JP4037041B2 - Terminal processing method and terminal fixing method of fiber composite material - Google Patents

Terminal processing method and terminal fixing method of fiber composite material Download PDF

Info

Publication number
JP4037041B2
JP4037041B2 JP2000201268A JP2000201268A JP4037041B2 JP 4037041 B2 JP4037041 B2 JP 4037041B2 JP 2000201268 A JP2000201268 A JP 2000201268A JP 2000201268 A JP2000201268 A JP 2000201268A JP 4037041 B2 JP4037041 B2 JP 4037041B2
Authority
JP
Japan
Prior art keywords
fiber
composite material
fiber composite
terminal
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000201268A
Other languages
Japanese (ja)
Other versions
JP2002020985A (en
Inventor
委広 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Rope Manufacturing Co Ltd
Original Assignee
Tokyo Rope Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Rope Manufacturing Co Ltd filed Critical Tokyo Rope Manufacturing Co Ltd
Priority to JP2000201268A priority Critical patent/JP4037041B2/en
Publication of JP2002020985A publication Critical patent/JP2002020985A/en
Application granted granted Critical
Publication of JP4037041B2 publication Critical patent/JP4037041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ropes Or Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高強力低伸度繊維を用いたロープ状ないしケーブル状の繊維複合材の端末加工法と端末定着方法に関するものである。
【0002】
【従来の技術】
高強力低伸度繊維に熱硬化性樹脂を含浸し硬化させて棒状体、線状体、撚合体などに構成してなる繊維複合材は、特公昭57−25679号公報や特公昭62−18679号公報などにより知られている。
このような高強力低伸度繊維を用いたロープ状ないしケーブル状の繊維複合材は、軽量で、耐食性に優れ、高強度、低伸度、低リラクセーションであるなど、種々のすぐれた物理的、化学的特性を有している。このため、従来の鋼線、ワイヤロープなどに代わる資材として、例えばプレストレストコンクリート用の緊張材、プレテンション方式およびポストテンション方式によるコンクリート用の緊張材、あるいはアウトケーブルなどとして使用される傾向にある。
【0003】
かかる使用に際しては、繊維複合材の端末部を加工し、それを確実かつ作業性よく低コストで被定着部に定着できるようにすることが重要である。
従来、一般繊維ロープ類においては、端末部を定着する際には、アイスプライスを施したり、ロープを相互にスプライスする方法が採られている。これらの方法は、柔軟で解撚しやすいロープ構成の場合に適用できても、高強力低伸度繊維を熱硬化性樹脂で集合硬化させなる繊維複合材においては適用が困難である。
【0004】
そこでワイヤロープで汎用されているようなくさび止め方式を採用できれば好都合である。しかし、繊維複合材はその素材が繊維であるため、長手方向に対する引張力に対しては高強力であるが、直径方向に対する剪断力に弱いという特性がある。このため、ワイヤロープに適用されるくさび止め方式の定着方法を繊維複合材に適用しようとすると、コーンのくさび作用によりコーンの内周端縁から繊維複合材に強力な剪断力が加わって構成繊維が破断し、安定した定着が困難となるという問題があった。
【0005】
このため、従来では、定着方法として、繊維複合体の端末部をダイカスト金型内に挿入し、プレス機でその定着部に外周から圧縮力を加えて定着部を複数割りのコーンで挟持するとともにスリーブ内に挿入して、繊維複合材をくさび作用によって定着する方法や、繊維複合体の端末部ダイカスト金型内に挿入し、その金型内に低融点金属を注入固化させ、得られた金属被覆端末部をパイプ内に嵌挿して、プレス機にて定着部に外周から圧縮力を加えて圧着し、定着部を複数割りのコーンで挟持してスリーブ内に挿入し、繊維複合材をくさび作用によって定着する方法が知られている。
【0006】
しかしながら、前記のような定着方法は工程が複雑で時間と手間がかかり、使用現場での加工が実際上困難である。しかも、端末加工部の外径が非常に大きくなり、このため、ポストテンション工法等ではシースへの挿入が容易ではなく、定着スペースを大きく取ることになって、効率的、経済的でなかった。
【0007】
【発明が解決しようとする課題】
本発明は前記のような問題点を解消するためになされたもので、その目的とするところは、繊維複合材との一体化がよいとともに外径を小さくすることができ、しかも施工現場で簡易に実施することができる繊維複合材の端末加工法を提供することにある。
また、本発明の目的とするところは、現場で簡単、迅速に外径が比較的小さく高定着力を発揮できる繊維複合材の端末定着方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため本発明は、高強度低伸度繊維と熱硬化性樹脂を複合した繊維複合材の撚り線形状端末部の撚線の谷間に繊維束を埋め込み、この状態で外周を繊維束でラッピングして円筒形に成形し、次いで繊維複合材のマトリックス樹脂と同等の熱硬化性樹脂を含浸させ、加熱することにより繊維複合材と繊維束を一体に接合することを特徴としている。
【0009】
繊維複合材の端末部の撚線の谷間に埋める繊維束として、繊維複合材と同材質の高強度低伸度繊維を用いるのが好適である。また、ラッピングに用いる繊維束として熱収縮性繊維を用い、加熱の際の繊維の熱収縮作用により撚線の谷間に埋め込んだ繊維束と繊維複合材端末部とを緊縛することも好適である。
【0010】
本発明は、前記のようにして得られた繊維複合材の定着用部を複数割りのくさびで挟持してスリーブ内に挿入し、前記定着用部をくさび作用により被定着部に定着することを特徴としている。
【0011】
【発明の実施の形態】
以下本発明の実施例を添付図面を参照して説明する。
図1ないし図7は本発明による繊維複合材の端末加工法の工程を示しており、図1において、1は高強度低伸度繊維と熱硬化性樹脂を複合したケーブル状の繊維複合材である。この繊維複合材1は、複数本の複合ストランド1aを1×5、1×7、1×19、1×24等の構造に撚合してなる。
【0012】
複合ストランド1aは、炭素繊維、ポリアラミド繊維、炭化珪素繊維などから選択される高強力低伸度繊維を多数本収束した繊維束に、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂などから選択される熱硬化性樹脂を含浸させた複合材からなっている。この例では、外層に高強力低伸度繊維あるいはポリエステルなどの合成繊維糸を被覆している。
【0013】
繊維複合材1は、各複合ストランド1a,1aを賦形ダイスなどで成形と余剰樹脂の除去を行なった後、表面にタルクなどの粉末乾燥剤を塗布して表面を乾燥させ、含浸した熱硬化性樹脂が未硬化の段階で所定のピッチで撚り合わせ、その後、加熱して熱硬化性樹脂を硬化させることにより作られたものである。
前記各複合ストランド1aは含浸した熱硬化性樹脂が未硬化の段階で所定のピッチで撚り合わされ、その後、加熱して熱硬化性樹脂を硬化させることにより前記繊維複合材1が作られる。
【0014】
本発明は、まず、図3のように、繊維複合材1の定着部とすべき所定範囲の端末部1’の外周を構成している撚り線の谷間、すなわち隣接する複合ストランド1a,1aの各谷間2,2に繊維束3,3を埋め込む。
繊維束3は、図2(a)(b)のように、繊維複合材と同材質の高強力低伸度繊維30を所要本数平行に引き揃えて束としたもので、繊維束3はエポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂などから選択される熱硬化性樹脂5を含浸させ、賦形ダイスなどで成形と余剰樹脂の除去がなされたもので、取り扱いの面から、タルクなどの粉末乾燥剤を塗布して表面を乾燥させていることが好ましい。
【0015】
このように熱硬化性樹脂を含浸させた場合、適度の押圧力で永久変形するので、複合ストランド1a,1aの谷間2,2の長手方向および長手方向と直角の各形状に即応し容易にすき間なく充填することができ、かつまた、軽い接着性により複合ストランド1a,1aに密着して仮止めされるので、特別な保持手段を高ずることなく、外れを防止することができる。
繊維束3の断面の太さは、端末部1’の断面全体が円形状に近くなるようにするため、図1の複合ストランド1a,1aの谷間と同等以上とすべきであり、埋込前の断面形状は丸でもよいし、あらかじめ扇状ないし三角状に賦形してあってもよい。
【0016】
次に、本発明は、前記のように繊維束3を撚りの各谷間2,2に埋め込んだ第1段階加工端末部Aの外周に、図5(b)(c)のように断面全体が円形を呈するように、繊維束4を螺旋状に緊密に巻き付ける。
前記繊維束4は、図4のように繊維糸40が平行に引き揃えられ、全体が帯状を呈しており、巻きターン間にすき間が生じたり、オーバラップしないように巻き付けられる。繊維束4を構成する繊維糸としては、熱収縮性の繊維たとえばポリエステル繊維が好適である。
繊維束4は、これの巻き付けが終わった第2段階加工端末部Bが、繊維複合材1の外径の約1.1倍以下となるように繊維糸40の太さや数を設定してある。
【0017】
ついで、第2段階加工端末部Bに、図6のように、繊維複合材1のマトリックス樹脂と同じか同等の熱硬化性樹脂すなわち、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂などから選択される樹脂(液状)5を含浸させる。
この含浸はたとえば図6のように容器8に収容した熱硬化性樹脂5中に第2段階加工端末部Bを挿入してどぶ漬けすることで行なえばよいが、これに限らず、刷毛塗り、スプレーなど任意である。熱硬化性樹脂5は繊維束4の繊維糸40に含浸され、透過したものが繊維束3の外面およびの複合ストランド1a,1aの外面に付着される。これで第3段階加工端末部Cとなる。
【0018】
この状態で次に、第3段階加工端末部Cを加熱する。この加熱温度は熱硬化性樹脂の硬化に十分な温度たとえば、100℃〜130℃であり、かかる加熱により複合ストランド1a,1aの谷間に埋め込まれている繊維束3,3がそれ自体に含浸している熱硬化性樹脂5によって各複合ストランド1a,1aに接着されるとともに、外周に巻き付けられている繊維束4が第3段階で含浸された熱硬化性樹脂により各複合ストランド1a,1aの外面および繊維束3,3の外面に接着し、この状態で硬化する。
加熱加熱手段は任意であり、たとえばパイプを使用しこれに第3段階加工端末部Cを遊挿し、パイプ内に熱風を吹き込んで温度と時間を管理したり、筒状の電熱器内に第3段階加工端末部Cを挿入して温度と時間を管理したりすればよい。
【0019】
繊維束3,3は繊維複合材1と同質の高強度低伸度繊維からなっており、接着剤としての熱硬化性樹脂5も繊維複合材1のマトリックス樹脂と同材質であるから、物理的特性が同質の繊維束3,3と繊維束4とからなる緩衡層は繊維複合材1と完全に一体化され、これで図7(a)に示すような断面が円形状の定着用部Dが完成する。5’は含浸させられ硬化した熱硬化性樹脂である。
【0020】
繊維束4の構成繊維として、熱収縮性の繊維を使用した場合には、前記加熱によって収縮することから、巻き付けによる円筒形の径が縮少し、繊維複合材1に密接する。このため複合ストランド1a,1aとの接着が確実化されるとともに、繊維複合材1の繊維束3,3を強固に拘束しこれと緊密に一体化することができる。したがって、繊維複合材1の径に対する増径率の小さな定着用部Dを得ることができる。
【0021】
次に、定着に当たっては、図8(a)のように定着用部Dを鉄などからなるスリーブ6に挿通し、複数の割りくさび7,7で挟持し、この状態で割りくさび7,7とともにスリーブ6に挿入し、くさび止めする。
【0022】
定着用部Dは複合ストランド1a,1aの撚り谷間を埋めた繊維束3,3とこれらを囲む繊維束4による円筒径の緩衡層となっているため、くさびとの接触面積を広く取ることができ、安定した定着を図ることができる。しかも、複合ストランド1a,1aの撚り谷間を埋めた繊維束3,3が同材質であり、複合ストランド1a,1aのマトリックス樹脂と繊維束3,3に含浸している接着剤としての樹脂も同材質であることにより、強度、引張り強さ、弾性係数などの物性が同等で強固な一体化が得られていることから、くさび作用による局部的な圧縮剪断力を面で安定して受け止めことが可能になり、したがって圧縮剪断破壊が防止され、定着機能を高くすることができる。このようなくさび止めが可能であることから、定着部Eの外径を比較的小さくすることができる。
【0023】
また、定着用部Dの外径が小さく、繊維複合材1をわずかしか増径しないですむため、繊維複合材1をシースに通す際のシース径を増径しないですみ、これにより単位あたりのシース数を増加することができるので、緊張材として利用した場合に、強度の高いコンクリートを作ることが可能になる。
【0024】
なお、本発明の繊維複合材1は必ずしも全体が撚合構造でなくてもよい。すなわち端末部1’以外の部分はストランドを平行に束ねた構造であってもよい。
【0025】
本発明の具体例を説明する。
繊維複合材1は炭素繊維とエポキシ樹脂の複合材からなる直径4mmの複合ストランドを7本使用し、撚りピッチ150mmで撚り合わせた1×7構造、外径12.5φのものを使用した。この繊維複合材1の規格破断値は142kNであった。
【0026】
この繊維複合材1の端末270mmの部分のストランドのスパイラル状の各谷に沿ってエポキシ樹脂を含浸させた直径2.2mmの炭素繊維束をあてがい、指圧にて埋め込んだ。その上から12000デニールのポリエステル繊維の束を幅10mmに偏平にして均等に巻き付け拘束した。この状態でエポキシ樹脂を収容した容器中に漬けた後、パイプ状の加熱器に挿入し熱風を吹き込んで130℃で2時間加熱した。これにより緩衡層と繊維複合材が硬化一体化した定着用部を得た。定着用部の外径は13.8mmであった。
【0027】
得られた定着用部を、長さ150mmの2つ割くさびで挟持し、外径48mm鉄製のスリーブに挿入して定着部を得た。
得られた定着部付きケーブルの引張試験を行い、定着効率を測定した。その結果、破断位置は口元破断、破断荷重が179kNで、定着効率は規格破断荷重を越える123%という好結果が得られた。
【0028】
比較のため、ゴムと繊維との複合体からなり片面に繊維複合材1のスパイラル形状とピッチを同じくする凹凸を有する緩衝シートを使用し、これを繊維複合材1のピッチと合わせて巻き付けた緩衝層を有する定着用部を得た。定着用部の外径は15.0mmであり、本発明品に比べて定着用部の径が太い。
緩衝シートは、アラミド短繊維を使用した不織布とアラミド繊維マルチフィラメントヤーンを合糸した繊維芯に、あらかじめSBR系接着用ゴムラテックスを含浸し、片側に一定間隔の溝を有する金型を用いて繊維芯を不織布で挟み、100℃で15分間ベーキングし、さらに150℃で30分間加硫して繊維芯と不織布を一体化させたシートを斜め切りして25mm幅にしたものである。
【0029】
上記比較品について、本発明と同じくくさび止めを行なって定着部を形成し、その定着部付きケーブルの定着効率を測定した。その結果、破断荷重は156kNで、定着効率は110%で、本発明よりも劣っていた。その理由は、突条付き緩衝シートの巻き付けであるため、繊維複合材1との一体化に問題があることによると考えられる。
【0030】
【発明の効果】
以上説明した本発明の請求項1によるときには、高強度低伸度繊維と熱硬化性樹脂を複合した繊維複合材1の撚り線形状端末部1’の撚線の谷間に繊維束3を埋め込み、この状態で外周を繊維束4でラッピングして円筒形に成形し、次いで繊維複合材1のマトリックス樹脂と同等の熱硬化性樹脂5を含浸させ、加熱することにより繊維複合材1と繊維束3,4を一体に接合して定着用端末加工部を得るようにしたので、現場での簡易な作業により、増径度合いの少ないコンパクトな定着用部を簡単に加工することができ、使用時にくさびとの接触面積を広く取ることができるためより安定した定着が可能となる。また、定着用端末加工部の増径が少ないため、繊維複合材をシースに通す際に、そのシース径を増径せず済み、定着部のスペースも小さくすることができるというすぐれた効果が得られる。
【0031】
請求項2によれば、ラッピングの繊維束4として熱収縮性繊維を用い、加熱の際の繊維の熱収縮作用により筒形径を縮少して撚線の谷間に埋め込んだ繊維束3と繊維複合材1の端末部とを緊縛するので、接着による一体化がより確実になるとともに、増径の低減を図ることができるというすぐれた効果が得られる。
【0032】
請求項3によれば、端末部1’の撚線の谷間を埋める繊維束3として、繊維複合材1と同材質の高強度低伸度繊維を用いるので、物理的特性が均質で一体化にすぐれた定着用端末加工部を得ることができるというすぐれた効果が得られる。請求項4によれば、前記請求項1ないし3で作った加工端末部Dを複数割りのくさび7,7で挟持してスリーブ6内に挿入し、くさび作用により被定着部に定着するので、現場で特別な器具類を要さずに簡単に施工することができ、しかも、加工端末部Dが円筒形で、繊維複合材1の材質および機械的特性が均質で一体化された構造であるため、くさびチャックから受ける局部的な圧縮剪断作用を表面的に分散させ、安定した高い定着効率を得ることができるというすぐれた効果が得られる。
【図面の簡単な説明】
【図1】(a)は本発明における繊維複合材の一例を示す部分的側面図、(b)はその断面図である。
【図2】 (a)は撚り線谷間を埋める繊維束の部分的斜視図、(b)はその断面図である。
【図3】(a)は撚り線谷間埋め段階の側面図、(b)はその拡大断面図、(c)は部分拡大図である。
【図4】本発明におけるラッピング用の繊維束を示す部分的斜視図である。
【図5】(a)はラッピング段階の側面図、(b)はその拡大断面図、(c)は部分拡大図である。
【図6】本発明の熱硬化性樹脂塗布段階を示す側面図である。
【図7】(a)は得られた定着用部の断面図、(b)はその部分拡大断面図である。
【図8】(a)は定着工程の説明図、(b)は定着完了状態を示す側面図である。
【符号の説明】
1 繊維複合材
1’ 端末部
2 谷間
3 繊維束
4 繊維束
5 熱硬化性樹脂
D 定着用部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a terminal processing method and a terminal fixing method of a rope-like or cable-like fiber composite material using high strength and low elongation fibers.
[0002]
[Prior art]
A fiber composite material formed by impregnating a thermosetting resin into a high-strength low elongation fiber and curing it to form a rod-like body, a linear body, a twisted body, or the like is disclosed in Japanese Patent Publication Nos. 57-25679 and 62-18679. It is known from the gazette.
A rope-like or cable-like fiber composite material using such high strength and low elongation fibers is lightweight, excellent in corrosion resistance, high strength, low elongation, low relaxation, etc. Has chemical properties. For this reason, it tends to be used, for example, as a tension material for prestressed concrete, a tension material for concrete by a pretension system and a post tension system, or an out cable as a material to replace conventional steel wires and wire ropes.
[0003]
In such use, it is important to process the terminal portion of the fiber composite material so that it can be fixed to the fixing portion reliably and with good workability at low cost.
Conventionally, in general fiber ropes, when fixing the terminal portion, a method of applying ice price or splicing ropes to each other has been adopted. Although these methods can be applied in the case of a rope configuration that is flexible and easy to untwist, it is difficult to apply to a fiber composite material in which high-strength low-stretch fibers are collectively cured with a thermosetting resin.
[0004]
Therefore, it would be advantageous if a rust prevention method could be adopted as is widely used in wire ropes. However, since the material of the fiber composite material is a fiber, the fiber composite material has a high strength against a tensile force in the longitudinal direction but is weak against a shearing force in the diameter direction. For this reason, when applying the fixing method of the wedge type applied to the wire rope to the fiber composite material, a strong shearing force is applied to the fiber composite material from the inner peripheral edge of the cone by the wedge action of the cone, and the constituent fiber There was a problem that breakage occurred and stable fixing became difficult.
[0005]
For this reason, conventionally, as a fixing method, the end portion of the fiber composite is inserted into a die-casting die, and a compression force is applied to the fixing portion from the outer periphery by a press machine so that the fixing portion is sandwiched between a plurality of split cones. Insert into the sleeve and fix the fiber composite by wedge action, or insert it into the die-casting die of the fiber composite and inject and solidify the low melting point metal into the die. Insert the coated end part into the pipe, press the crimping part to the fixing part from the outer periphery with a press machine, press the fixing part with multiple cones, insert it into the sleeve, and wedge the fiber composite material A method of fixing by action is known.
[0006]
However, the fixing method as described above is complicated in process, takes time and labor, and is practically difficult to process at the site of use. In addition, the outer diameter of the terminal processing portion becomes very large. For this reason, the post-tension method or the like is not easy to insert into the sheath, and requires a large fixing space, which is not efficient and economical.
[0007]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is that it can be integrated with a fiber composite material and can have a small outer diameter, and can be easily used at a construction site. It is providing the terminal processing method of the fiber composite material which can be implemented.
Another object of the present invention is to provide a terminal fixing method for a fiber composite material which can easily and quickly have a relatively small outer diameter and can exhibit a high fixing force on site.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention embeds a fiber bundle between the strands of the twisted wire-shaped end portion of the fiber composite material in which the high-strength low-stretch fiber and the thermosetting resin are combined, and the outer periphery of the fiber bundle is in this state. The fiber composite material and the fiber bundle are integrally joined by wrapping with a bundle and forming into a cylindrical shape, then impregnating a thermosetting resin equivalent to the matrix resin of the fiber composite material and heating.
[0009]
It is preferable to use a high-strength, low-elongation fiber made of the same material as the fiber composite material as a fiber bundle to be buried in the valley of the stranded wire at the end of the fiber composite material. It is also preferable to use a heat-shrinkable fiber as a fiber bundle used for wrapping, and to bind the fiber bundle embedded in the valley of the stranded wire and the fiber composite material end portion by the heat-shrinking action of the fiber during heating.
[0010]
According to the present invention, the fixing portion of the fiber composite material obtained as described above is sandwiched between a plurality of wedges and inserted into a sleeve, and the fixing portion is fixed to the fixing portion by a wedge action. It is a feature.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
1 to 7 show the steps of a fiber composite material terminal processing method according to the present invention. In FIG. 1, reference numeral 1 denotes a cable-shaped fiber composite material in which high-strength low-stretch fibers and a thermosetting resin are combined. is there. This fiber composite material 1 is formed by twisting a plurality of composite strands 1a into a structure of 1 × 5, 1 × 7, 1 × 19, 1 × 24, or the like.
[0012]
The composite strand 1a is a heat selected from an epoxy resin, an unsaturated polyester resin, a polyurethane resin, etc. into a fiber bundle in which a number of high strength and low elongation fibers selected from carbon fiber, polyaramid fiber, silicon carbide fiber, etc. are converged. It consists of a composite material impregnated with a curable resin. In this example, the outer layer is coated with high-strength low elongation fiber or synthetic fiber yarn such as polyester.
[0013]
The fiber composite material 1 is formed by impregnating each composite strand 1a, 1a with a shaping die or the like and removing excess resin, and then applying a powder desiccant such as talc on the surface to dry the surface, followed by impregnation thermosetting The thermosetting resin is made by twisting together at a predetermined pitch in an uncured stage, and then heating to cure the thermosetting resin.
Each of the composite strands 1a is twisted at a predetermined pitch when the impregnated thermosetting resin is uncured, and then heated to cure the thermosetting resin, thereby producing the fiber composite material 1.
[0014]
In the present invention, first, as shown in FIG. 3, the valleys of the stranded wire constituting the outer periphery of the terminal portion 1 ′ in a predetermined range to be the fixing portion of the fiber composite material 1, that is, the adjacent composite strands 1 a and 1 a The fiber bundles 3 and 3 are embedded in the valleys 2 and 2.
As shown in FIGS. 2 (a) and 2 (b), the fiber bundle 3 is a bundle of high strength and low elongation fibers 30 made of the same material as the fiber composite material. It is impregnated with a thermosetting resin 5 selected from resin, unsaturated polyester resin, polyurethane resin, etc., molded with a shaping die, etc., and excess resin is removed. From the handling aspect, dry powder such as talc. It is preferable that the surface is dried by applying an agent.
[0015]
When the thermosetting resin is impregnated in this way, it is permanently deformed with an appropriate pressing force, so that the gap between the strands 2 and 2 of the composite strands 1a and 1a is instantly adapted to each shape perpendicular to the longitudinal direction and the longitudinal direction. Since it can be filled without any problem and it is temporarily fixed in close contact with the composite strands 1a and 1a due to light adhesiveness, it can be prevented from coming off without raising the special holding means.
The thickness of the cross section of the fiber bundle 3 should be equal to or greater than the valley of the composite strands 1a and 1a in FIG. The cross-sectional shape may be round, or may be previously formed into a fan shape or a triangular shape.
[0016]
Next, in the present invention, the entire cross section as shown in FIGS. 5B and 5C is formed on the outer periphery of the first stage processing terminal portion A in which the fiber bundle 3 is embedded in each of the twisted valleys 2 and 2 as described above. The fiber bundle 4 is tightly wound spirally so as to exhibit a circular shape.
As shown in FIG. 4, the fiber bundles 40 are aligned in parallel, and the entire fiber bundle 4 has a belt shape, and is wound so that there is no gap between winding turns or overlap. As the fiber yarn constituting the fiber bundle 4, heat-shrinkable fibers such as polyester fibers are suitable.
In the fiber bundle 4, the thickness and the number of the fiber yarns 40 are set so that the second stage processing terminal portion B after the winding of the fiber bundle 4 is about 1.1 times or less the outer diameter of the fiber composite material 1. .
[0017]
Next, as shown in FIG. 6, the second stage processing terminal B is selected from the same or equivalent thermosetting resin as the matrix resin of the fiber composite material 1, that is, an epoxy resin, an unsaturated polyester resin, a polyurethane resin, or the like. Impregnated with resin (liquid) 5.
For example, the impregnation may be performed by inserting the second stage processing terminal B into the thermosetting resin 5 accommodated in the container 8 as shown in FIG. Spray is optional. The thermosetting resin 5 is impregnated into the fiber yarns 40 of the fiber bundle 4 and the permeate is adhered to the outer surface of the fiber bundle 3 and the outer surfaces of the composite strands 1a and 1a. This becomes the third stage processing terminal part C.
[0018]
Next, the third stage processing terminal C is heated in this state. The heating temperature is a temperature sufficient for curing the thermosetting resin, for example, 100 ° C. to 130 ° C. The fiber bundles 3 and 3 embedded in the valleys of the composite strands 1a and 1a are impregnated by the heating. The outer surface of each composite strand 1a, 1a is bonded to each composite strand 1a, 1a by the thermosetting resin 5 and the thermosetting resin impregnated in the third stage with the fiber bundle 4 wound around the outer periphery. And it adhere | attaches on the outer surface of the fiber bundles 3 and 3, and it hardens | cures in this state.
The heating and heating means is arbitrary, for example, a pipe is used, and the third stage processing terminal C is loosely inserted into the pipe, and hot air is blown into the pipe to control temperature and time, or a third electric heater is installed in the cylindrical electric heater. What is necessary is just to manage the temperature and time by inserting the stage processing terminal part C.
[0019]
The fiber bundles 3 and 3 are made of high-strength, low-elongation fibers of the same quality as the fiber composite material 1, and the thermosetting resin 5 as an adhesive is also the same material as the matrix resin of the fiber composite material 1. The buffer layer composed of the fiber bundles 3 and 3 and the fiber bundle 4 having the same characteristics is completely integrated with the fiber composite material 1, so that the fixing section having a circular cross section as shown in FIG. D is completed. 5 ′ is a thermosetting resin impregnated and cured.
[0020]
When heat-shrinkable fibers are used as the constituent fibers of the fiber bundle 4, the shrinkage is caused by the heating, so that the diameter of the cylindrical shape by the winding is reduced and the fiber composite material 1 is in close contact. For this reason, adhesion with the composite strands 1a and 1a is ensured, and the fiber bundles 3 and 3 of the fiber composite material 1 can be firmly restrained and tightly integrated with them. Accordingly, it is possible to obtain a fixing portion D having a small diameter increase rate with respect to the diameter of the fiber composite material 1.
[0021]
Next, for fixing, as shown in FIG. 8A, the fixing portion D is inserted into the sleeve 6 made of iron or the like, and is sandwiched between a plurality of split wedges 7 and 7, and in this state, together with the split wedges 7 and 7 Insert it into the sleeve 6 and stop it from being wedged.
[0022]
Since the fixing portion D is a cylindrical buffer layer composed of the fiber bundles 3 and 3 in which the twisted valleys of the composite strands 1a and 1a are filled and the fiber bundle 4 surrounding them, a wide contact area with the wedge is taken. And stable fixing can be achieved. Moreover, the fiber bundles 3 and 3 filling the twisted valleys of the composite strands 1a and 1a are made of the same material, and the matrix resin of the composite strands 1a and 1a and the resin as an adhesive impregnated in the fiber bundles 3 and 3 are also the same. Because it is made of a material, physical properties such as strength, tensile strength, and elastic modulus are equivalent and strong integration is obtained, so that local compressive shear force due to wedge action can be stably received on the surface. Therefore, compression shear failure is prevented and the fixing function can be increased. Since rust prevention is possible in this way, the outer diameter of the fixing portion E can be made relatively small.
[0023]
Further, since the outer diameter of the fixing portion D is small and the fiber composite material 1 needs only to be slightly increased, it is not necessary to increase the sheath diameter when the fiber composite material 1 is passed through the sheath. Since the number of sheaths can be increased, high strength concrete can be made when used as a tendon.
[0024]
In addition, the whole fiber composite material 1 of this invention does not necessarily need to be a twisted structure. That is, the portion other than the terminal portion 1 ′ may have a structure in which strands are bundled in parallel.
[0025]
Specific examples of the present invention will be described.
As the fiber composite material 1, seven composite strands having a diameter of 4 mm made of a composite material of carbon fiber and epoxy resin were used, and one having a 1 × 7 structure twisted at a twist pitch of 150 mm and having an outer diameter of 12.5φ was used. The standard breaking value of this fiber composite material 1 was 142 kN.
[0026]
A carbon fiber bundle having a diameter of 2.2 mm impregnated with an epoxy resin was applied along each spiral valley of the strand of the end portion 270 mm of the fiber composite material 1 and embedded with finger pressure. A bundle of 12000 denier polyester fibers was flattened to a width of 10 mm from above and uniformly wound and restrained. After being immersed in a container containing an epoxy resin in this state, it was inserted into a pipe-shaped heater, heated with hot air and heated at 130 ° C. for 2 hours. As a result, a fixing portion in which the buffer layer and the fiber composite material were cured and integrated was obtained. The outer diameter of the fixing portion was 13.8 mm.
[0027]
The obtained fixing portion was sandwiched between two wedges having a length of 150 mm, and inserted into an iron sleeve having an outer diameter of 48 mm to obtain a fixing portion.
The obtained cable with a fixing portion was subjected to a tensile test to measure fixing efficiency. As a result, a good result was obtained that the fracture position was a mouth fracture, the fracture load was 179 kN, and the fixing efficiency was 123% exceeding the standard fracture load.
[0028]
For comparison, a buffer sheet made of a composite of rubber and fiber and having a concavity and convexity having the same pitch as the spiral shape of the fiber composite material 1 on one side is used. A fixing part having a layer was obtained. The outer diameter of the fixing portion is 15.0 mm, and the diameter of the fixing portion is larger than that of the present invention.
The buffer sheet is made by using a metal mold in which a non-woven fabric using short aramid fibers and aramid fiber multifilament yarns are impregnated with an SBR adhesive rubber latex in advance and grooves having a constant interval on one side. The core is sandwiched between non-woven fabrics, baked at 100 ° C. for 15 minutes, and further vulcanized at 150 ° C. for 30 minutes to obliquely cut a sheet in which the fiber core and the non-woven fabric are integrated to a width of 25 mm.
[0029]
The comparative product was wedge-proofed as in the present invention to form a fixing portion, and the fixing efficiency of the cable with the fixing portion was measured. As a result, the breaking load was 156 kN and the fixing efficiency was 110%, which was inferior to the present invention. The reason is considered to be that there is a problem in the integration with the fiber composite material 1 because the buffer sheet with ridges is wound.
[0030]
【The invention's effect】
According to claim 1 of the present invention described above, the fiber bundle 3 is embedded in the valley of the stranded wire of the stranded wire-shaped terminal portion 1 ′ of the fiber composite material 1 in which the high-strength low elongation fiber and the thermosetting resin are combined, In this state, the outer periphery is lapped with a fiber bundle 4 to form a cylindrical shape, and then impregnated with a thermosetting resin 5 equivalent to the matrix resin of the fiber composite material 1 and heated, thereby heating the fiber composite material 1 and the fiber bundle 3. , 4 are joined together to obtain a fixing terminal processing part, so that a compact fixing part with a small degree of increase in diameter can be easily processed by a simple operation at the site. Since a large contact area can be secured, more stable fixing is possible. In addition, since the diameter of the fixing terminal processing portion is small, when the fiber composite material is passed through the sheath, the sheath diameter does not need to be increased and the space of the fixing portion can be reduced. It is done.
[0031]
According to claim 2, the fiber bundle 3 and the fiber composite, in which heat-shrinkable fibers are used as the fiber bundle 4 for wrapping, and the cylindrical diameter is reduced by the heat-shrinking action of the fibers during heating and embedded in the valleys of the stranded wires. Since the end portion of the material 1 is tightly bound, it is possible to obtain an excellent effect that the integration by adhesion is more sure and the diameter increase can be reduced.
[0032]
According to the third aspect, since the high strength and low elongation fiber of the same material as the fiber composite material 1 is used as the fiber bundle 3 filling the valley of the stranded wire of the terminal portion 1 ′, the physical characteristics are uniform and integrated. An excellent effect is obtained that an excellent fixing terminal processing portion can be obtained. According to the fourth aspect, the processing terminal portion D made in the first to third aspects is sandwiched between the plurality of wedges 7 and 7 and inserted into the sleeve 6 and fixed to the fixing portion by the wedge action. It can be easily constructed without requiring special tools on site, and the processing terminal portion D is cylindrical, and the material and mechanical properties of the fiber composite 1 are uniform and integrated. Therefore, the excellent effect that the local compressive shearing action received from the wedge chuck is dispersed on the surface and stable high fixing efficiency can be obtained.
[Brief description of the drawings]
FIG. 1A is a partial side view showing an example of a fiber composite material according to the present invention, and FIG. 1B is a cross-sectional view thereof.
FIG. 2A is a partial perspective view of a fiber bundle that fills a stranded valley, and FIG. 2B is a cross-sectional view thereof.
FIGS. 3A and 3B are side views of a stranded line valley filling stage, FIG. 3B is an enlarged sectional view thereof, and FIG. 3C is a partially enlarged view thereof.
FIG. 4 is a partial perspective view showing a fiber bundle for lapping in the present invention.
5A is a side view of a lapping stage, FIG. 5B is an enlarged sectional view thereof, and FIG. 5C is a partially enlarged view thereof.
FIG. 6 is a side view showing a thermosetting resin application step of the present invention.
7A is a cross-sectional view of the obtained fixing portion, and FIG. 7B is a partially enlarged cross-sectional view thereof.
8A is an explanatory diagram of a fixing process, and FIG. 8B is a side view showing a fixing completion state.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fiber composite material 1 'End part 2 Valley 3 Fiber bundle 4 Fiber bundle 5 Thermosetting resin D Fixing part

Claims (4)

高強度低伸度繊維と熱硬化性樹脂を複合した繊維複合材1の撚り線形状端末部1’の撚線の谷間に繊維束3を埋め込み、この状態で外周を繊維束4でラッピングして円筒形に成形し、次いで繊維複合材1のマトリックス樹脂と同等の熱硬化性樹脂5を含浸させ、加熱することにより繊維複合材1と繊維束3,4を一体に接合することを特徴とする繊維複合材の端末加工方法。The fiber bundle 3 is embedded in the valley of the twisted wire-shaped end portion 1 ′ of the fiber composite material 1 in which the high-strength low elongation fiber and the thermosetting resin are combined, and the outer periphery is wrapped with the fiber bundle 4 in this state. It is formed into a cylindrical shape, and then impregnated with a thermosetting resin 5 equivalent to the matrix resin of the fiber composite material 1, and the fiber composite material 1 and the fiber bundles 3 and 4 are joined together by heating. End processing method of fiber composite material. ラッピングの繊維束4として熱収縮性繊維を用い、加熱の際の繊維の熱収縮作用により円筒径を縮少して撚線の谷間に埋め込んだ繊維束3と繊維複合材1の端末部とを緊縛する請求項1に記載の繊維複合材の端末加工方法。A heat-shrinkable fiber is used as the fiber bundle 4 for wrapping, and the fiber bundle 3 embedded in the valleys of the stranded wire by shrinking the cylindrical diameter by the heat-shrinking action of the fiber during heating is tightly bound to the end portion of the fiber composite 1 The terminal processing method of the fiber composite material according to claim 1. 端末部1’の撚線の谷間に埋める繊維束3として、繊維複合材1と同材質の高強度低伸度繊維を用いる請求項1または2に記載の繊維複合材の端末加工方法。The fiber composite material terminal processing method according to claim 1 or 2, wherein high-strength, low-elongation fibers made of the same material as the fiber composite material 1 are used as the fiber bundles 3 buried in the valleys of the stranded wires of the terminal portion 1 '. 請求項1から請求項3で得られた繊維複合材ケーブルの加工端末部Dを複数割りのくさび7,7で挟持してスリーブ6内に挿入し、くさび作用により被定着部に定着することを特徴とする繊維複合材の端末定着方法。The processing end portion D of the fiber composite cable obtained in claims 1 to 3 is sandwiched by a plurality of wedges 7 and inserted into the sleeve 6 and fixed to the fixing portion by the wedge action. A terminal fixing method for a fiber composite material.
JP2000201268A 2000-07-03 2000-07-03 Terminal processing method and terminal fixing method of fiber composite material Expired - Fee Related JP4037041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000201268A JP4037041B2 (en) 2000-07-03 2000-07-03 Terminal processing method and terminal fixing method of fiber composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000201268A JP4037041B2 (en) 2000-07-03 2000-07-03 Terminal processing method and terminal fixing method of fiber composite material

Publications (2)

Publication Number Publication Date
JP2002020985A JP2002020985A (en) 2002-01-23
JP4037041B2 true JP4037041B2 (en) 2008-01-23

Family

ID=18698993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000201268A Expired - Fee Related JP4037041B2 (en) 2000-07-03 2000-07-03 Terminal processing method and terminal fixing method of fiber composite material

Country Status (1)

Country Link
JP (1) JP4037041B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743386B2 (en) * 2002-04-30 2004-06-01 General Kinematics Corporation Method for processing chopped fiberglass bundles
CN101044284B (en) * 2004-10-19 2010-12-01 东京制纲株式会社 Cable composed of high strength fiber composite material
JP5913085B2 (en) * 2012-12-27 2016-04-27 東京製綱株式会社 End fixing structure and method of fiber reinforced plastic filament
JP7116700B2 (en) * 2019-03-22 2022-08-10 東京製綱株式会社 TERMINAL FIXING STRUCTURE AND METHOD OF FIBER REINFORCED PLASTIC STRELAY BODY, AND BUFFERING MATERIAL FOR FIBER REINFORCED PLASTIC STRIA BODY
CN115897271A (en) * 2022-10-13 2023-04-04 江苏赛福天钢索股份有限公司 Steel wire rope for crane and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002020985A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
US8250845B2 (en) Fiber composite twisted cable
WO2006043311A1 (en) Cable composed of high strength fiber composite material
JPH0686718B2 (en) Method for manufacturing composite twisted filament
JP5913085B2 (en) End fixing structure and method of fiber reinforced plastic filament
US4813221A (en) Flexible tension members
JP4037041B2 (en) Terminal processing method and terminal fixing method of fiber composite material
JP3967957B2 (en) Manufacturing method of fiber reinforced resin strands
JP3088061B2 (en) Fiber reinforced resin composite reinforced material and method for producing the same
JPH01272889A (en) Terminal setting of composite filamentous form or twisted form thereof
CN111535178A (en) Prestressed FRP (fiber reinforced Plastic) rib capable of being used for clamping piece anchoring and preparation method thereof
JP4362484B2 (en) High strength fiber composite cable
WO1994015015A1 (en) Complex fiber string and method of manufacturing the same
JP2632488B2 (en) Terminal fixing method of high strength fiber reinforced FRP tendon material
JP3510356B2 (en) Method for forming terminal fixing part of high strength fiber composite tension material
JP2516710B2 (en) Composite twist type tensile strength body
JP3859611B2 (en) High strength fiber composite cable
JP2942878B2 (en) Terminal fixing method of composite twist type tensile strip
JP2001107507A (en) Fixing part structure of pc steel product and buffer material injection method in fixing part of pc steel product
JP2984879B2 (en) Method for forming terminal fixing part of composite cable using high strength low elongation fiber
JP2585165B2 (en) Method for producing flexible composite twisted tensile strength strip
WO2022030477A1 (en) Fiber-reinforced composite cable with tow, and electrical wire
JPH0366433B2 (en)
JP2000225648A (en) Fiber-reinforced tie member and its preparation
JP3462923B2 (en) Terminal fixing method of multilayer fiber composite cable
JPH05337927A (en) Manufacture of concrete reinforcing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees