, such as prestressed concrete and pretensioned materials. -It is becoming widely used as a tension material for post tension concrete. This high-strength fiber composite tension material has strength as high as that of PC steel twisted wire with respect to tensile in the longitudinal direction, but is weak against local shearing force in the diametrical direction and surface scratches. For this reason, when introducing a tension force, the method of fixing the wedge by directly biting the wedge, which is adopted as a normal fixing method for PC steel stranded wire, may cause cutting due to shear fracture or the surface of the tension material. Slippage occurs due to the destruction of the tissue, and high fixation efficiency cannot be obtained. As measures against this, various methods have been proposed in which the fixing portion is processed at the end portion of the high-strength fiber composite tension material so that local concentration of stress does not occur at the time of fixing. As a typical example thereof, Japanese Patent Laid-Open No. 1-24930
As in Japanese Patent No. 4 and Japanese Utility Model Laid-Open No. 3-120598, the end of the tension material is inserted into the socket-type metal fitting, and a thermosetting resin is injected and cured between the outer circumference of the tension material and the socket-type metal fitting to seal the resin. A type with a mold end, and as in Japanese Patent Laid-Open No. 4-2893, insert the end portion of the tension material into a mold and injection-mold the low melting point alloy around the end portion of the tension material to obtain the tension material with the low melting point alloy. A type in which the end portion is inserted into a metal pipe and pressure-bonded is known.

【0003】[0003]

【発明が解決しようとする課題】しかし、前者の先行技
術では封止用樹脂の硬化に時間がかかり、また振動、塵
埃などが発生しやすい環境で封止用樹脂を硬化させるた
めには、ソケット型金具をカバーで覆ったり、高強度繊
維複合緊張材やソケット型金具を動かないように保持し
つつ温度管理をするなど煩雑な手間が必要となる。後者
は400℃を超える金属を使用するため緊張材の繊維に
好ましくない影響を及ぼす可能性があるうえ、射出成形
機という高価で大型の機械を必要とするためコストが高
くなり、かつ上記機械の現場への搬入、移動が容易でな
く、専用の設置スペースも確保しなければならない。こ
のため先行技術は緊張材使用現場での定着部施工法とし
ては問題が多く、現実には工場での加工とならざるを得
ない。しかし、工場での定着部加工法として適用した場
合、緊張材を使用する長さに切り出すために正確な計尺
と加工精度が要求され、時として計尺誤差により高価な
緊張材が無駄になるおそれがあり、また、端末加工を施
した緊張材を現場に輸送するため、梱包や運搬の上でも
複雑かつ大容量のものとなり、コストが増加するという
問題があった。さらに、特開平1−249304号公報
や特開平4−2893号公報の先行技術は、スリーブを
圧着する時点までにすでに緊張材に樹脂や低融点合金が
筒状体として接着されているため、この位置にしか定着
部を形成することができず、現場の仕様やその変更に対
応できるように定着位置を自由に調整できないという問
題があった。
However, in the former prior art, it takes a long time to cure the sealing resin, and in order to cure the sealing resin in an environment where vibration, dust and the like are likely to occur, a socket is used. It requires complicated work such as covering the metal mold with a cover and controlling the temperature while holding the high strength fiber composite tension material and the socket metal mold so that they do not move. The latter uses a metal of over 400 ° C., which may adversely affect the fibers of the tendon, and also requires an expensive and large machine such as an injection molding machine, resulting in high cost, and It is not easy to carry in and move to the site, and a dedicated installation space must be secured. For this reason, the prior art has many problems as a fixing part construction method at the site where the tension material is used, and in reality, it must be processed in a factory. However, when applied as a fixing part processing method in a factory, accurate measuring and processing accuracy are required in order to cut the tension material to the length to be used, and sometimes expensive tension material is wasted due to measurement error. In addition, since the tensioned material having the terminal processed is transported to the site, there is a problem in that it is complicated and has a large capacity in terms of packaging and transportation, and the cost is increased. Further, in the prior arts of JP-A-1-249304 and JP-A-4-2893, since the resin or the low melting point alloy is already bonded as a tubular body to the tension material by the time of pressing the sleeve, There is a problem in that the fixing portion can be formed only at the position, and the fixing position cannot be freely adjusted so as to be able to cope with the site specifications and changes.

【0004】本発明は前記のような問題点を解消するた
めに創案されたもので、その目的とするところは、緊張
材使用現場において、最適所望位置に良好な定着効率の
定着部を迅速、簡単に形成することができる方法を提供
することにある。
The present invention was devised in order to solve the above-mentioned problems, and an object of the present invention is to promptly provide a fixing unit having a good fixing efficiency at an optimum desired position in a place where a tension material is used. It is to provide a method that can be easily formed.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本発明は、高強力繊維複合緊張材をスリーブや鋳型に挿
入してそれら外殻と緊張材との隙間に材料を充填し硬化
させて定着部を作るという従来の発想を転換し、円筒状
の成形軟質樹脂を内蔵した鋼管に高強力繊維複合緊張材
を挿入し、鋼管の変形による軟質樹脂の塑性流動により
高強力繊維複合緊張材と一体化するようにしたもので、
すなわち、高強力低伸度繊維と熱硬化性樹脂とを複合し
た撚合型高強力繊維複合緊張材の端末を定着するにあた
り、予め内側に円筒状の軟質樹脂層を一体化した鋼管を
用い、前記軟質樹脂層の貫通穴に高強力繊維複合緊張材
を挿入し、この状態で鋼管外周を圧縮することにより前
記樹脂層を塑性流動させて高強力繊維複合緊張材の谷間
に圧入充填させる構成としたものである。軟質樹脂は好
適には熱硬化性樹脂でかつ、デュロメータ式硬さ試験D
型による硬度Dが60〜75、弾性率が0.8〜1.5
kN/mm程度のものが用いられる。
In order to achieve the above object, the present invention is to insert a high-strength fiber composite tension material into a sleeve or a mold and fill the gap between the outer shell and the tension material with the material to cure it. By changing the conventional idea of creating a fixing part, a high-strength fiber composite tension material was inserted into a steel pipe containing a cylindrical molded soft resin, and a high-strength fiber composite tension material was created by the plastic flow of the soft resin due to the deformation of the steel pipe. It was designed to be integrated,
That is, in fixing the end of the twist type high strength fiber composite tension material that is a composite of high strength and low elongation fiber and thermosetting resin, using a steel pipe in which a cylindrical soft resin layer is previously integrated inside, A high-strength fiber composite tension material is inserted into the through hole of the soft resin layer, and the resin layer is plastically fluidized by compressing the outer circumference of the steel pipe in this state to press-fit and fill the valleys of the high-strength fiber composite tension material. It was done. The soft resin is preferably a thermosetting resin and the durometer hardness test D
Hardness D by mold is 60-75, elastic modulus is 0.8-1.5
A material having a kN / mm 2 level is used.

【0006】[0006]

【作用】本発明は鋼管の内側に設けられている円筒状の
軟質樹脂層に高強力繊維複合緊張材を挿入し、この状態
で鋼管を外周から圧縮することで定着部を形成するもの
であるから、円筒状の軟質樹脂層を有する鋼管を予め準
備しておくだけでよく、高強力繊維複合緊張材を現場合
わせで計尺切断し、簡単にまた即座に施工することがで
きる。そして鋼管および樹脂は、鋼管の圧縮工程までは
高強力繊維複合緊張材と独立しており、相対位置を自由
に変えることができるから、定着位置を任意に調整する
ことができ、したがって仕様に最適な位置に定着部を作
ることができる。また、軟質樹脂は鋼管の圧縮に伴う断
面積の減少により塑性流動して高強力繊維複合緊張材の
螺旋状の谷部に圧入充填され、また、軟質樹脂は鋼管の
断面積の減少により圧密化され、外周側が塑性変形した
鋼管に拘束され、内径側が広い表面積の高強力繊維複合
緊張材に圧接し、それぞれ大きな摩擦力が生ずる。さら
に高強力繊維複合緊張材が撚り構造であることにより引
抜き抵抗も大きい。したがって、接着方式でないにもか
かわらず優れた定着性能を得ることができる。
According to the present invention, the high-strength fiber composite tension material is inserted into the cylindrical soft resin layer provided inside the steel pipe, and the steel pipe is compressed from the outer periphery in this state to form the fixing portion. Therefore, it suffices to prepare a steel pipe having a cylindrical soft resin layer in advance, and the high-strength fiber-composite tension material can be easily and immediately constructed by measuring the length with a site measurement. The steel pipe and resin are independent of the high-strength fiber composite tension material until the compression process of the steel pipe, and the relative position can be changed freely, so the fixing position can be adjusted arbitrarily, and therefore it is optimal for the specifications. It is possible to make a fixing unit at any position. In addition, the soft resin plastically flows due to the decrease in the cross-sectional area due to the compression of the steel pipe, and is press-fitted into the spiral troughs of the high-strength fiber composite tension material.The soft resin is consolidated due to the decrease in the cross-sectional area of the steel pipe. The outer peripheral side is constrained by the plastically deformed steel pipe, and the inner diameter side is pressed against the high-strength fiber composite tension material having a large surface area, and a large frictional force is generated. Furthermore, since the high-strength fiber composite tension material has a twisted structure, it has a large pull-out resistance. Therefore, it is possible to obtain excellent fixing performance even though the adhesive method is not used.

【0007】以下本発明を添付図面に基いて詳細に説明
する。図1において、Aは高強力低伸度繊維と熱硬化性
樹脂とを複合した撚合型の高強力繊維複合緊張材、Bは
定着用部材である。高強力繊維複合緊張材Aは、図2で
示すように、ストランド状の繊維複合素線1を複数本撚
り合わせることによって構成されている。詳しくは、各
繊維複合素線1は複合繊維芯2を複数本撚りあわせたス
トランド構造からなっている。複合繊維芯2は、炭素繊
維、ポリアラミド繊維、炭化珪素繊維などの高強力低伸
度特性の極細長繊維を多数本集合させた繊維ヤーンにエ
ポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹
脂などの熱硬化性マトリックス樹脂を含浸させ、賦形ダ
イスで成形及び余剰樹脂の除去を行った後、樹脂含浸繊
維ヤーンの表面にタルクなどの粉末乾燥剤を塗布して表
面を乾燥させたものである。各繊維複合素線1は複合繊
維芯2を複数本撚り合わせ、その外周にナイロン、ポリ
エステルなどの合成繊維や高強力低伸度繊維からなる外
装繊維3を巻きつけあるいは編組などによって被覆する
ことにより作られている。そして、前記高強力繊維複合
緊張材Aは、含浸マトリックス樹脂が未硬化の段階で繊
維複合素線1を所要本数撚合し、次いで加熱してマトリ
ックス樹脂を硬化させることで作られており、繊維複合
素線1を所要本数撚合した状態でその外周に前記したよ
うな材質の平織あるいはあや織のテープを巻装し、表面
積を増加させてもよい。この例では高強力繊維複合緊張
材Aは繊維複合素線1を7本使用し、1×7構造として
いるが、これに限定されず、1×2、1×3、1×1
9、1×37など任意である。
The present invention will be described in detail below with reference to the accompanying drawings. In FIG. 1, A is a twist type high-strength fiber composite tension material that is a composite of high-strength and low-elongation fibers and a thermosetting resin, and B is a fixing member. As shown in FIG. 2, the high-strength fiber composite tension material A is configured by twisting a plurality of strand-shaped fiber composite strands 1. Specifically, each fiber composite strand 1 has a strand structure in which a plurality of composite fiber cores 2 are twisted together. The composite fiber core 2 is a fiber yarn in which a large number of ultra-fine long fibers having high strength and low elongation property such as carbon fiber, polyaramid fiber, and silicon carbide fiber are assembled, and thermosetting epoxy resin, unsaturated polyester resin, polyurethane resin, etc. Of the resin matrix impregnated with the resin matrix, molded with a shaping die and the excess resin removed, and then a powder desiccant such as talc is applied to the surface of the resin-impregnated fiber yarn to dry the surface. Each of the fiber composite strands 1 is formed by twisting a plurality of composite fiber cores 2 and wrapping or braiding the outer periphery 3 with synthetic fibers such as nylon and polyester and outer fibers 3 made of high strength and low elongation fibers. Is made. The high-strength fiber composite tension material A is made by twisting the required number of fiber composite strands 1 at a stage where the impregnated matrix resin is uncured, and then heating to cure the matrix resin. The surface area may be increased by winding the required number of the composite strands 1 and winding a tape of plain weave or twill weave of the above-mentioned material on the outer periphery thereof. In this example, the high-strength fiber composite tension material A uses seven fiber composite strands 1 and has a 1 × 7 structure, but is not limited to this, and 1 × 2, 1 × 3, 1 × 1.
9, 1 × 37, etc. are optional.

【0008】一方、定着用部材Bは、鋼管5とこれの内
側の円筒状軟質樹脂層6からなっている。鋼管5は圧縮
時に軟質樹脂6からの圧力に耐えられ、かつある程度や
わらかい材質のものが圧縮したときにすなおに金型の形
状どおりに変形して偏肉などもなく変形して均一な内圧
を発生させることができるため好適である。硬い鋼管で
は変形がいびつになりやすいため、内圧も不均一とな
り、定着性が低下する。材質的には、たとえば配管用炭
素鋼鋼管(SGP),圧力配管用炭素鋼鋼管(STP
G)などが用いられる。前者は引張り強度が290kN
程度、後者は引張り強度が370kNで、後者の方がや
わらかい材質である。また、鋼管5の寸法としては、厚
さは2.5〜5mm程度、長さは定着効率のうえから少
なくとも高強力繊維複合緊張材Aの外径の10倍程度以
上が必要である。しかし鋼管は圧縮加工を受けると伸
び、緊張材を引っ張るように作用する。それゆえあまり
鋼管長さが大きいと、極端な場合には内部に発生した引
張りによって緊張材が破断する。それゆえ長さ寸法の上
限は高強力繊維複合緊張材Aの外径の25倍程度であ
る。たとえば、高強力繊維複合緊張材Aが1×7構造、
外径12.5mmの場合、鋼管は、長さ150〜300
mm、外径21〜30mmのものが適当である。鋼管5
は内面が平滑であってもよいし微細な溝を有していても
よい。
On the other hand, the fixing member B comprises a steel pipe 5 and a cylindrical soft resin layer 6 inside the steel pipe 5. The steel pipe 5 withstands the pressure from the soft resin 6 at the time of compression, and when it is made of a soft material to some extent, the steel pipe 5 is still deformed according to the shape of the mold and deformed without uneven thickness to generate a uniform internal pressure. It is preferable because it can be performed. Deformation is likely to occur with a hard steel pipe, so the internal pressure also becomes non-uniform and the fixability deteriorates. In terms of material, for example, carbon steel pipe for piping (SGP), carbon steel pipe for pressure piping (STP)
G) or the like is used. The former has a tensile strength of 290kN
The latter has a tensile strength of 370 kN, and the latter is a softer material. As for the dimensions of the steel pipe 5, the thickness is required to be about 2.5 to 5 mm, and the length is required to be at least about 10 times the outer diameter of the high-strength fiber composite tension material A in view of fixing efficiency. However, when the steel pipe is compressed, it stretches and acts to pull the tendon. Therefore, if the length of the steel pipe is too large, the tension member breaks due to the tension generated inside in an extreme case. Therefore, the upper limit of the length dimension is about 25 times the outer diameter of the high strength fiber composite tension material A. For example, the high strength fiber composite tension material A has a 1 × 7 structure,
When the outer diameter is 12.5 mm, the steel pipe has a length of 150 to 300.
mm and an outer diameter of 21 to 30 mm are suitable. Steel pipe 5
May have a smooth inner surface or may have fine grooves.

【0009】次に、軟質樹脂層6は鋼管5および高強力
繊維複合緊張材Aと馴染がよく、圧縮力によって割れた
り破砕せずに流動しやすい特性を有する樹脂、ことに次
の性状を有する熱硬化性樹脂が適している。 1)デュロメータ式硬さ試験D型による硬度D(JIS
K7215)が60〜75 2)弾性率が0.8〜1.5kN/mm程度 硬度Dは緊張材の硬度よりも小さいことが条件である。
75以上では流動性が低下し、緊張材表面の谷間への充
填、密着が不完全となり、また圧縮時に緊張材の損傷を
招くため不適当である。硬度Dが60以下ではクリープ
によって緊張材が滑り抜ける遅れ破壊を生ずるため不適
当である。次に、弾性率が1.5kN/mm以上では
内圧が過度に上昇するため緊張材の損傷を招く理由によ
り、また弾性率が0.8kN/mm以下では内圧が不
足し緊張材の定着荷重を高くできないため不適当であ
る。その他、使用樹脂の性状としては、圧縮強度が0.
05kN以上、圧縮伸びが5%以上好ましくは10%程
度である。こうした樹脂の具体例としては、エポキシ系
樹脂に硬化剤として三級アミン,変成脂肪族ポリアミ
ン,ポリアミドアミンなどのアミン系樹脂のいずれか1
種以上を混合し、さらに硬化物の流動性を付与するため
多硫化化合物を添加したものが挙げられる。また、アル
ミナ微粉末などの充填材を配合して硬度を維持すること
ができる
Next, the soft resin layer 6 is a resin that is well compatible with the steel pipe 5 and the high-strength fiber composite tension material A, and has a characteristic that it easily flows without being cracked or crushed by a compression force, and has the following properties. Thermosetting resins are suitable. 1) Durometer type hardness test D type hardness D (JIS
K7215) is 60 to 75 2) The elastic modulus is about 0.8 to 1.5 kN / mm 2 The hardness D is required to be smaller than the hardness of the tendon.
When it is 75 or more, the fluidity is lowered, the filling and adhesion to the valley of the surface of the tendon are incomplete, and the tendon is damaged during compression, which is unsuitable. When the hardness D is 60 or less, creep causes creeping, which causes delayed fracture so that the tendon material slips out. Next, when the elastic modulus is 1.5 kN / mm 2 or more, the internal pressure rises excessively, which causes damage to the tension material. When the elastic modulus is 0.8 kN / mm 2 or less, the internal pressure is insufficient and the tension material is fixed. Unsuitable because the load cannot be increased. Other properties of the resin used include a compression strength of 0.
The compression elongation is 05 kN or more and the compression elongation is 5% or more, preferably about 10%. As a specific example of such a resin, any one of an amine resin such as a tertiary amine, a modified aliphatic polyamine, or a polyamide amine as a curing agent for an epoxy resin is used.
Examples include a mixture of two or more kinds, and a polysulfide compound added for imparting fluidity to the cured product. Also, hardness can be maintained by blending filler such as alumina fine powder.

【0010】軟質樹脂層6は中心に貫通穴60を有する
円筒形をなしており、軟質樹脂層6は図3のように鋼管
5の内側に予め一体化されている。 図3のものを得
る方法は任意である。すなわち、鋼管5の中心にマンド
レル状の芯枠を貫挿し、この状態で芯枠と鋼管5の間の
環状空隙に熱硬化性樹脂(主剤と硬化剤の混合物)を充
填ないし流し込み、芯枠を除去するような方法をとって
もよい。芯枠としては熱硬化性樹脂と接着性の乏しいも
のや消失できるものを使用し、あるいは、熱硬化性樹脂
と接着しないように回転させるような方法をとればよ
い。また別の方法としては、鋼管5に熱硬化性樹脂を充
填ないし流し込み、硬化前に鋼管5を高速回転させて遠
心力で鋼管内面に付着させるような方法としてもよい。
さらには、鋼管5に熱硬化性樹脂を充満するようにが充
填し、中実体として硬化した後に、断面中心部に機械加
工により貫通穴60を穿設してもよい。図3の定着用部
材Bは長尺素体を作り、工場や現場で必要定着長さに切
断すればよいため簡単である。
The soft resin layer 6 has a cylindrical shape having a through hole 60 in the center, and the soft resin layer 6 is previously integrated inside the steel pipe 5 as shown in FIG. The method of obtaining the thing of FIG. 3 is arbitrary. That is, a mandrel-shaped core frame is inserted at the center of the steel pipe 5, and in this state, a thermosetting resin (mixture of main agent and curing agent) is filled or poured into the annular gap between the core frame and the steel pipe 5 to form the core frame. You may take the method of removing. As the core frame, one having poor adhesiveness to the thermosetting resin or one that can be eliminated can be used, or a method of rotating so as not to adhere to the thermosetting resin may be adopted. As another method, a method in which a thermosetting resin is filled or poured into the steel pipe 5 and the steel pipe 5 is rotated at a high speed before being hardened to be attached to the inner surface of the steel pipe by a centrifugal force before hardening.
Further, the steel pipe 5 may be filled with a thermosetting resin so as to be filled therewith, and after being hardened as a solid body, a through hole 60 may be formed in the center of the cross section by machining. The fixing member B shown in FIG. 3 is simple because a long element body is formed and cut into a required fixing length at a factory or on site.

【0011】軟質樹脂層6の貫通穴60は円形ストレー
ト状でもよいし、高強力繊維複合緊張材Aの輪郭形状と
相似した形状でもよい。貫通穴60の寸法は高強力繊維
複合緊張材Aの外径と一致するか適度に大きい。軟質樹
脂層6の厚さは、圧縮時の流動を可能にするため少なく
とも0.5mm以上であることが必要である。また、上
限は、鋼管からのグリップ力を伝達するため4mmとす
ることが好ましい。
The through hole 60 of the soft resin layer 6 may have a circular straight shape or a shape similar to the contour shape of the high strength fiber composite tension material A. The size of the through hole 60 matches the outer diameter of the high strength fiber composite tension material A or is appropriately large. The thickness of the soft resin layer 6 needs to be at least 0.5 mm or more in order to enable the flow during compression. Further, the upper limit is preferably 4 mm in order to transmit the grip force from the steel pipe.

【0012】定着部を形成するに当たっては、図1の状
態から高強力繊維複合緊張材Aの端末部aを軟質樹脂層
6の貫通穴60に貫挿する。軟質樹脂層6と端末部aは
何ら接着されていない独立部品であるから、定着用部材
Bは端末部aの任意の長さ位置に配することができ、し
たがって定着部形成位置を自由に調整することができ
る。このように定着部形成位置が決まったならば、あと
は端末部aを貫挿した定着具Bを冷間プレス機の2つ割
り金型7a,7b内に配置して、圧縮力を加えるだけで
よい。キャビティ形状は円形でもよいが、作業性の面す
なわち一度の圧縮で均等に内部を拘束できる点からこの
例では多角形となっている。プレス圧は鋼管を圧縮し円
筒形樹脂の断面を15〜30%減少させるに十分な大き
さが必要である。あまりプレス圧が高過ぎると過度の内
圧によって緊張材が損傷を受け、低荷重で破断し、見掛
け上定着荷重が低下する。逆に圧縮が低すぎると十分な
定着荷重が得られない。プレス圧の最適範囲は使用する
鋼管5の強度、寸法、樹脂の性状などにもよるが、一般
に1〜2.5kN/mm程度である。これによって樹
脂が密着しかつ内圧が付与され、鋼管−樹脂−緊張材が
一体化するため定着体を形成することができる。上記プ
レス圧でプレス機を作動すれば、2つ割り金型7a,7
bで鋼管5は全周から圧縮され、図7と図8のように断
面積が縮小した多角形状に塑性変形される。鋼管5が圧
迫され塑性変形が開始されるのに伴い、鋼管内の軟質樹
脂層5は全周から強力な圧縮力を受ける。軟質樹脂層5
は硬度Dが60〜75、弾性率が0.8〜1.5kN/
mmというような軟質のものであるため、割れてバラ
バラになったりせず、貫通穴60を形成している領域の
軟質樹脂部分が塑性流動を起こし、端末部aを構成する
各繊維複合素線1,1間の各螺旋状の谷間10に圧入さ
れ、谷間に完全に充填される。そして、鋼管5が所定の
断面積まで塑性変形される過程で軟質樹脂層6は圧密化
され、外径側は鋼管5の内面50により拘束され、内径
側は撚り構造による大きな表面積の端末部aの表面に大
きな摩擦力で圧接する。このため、端末部aと軟質樹脂
層6と鋼管5は緊密に一体化される。また、繊維複合素
線1,1が螺旋状の凹凸を有しその螺旋状の凹部に軟質
樹脂が圧入されるため大きな引抜き抵抗が得られる。こ
れらにより、定着効率の高い定着部Cが形成される。な
お図示しないが高強力繊維複合緊張材Aの他端部につい
ても同様な手順で定着部Cが形成されるものである。
In forming the fixing portion, the end portion a of the high strength fiber composite tension material A is inserted into the through hole 60 of the soft resin layer 6 from the state shown in FIG. Since the soft resin layer 6 and the terminal portion a are independent components that are not bonded to each other, the fixing member B can be arranged at an arbitrary length position of the terminal portion a, and therefore, the fixing portion forming position can be freely adjusted. can do. After the fixing portion forming position is determined in this way, the fixing tool B having the terminal portion a inserted therein is placed in the two split molds 7a and 7b of the cold press machine, and only a compressive force is applied. Good. The shape of the cavity may be circular, but it is polygonal in this example from the viewpoint of workability, that is, the inside can be uniformly restrained by one compression. The pressing pressure needs to be large enough to compress the steel pipe and reduce the cross section of the cylindrical resin by 15 to 30%. If the press pressure is too high, the tension material is damaged by excessive internal pressure, and the tension material is broken at a low load, and the fixing load is apparently reduced. On the contrary, if the compression is too low, a sufficient fixing load cannot be obtained. The optimum range of pressing pressure is generally about 1 to 2.5 kN / mm 2 , although it depends on the strength, size, resin properties, etc. of the steel pipe 5 used. As a result, the resin adheres and internal pressure is applied, and the steel pipe-resin-tension material is integrated, so that a fixing member can be formed. If the press machine is operated with the above press pressure, the mold halves 7a, 7
In b, the steel pipe 5 is compressed from the entire circumference and is plastically deformed into a polygonal shape having a reduced cross-sectional area as shown in FIGS. 7 and 8. As the steel pipe 5 is pressed and plastic deformation is started, the soft resin layer 5 in the steel pipe receives a strong compressive force from the entire circumference. Soft resin layer 5
Has a hardness D of 60 to 75 and an elastic modulus of 0.8 to 1.5 kN /
Since it is a soft material such as mm 2 , it does not crack and fall apart, and the soft resin portion in the region forming the through hole 60 causes plastic flow, and each fiber composite element that constitutes the terminal portion a. It is press-fitted into each spiral valley 10 between the lines 1 and 1 to completely fill the valley. Then, the soft resin layer 6 is consolidated in the process in which the steel pipe 5 is plastically deformed to a predetermined cross-sectional area, the outer diameter side is constrained by the inner surface 50 of the steel pipe 5, and the inner diameter side has a large surface area end portion a due to the twist structure. It comes into pressure contact with the surface of with a large friction force. Therefore, the terminal portion a, the soft resin layer 6 and the steel pipe 5 are tightly integrated. Further, since the fiber composite strands 1 and 1 have spiral irregularities and the soft resin is press-fitted into the spiral concave portions, a large pullout resistance can be obtained. As a result, the fixing portion C having high fixing efficiency is formed. Although not shown, the fixing portion C is formed on the other end of the high-strength fiber composite tension material A by the same procedure.

【0013】上記のような定着部Cを用いてポストテン
ション方式によるプレストレストコンクリート類を得る
には、図9と図10のようにソケット11に定着部Cを
挿通し、塑性変形した鋼管の断面形状に対応する形状の
接触面を有する複数割りくさび12をソケット11と定
着部Cの間に打ち込み、ソケット11を支圧板14で受
支させる。そして他端側の定着部も同様にくさび止め
し、ソケットを緊張定着用ジャッキでジャッキアップ
し、所定の緊張力に達した後、ソケットの前端と支圧板
の間にシムプレートを介装して固定し、テンションバー
を取り外せばよい。なお、図10において、13はシー
ス管である。本発明によれば、前記のように端末部aと
軟質樹脂層6と鋼管5が緊密に一体化された定着部Cと
なっているため定着効率が高く、また、定着部Cの外殻
が鋼管5により構成され軟質樹脂層5が緩衝材として働
くため、クサビによる圧縮力が作用しても繊維のせん断
破壊が防止され、高い緊張力を付与することができる。
また鋼管径が比較的小さくて済みシース管の径を小さく
することができることから、緊張材の配筋密度を高くす
ることができる。これらにより、耐食性に優れ、軽量で
薄いコンクリートを製造することが可能になる。
To obtain prestressed concrete by the post-tension method using the fixing portion C as described above, the fixing portion C is inserted into the socket 11 as shown in FIGS. 9 and 10, and the sectional shape of the plastically deformed steel pipe is obtained. A plurality of split wedges 12 each having a contact surface having a shape corresponding to are driven between the socket 11 and the fixing portion C, and the socket 11 is supported by the pressure plate 14. Then, similarly fix the fixing part on the other end with a wedge, jack up the socket with a tension fixing jack, and after reaching a predetermined tension, fix a shim plate between the front end of the socket and the pressure plate. Then you can remove the tension bar. In addition, in FIG. 10, 13 is a sheath tube. According to the present invention, as described above, the fixing portion C in which the terminal portion a, the soft resin layer 6 and the steel pipe 5 are tightly integrated is provided, so that the fixing efficiency is high and the outer shell of the fixing portion C is Since the soft resin layer 5 constituted by the steel pipe 5 functions as a cushioning material, even if the compressive force of the wedge acts, the shear fracture of the fiber is prevented and a high tension force can be applied.
Moreover, since the diameter of the steel pipe can be made small because the diameter of the steel pipe is relatively small, the reinforcement density of the tendon can be increased. These make it possible to produce lightweight and thin concrete having excellent corrosion resistance.

【0014】[0014]

【実施例】次に本発明の実施例を示す。複合撚合型緊張
材Aとして、炭素繊維ヤーンにエポキシ樹脂を35wt
%含浸し、タルク粉末を塗布してプリプレグ化したもの
を複数本撚合しその外周にポリエステル繊維を巻きつけ
て複合素線を作り、この複合素線を樹脂が未硬化の状態
で1×7構造に撚合し、熱処理してエポキシ樹脂を硬化
させることで得た外径12.5mmφを用いた。この複
合撚合型緊張材Aの保証破断荷重は142kN、実際の
破断荷重強力は161kNであり、定着効率の目標値は
90%以上である。定着具Bは、鋼管としてSGPとS
TGP2種の材質のものを使用し、樹脂層は、主剤に変
成脂肪族アミンを混合した軟質エポキシ樹脂を鋼管の内
側に充填、硬化させて一体成形した種々の厚さのものを
使用した。プレス機は六角形のキャビティを持つ2方向
冷間プレス機を使用し、プレス圧を種々にとってみた。
得られた定着部を3つ割りくさびと外径65mmのソケ
ットで定着し、複合撚合型緊張材Aに緊張力を付与し、
定着効率(定着荷重/緊張材の破断荷重×100)を測
定した。その結果を表1に示す。なお、比較のため、樹
脂として硬度の高いもの、樹脂弾性率の高いものを用い
て定着部を作ったときの諸元と定着試験結果も表1に示
す。
EXAMPLES Examples of the present invention will be described below. As the composite twist type tension material A, 35 wt% of epoxy resin is added to carbon fiber yarn.
%, Impregnated, talc powder applied and prepreged into multiple strands, and polyester fibers are wound around the outer periphery to make a composite wire, and this composite wire is 1 × 7 with the resin being uncured. An outer diameter of 12.5 mmφ obtained by twisting the structure and heat treatment to cure the epoxy resin was used. The guaranteed breaking load of this composite twist type tension member A is 142 kN, the actual breaking load strength is 161 kN, and the target value of the fixing efficiency is 90% or more. The fixing tool B is made of SGP and S as steel pipes.
Two kinds of materials of TGP were used, and the resin layer had various thicknesses which were integrally molded by filling the inside of a steel pipe with a soft epoxy resin in which a main component was mixed with a modified aliphatic amine and curing it. The press machine was a two-way cold press machine having a hexagonal cavity, and the press pressure was varied.
The obtained fixing portion is fixed with three wedges and a socket having an outer diameter of 65 mm to give a tension force to the composite twist type tension member A,
The fixing efficiency (fixing load / breaking load of tendons × 100) was measured. The results are shown in Table 1. For comparison, Table 1 also shows specifications and fixing test results when a fixing portion is made of a resin having a high hardness and a resin having a high elastic modulus.

【0015】[0015]

【表1】 [Table 1]

【0016】この表1から明らかなように、実施例1な
いし実施例4は良好な定着効率が得られている。これ
は、鋼管の材質、樹脂硬度Dと弾性率、樹脂厚、および
プレス圧が適正なためである。比較例1,2は鋼管の材
質や長さは適切であるが、樹脂硬度Dが軟らか過ぎ(比
較例1)あるいは硬過ぎる(比較例2)ため定着効率が
低くなっている。
As is clear from Table 1, Examples 1 to 4 have good fixing efficiency. This is because the material of the steel pipe, the resin hardness D and the elastic modulus, the resin thickness, and the pressing pressure are appropriate. In Comparative Examples 1 and 2, the material and length of the steel pipe are appropriate, but the resin hardness D is too soft (Comparative Example 1) or too hard (Comparative Example 2), so that the fixing efficiency is low.

【0017】[0017]

【発明の効果】以上説明した本発明によれば、予め内側
に円筒状の軟質樹脂層6を一体化させた鋼管5を用い、
前記軟質樹脂層6の貫通穴60に高強力繊維複合緊張材
Aを挿入し、この状態で鋼管5を外周から圧縮すること
により前記樹脂層を塑性流動させて高強力繊維複合緊張
材Aの谷間に充填圧接させるため、鋼管5と高強力繊維
複合緊張材Aを相対回転させてはめ合わせたり、樹脂の
硬化を待ったり温度等の管理を行ったりする必要なく、
また射出成形機や加熱機器といった特殊な機械を使用す
る必要がなく、定着効率の良好な定着部を使用現場でき
わめて簡単かつ能率的に作ることができる。また、軟質
樹脂層6に高強力繊維複合緊張材のピッチに合ったらせ
ん溝を加工する必要もなく、高強力繊維複合緊張材の外
周に定着部用の筒状層を形成する必要もなく、ストレー
トな状態のまま現場合せで計尺、切断して使用すること
ができるため工場からの出荷、運搬などを簡易、小容量
のものとすることができるとともに、鋼管を圧縮するま
では自由に定着位置を変更できるため、経済的で仕様に
最適な位置に定着部を設けて緊張力を付与することがで
きるというすぐれた効果が得られる。
According to the present invention described above, the steel pipe 5 in which the cylindrical soft resin layer 6 is previously integrated inside is used,
The high-strength fiber composite tension material A is inserted into the through-hole 60 of the soft resin layer 6, and the steel pipe 5 is compressed from the outer periphery in this state to plastically flow the resin layer and the valley of the high-strength fiber composite tension material A. Since the steel pipe 5 and the high-strength fiber composite tension material A are relatively rotated and fitted to each other, there is no need to wait for the resin to harden, and to manage the temperature, etc.
Further, it is not necessary to use a special machine such as an injection molding machine or a heating device, and it is possible to extremely easily and efficiently make a fixing unit having a good fixing efficiency at a use site. Further, there is no need to form a spiral groove in the soft resin layer 6 that matches the pitch of the high-strength fiber composite tension material, and it is not necessary to form a tubular layer for the fixing portion on the outer periphery of the high-strength fiber composite tension material. Since it is possible to measure and cut the product in a straight state while it is aligned with the site, it can be shipped from the factory, transported, etc. easily and with a small capacity, and can be fixed freely until the steel pipe is compressed. Since the position can be changed, the excellent effect that the fixing portion can be provided at an economical and optimum position for the specifications and the tension can be applied can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による高強力繊維複合緊張材の端末定着
部形成開始前の状態を示す縦断側面図である。
FIG. 1 is a vertical cross-sectional side view showing a state before starting formation of a terminal fixing portion of a high-strength fiber composite tension material according to the present invention.

【図2】本発明に用いられる高強力繊維複合緊張材の一
例を示す拡大断面図である。
FIG. 2 is an enlarged sectional view showing an example of a high-strength fiber composite tension material used in the present invention.

【図3】本発明に用いる定着用部材の例を示す縦断側面
図である。
FIG. 3 is a vertical sectional side view showing an example of a fixing member used in the present invention.

【図4】本発明の第1段階を示す縦断側面図である。FIG. 4 is a vertical sectional side view showing a first stage of the present invention.

【図5】本発明の第2段階を示す縦断側面図である。FIG. 5 is a vertical sectional side view showing a second stage of the present invention.

【図6】第2段階のプレス型との取り合いを示す縦断正
面図である。
FIG. 6 is a vertical cross-sectional front view showing the engagement with the press die in the second stage.

【図7】本発明で得られた定着部の縦断側面図である。FIG. 7 is a vertical cross-sectional side view of the fixing unit obtained by the present invention.

【図8】図7のX−X線に沿う断面図である。FIG. 8 is a cross-sectional view taken along line XX of FIG.

【図9】本発明による定着部を使用した定着状態を示す
斜視図である。
FIG. 9 is a perspective view showing a fixing state using the fixing unit according to the present invention.

【図10】本発明による定着部をプレストレストコンク
リートの製作に適用した状態を示す側面断面図である。
FIG. 10 is a side sectional view showing a state in which the fixing portion according to the present invention is applied to the production of prestressed concrete.

【符号の説明】[Explanation of symbols]

A 高強力繊維複合緊張材 a 端末部 B 定着用部材 5 鋼管 6 軟質樹脂層 50 貫通穴 C 定着部 A high strength fiber composite tension material a Terminal B Fixing member 5 steel pipe 6 Soft resin layer 50 through holes C fixing unit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−27630(JP,A) 特開 平5−179761(JP,A) 特開 平4−203068(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page       (56) Reference JP-A-7-27630 (JP, A)                 Japanese Patent Laid-Open No. 5-179761 (JP, A)                 Japanese Patent Laid-Open No. 4-203068 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高強力低伸度繊維と熱硬化性樹脂とを複合
した撚合型高強力繊維複合緊張材に定着部を得るにあた
り、予め内側に円筒状の軟質樹脂層を一体化させた鋼管
を用い、前記軟質樹脂層の貫通穴に高強力繊維複合緊張
材を挿入し、この状態で鋼管を外周から圧縮することに
より前記軟質樹脂層を塑性流動させて高強力繊維複合緊
張材の谷間に圧入充填させることを特徴とする高強力繊
維複合緊張材の端末定着部形成方法。
1. A cylindrical soft resin layer is preliminarily integrated inside in order to obtain a fixing portion in a twist type high strength fiber composite tension material which is a composite of high strength and low elongation fiber and thermosetting resin. Using a steel pipe, a high-strength fiber composite tension material is inserted into the through hole of the soft resin layer, and in this state the steel pipe is compressed from the outer circumference to plastically flow the soft resin layer and the valley of the high-strength fiber composite tension material. A method for forming a terminal fixing portion of a high-strength fiber composite tension material, which comprises press-fitting and filling.
【請求項2】軟質樹脂層が、硬度Dが60〜75、弾性
率が0.8〜1.5kN/mm程度の熱硬化性樹脂で
ある請求項1に記載の高強力繊維複合緊張材の端末定着
部形成方法。
2. The high strength fiber composite tension material according to claim 1, wherein the soft resin layer is a thermosetting resin having a hardness D of 60 to 75 and an elastic modulus of about 0.8 to 1.5 kN / mm 2. Method for forming terminal fixing part.
JP30011594A 1994-11-10 1994-11-10 Method for forming terminal fixing part of high strength fiber composite tension material Expired - Fee Related JP3510356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30011594A JP3510356B2 (en) 1994-11-10 1994-11-10 Method for forming terminal fixing part of high strength fiber composite tension material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30011594A JP3510356B2 (en) 1994-11-10 1994-11-10 Method for forming terminal fixing part of high strength fiber composite tension material

Publications (2)

Publication Number Publication Date
JPH08135090A JPH08135090A (en) 1996-05-28
JP3510356B2 true JP3510356B2 (en) 2004-03-29

Family

ID=17880907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30011594A Expired - Fee Related JP3510356B2 (en) 1994-11-10 1994-11-10 Method for forming terminal fixing part of high strength fiber composite tension material

Country Status (1)

Country Link
JP (1) JP3510356B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482845B (en) * 2009-08-12 2014-11-12 东京制纲株式会社 Structure and method for affixing terminal of linear body made of fiber reinforced plastic
CN105756288B (en) * 2016-03-21 2018-10-26 宁波大学 A kind of carbon beaverboard anchorage
CN109112977B (en) * 2018-09-04 2024-01-16 南京林业大学 Rapid prestress reinforced bridge body structure and method
CN109555270A (en) * 2018-12-24 2019-04-02 哈尔滨工业大学 A kind of casing-FRP composite reinforcing material and preparation method thereof

Also Published As

Publication number Publication date
JPH08135090A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
US2686963A (en) Method of anchoring reinforcements
CA2976625A1 (en) End fixing structure of composite wire rod
US4130926A (en) Method of producing a rod anchoring structure
CN109797910B (en) Clamping piece for anchoring FRP (fiber reinforced Plastic) rib, machining method and anchoring method
US11268280B2 (en) Anchorage of continuous fiber-reinforced polymer strands
JP2884465B2 (en) Terminal fixing structure of FRP reinforcement
JP3510356B2 (en) Method for forming terminal fixing part of high strength fiber composite tension material
US2270240A (en) Anchoring of tensioned cables in concrete constructions
JPH09207117A (en) Metal fitting and method for fixing terminal of frp reinforcing material
TW202030406A (en) Composite rebar
JP2540355B2 (en) Manufacturing method of fiber-reinforced synthetic resin prestressed concrete tension material with fixing device
JP3037017U (en) High strength fiber rope terminal fixing structure
JPH0742310A (en) Fiber composite reinforcing member for reinforcing concrete and end fixing method thereof
JPH07317214A (en) Fiber-reinforced resin composite reinforcing bar material and manufacture thereof
JPH1077587A (en) Anticorrosive pc stranded steel cable excellent in relaxation and its production
JP4037041B2 (en) Terminal processing method and terminal fixing method of fiber composite material
JPH01272889A (en) Terminal setting of composite filamentous form or twisted form thereof
JP2942878B2 (en) Terminal fixing method of composite twist type tensile strip
JP2849618B2 (en) Terminal fixing method of fiber composite strip
JP7221084B2 (en) RESIN MOLDED PRODUCT, METHOD FOR MANUFACTURING THE SAME, AND INSERT FOR SHEATH CONNECTION MOLDING
JPH01154946A (en) Fixing sleeve coupling structure of pc tendon made of fiber-reinforced synthetic resin
JPS63288711A (en) Manufacture of multi-type fixture for prestressed concrete
JP2003056536A (en) Fiber-reinforced synthetic resin bolt and nut
JP2023155566A (en) Tensional material fixing structure and method for manufacturing pre-stress concrete structure
JPH06136676A (en) Wire rope having satsuma @(3754/24)connection method) inserting part covered with resin and its packaging method

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031225

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees