JP4362484B2 - High strength fiber composite cable - Google Patents

High strength fiber composite cable Download PDF

Info

Publication number
JP4362484B2
JP4362484B2 JP2006035305A JP2006035305A JP4362484B2 JP 4362484 B2 JP4362484 B2 JP 4362484B2 JP 2006035305 A JP2006035305 A JP 2006035305A JP 2006035305 A JP2006035305 A JP 2006035305A JP 4362484 B2 JP4362484 B2 JP 4362484B2
Authority
JP
Japan
Prior art keywords
cable
twisted
twist
strand
fiber composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006035305A
Other languages
Japanese (ja)
Other versions
JP2006169714A (en
Inventor
健一 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Rope Manufacturing Co Ltd
Original Assignee
Tokyo Rope Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Rope Manufacturing Co Ltd filed Critical Tokyo Rope Manufacturing Co Ltd
Priority to JP2006035305A priority Critical patent/JP4362484B2/en
Publication of JP2006169714A publication Critical patent/JP2006169714A/en
Application granted granted Critical
Publication of JP4362484B2 publication Critical patent/JP4362484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/025Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics comprising high modulus, or high tenacity, polymer filaments or fibres, e.g. liquid-crystal polymers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2046Polyamides, e.g. nylons
    • D07B2205/205Aramides
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/206Epoxy resins
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3007Carbon
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3017Silicon carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ropes Or Cables (AREA)

Description

本発明は複撚り構造の高強度織誰複合材ケーブルに関する。   The present invention relates to a high strength woven union composite cable having a double twist structure.

高強度繊維複合材ケーブルは、高強度、低伸度であり、しかも軽量で高耐食、高疲労性を有していることから、鉄鋼製のワイヤロープやストランドケーブル、PC緊張材などに代わるものとして適用が拡大している。
こうした高強度繊維複合材ケーブルにおいて、高張力を要する大型構造物やグラウンドアンカーなどに適用される場合には、従来、図1(a)のように、高強度繊維と樹脂を複合した素線sを複数の層に重ね撚合せた多層構造のケーブル、あるいは、図1(b)のように、高強度繊維と樹脂を複合した素線sを撚り合わせた複数のストランドkを、相互に適度な間隔を保持しながら平行に束ねて構成したケーブルが使用されている。
High-strength fiber composite cable is high strength, low elongation, light weight, high corrosion resistance and high fatigue resistance, so it can replace steel wire ropes, strand cables, PC tendons, etc. As the application is expanding.
In such a high-strength fiber composite material cable, when applied to a large structure requiring high tension, a ground anchor, or the like, conventionally, as shown in FIG. A cable having a multilayer structure in which a plurality of layers are stranded and twisted, or, as shown in FIG. 1B, a plurality of strands k in which strands s composed of high-strength fibers and resin are twisted together are moderately Cables are used that are bundled in parallel while maintaining a distance.

しかし、このような従来の高強度織誰複合材ケーブルでは、次のような問題があった。
1.多層撚り構造ケーブル
1)素線が線接触の関係にあり、断面が円形に近く、表面積が小さいので、使用時にスリーブに樹脂あるいはセメントを注入してスリーブとケーブルを一体化させる端末定着加工において、十分な付着を得るために端末を素線ごとにばらす作業を必要とする。
2)多層撚り構造ケーブルは、素線を一括して所定方向に撚りあわせた形態であるので、素線の数が増えるに従って撚り合せる設備が大型となり、その投資費用は甚大である。
However, such a conventional high-strength woven union composite cable has the following problems.
1. Multi-layer twisted structure cable 1) Since the strands are in a line contact relationship, the cross section is close to a circle and the surface area is small, in the terminal fixing process where resin or cement is injected into the sleeve and the sleeve and the cable are integrated during use. In order to obtain sufficient adhesion, it is necessary to separate the terminals for each strand.
2) Since the multi-layer twisted structure cable is a form in which the strands are twisted together in a predetermined direction, the equipment for twisting becomes larger as the number of strands increases, and the investment cost is enormous.

2.複数のストランドを平行状に束ねて構成したケーブル
1)使用に際して、ケーブルに張力が導入される時、構成する各ストランドの長さが揃っていなかったりケーブルが偏向部などで曲げられて配置された揚合、各ケーブルヘ張力が均等に伝わらずケーブル本来の設計張力を達成できない可能性がある。
2)ケーブルを搬送するためにケーブルをリールヘ巻くと型崩れを起し、取り扱いが困難であり、そのうえ、ケーブルの内側と外側の径の差により曲げ応力が働き、ケーブルが損傷する可能性がある。
2. When using a cable 1) formed by bundling a plurality of strands in parallel, when tension is introduced into the cable, the length of each strand constituting the cable is not uniform or the cable is bent by a deflecting portion or the like. There is a possibility that the original design tension of the cable cannot be achieved because the tension is not transmitted evenly to each cable.
2) When a cable is wound around a reel to carry the cable, it loses its shape and is difficult to handle. In addition, bending stress acts due to the difference between the inner and outer diameters of the cable, which may damage the cable. .

3)ケーブルはストランドを平行状に引き揃えているだけであるため、捻れに弱く、特にストランドの撚り方向と逆方向に捻られた揚合、素線が開き破損してしまう。
4)軸方向への圧縮(挫屈)に弱い。
5)ケーブルの外周に筒体を取り付け、筒体内部に樹脂あるいはセメントを充填してケーブルと筒体を一体化させる場合や、グラウンドアンカーにおいて、ケーブル外周のシース管へ比重調整剤を充填する場合に、ストランド同士の隙間から充填材が流れ出すため、製造時あるいは施工時に隙間を埋める処理が必要であった。
3) Since the cable only has the strands arranged in parallel, the cable is vulnerable to twisting, and in particular, the twisted and twisted strands in the direction opposite to the strand twisting direction open and break.
4) It is weak against axial compression (bending).
5) When a cylinder is attached to the outer periphery of the cable and the cable and the cylinder are integrated by filling the inside of the cylinder with resin or cement, or when a specific gravity adjusting agent is filled into the sheath tube around the cable at the ground anchor In addition, since the filler flows out from the gap between the strands, a process for filling the gap at the time of manufacturing or construction is necessary.

本発明は前記のような問題点を解消するためになされたもので、その目的とするところは、良好で安定した強度を有し、しかも曲げに対して軸力が均等で形状が安定していて、リールに型崩れせずに巻くことが可能であり、穴や筒への挿入時にも座屈しにくく、十分な端末定着力を得ることができる高強度繊維複合材ケーブルを提供することにある。   The present invention has been made in order to solve the above-described problems, and the object of the present invention is to have good and stable strength, and to have a uniform axial force against bending and a stable shape. An object of the present invention is to provide a high-strength fiber composite material cable that can be wound on a reel without losing its shape, is not easily buckled even when inserted into a hole or a cylinder, and can obtain a sufficient terminal fixing force. .

上記目的を達成するため本発明は、高強度低伸度繊維に熱硬化性樹脂を含浸させた繊維のプリプレグを多数本収束しあるいは撚り合せた複合素線を複数本片撚りした片撚りケーブルをストランドとし、前記片撚りケーブルの複数本を撚り角度2〜12°で片撚りケーブルの撚り方向と逆方向に撚り合わせてなることを特徴としている。 The present invention for achieving the above object, the high strength low elongation fibers multiplicity of converging the prepreg fibers impregnated with thermosetting resin and or twisted single stranded cable composite wires were stranded plurality of pieces combined A strand is formed, and a plurality of the single-stranded cables are twisted at a twist angle of 2 to 12 ° in the direction opposite to the twisted direction of the single-stranded cable.

本発明によるときには、次のようなすぐれた効果が得られる。
1)各片撚りケーブルの長さの不揃いがほとんど出ないため、各片撚りケーブルあるいは各素線への張力が均等になり、設計強度を確実に実現することができる。
2)片撚りケーブルをこれの撚り方向と逆方向に撚り合わせて太径の複撚りケーブルとするので、該ケーブルが曲げられた場合でもストランドを構成する各片撚りケーブルにかかる軸力は均等となり、また、形状が安定した構造であるため、リールへ巻く時や展開する時に型崩れが起こりにくく、重ねて巻取ることができる。
According to the present invention, the following excellent effects can be obtained.
1) Since there is almost no unevenness in the length of each piece of twisted cable, the tension on each piece of twisted cable or each wire becomes even, and the design strength can be realized reliably.
2) Since the single twisted cable is twisted in the opposite direction to the twisted direction to make a large-diameter double twisted cable, even when the cable is bent, the axial force applied to each single twisted cable constituting the strand is equal. Moreover, since the structure is stable, it is difficult to lose its shape when it is wound on a reel or when it is unfolded, and it can be rolled up.

3)筒や穴の中ヘケーブルを挿入する場合にも挫屈による損傷を受け難い。
4)ケーブル外周の表面積が大きいため,端末定着加工を行う際に、多層撚りケーブルのように端部をバラス必要なしに十分な定着力を得ることができる。
5)ケーブルの撚り方向がストランドである片撚りケーブルの撚り方向と逆方向であるため自転性が小さく、捻れにくく、型崩れしない。
6)既存の撚り線機で容易に撚り合わせが可能であり、撚り合せる片撚りケーブルの本数を増減するだけで目的の引張張力を得ることができる。
3) Even when a cable is inserted into a cylinder or hole, it is not easily damaged by buckling.
4) Since the surface area of the outer periphery of the cable is large, it is possible to obtain a sufficient fixing force without the need for the end portion to be ballasted as in the case of the multi-layer twisted cable when the terminal fixing process is performed.
5) Since the twisting direction of the cable is opposite to the twisting direction of the single twisted cable that is a strand, the rotation is small, the twisting is difficult, and the shape is not lost.
6) It can be easily twisted with an existing twisted wire machine, and a desired tensile tension can be obtained simply by increasing or decreasing the number of single twisted cables to be twisted together.

以下添付図面を参照して本発明の実施例を説明する。
図2ないし図6は本発明による高強度繊維複合材ケーブルの実施態様を示しており、1は高強度繊維複合材ケーブルの全体を指し、2はそれぞれが高強度低伸度繊維と熱硬化性樹脂を複合した片撚りケーブルである。
高強度繊維複合材ケーブル1は、前記片撚りケーブル2をストランドの複数本(図面では7本)を長い撚りピッチ、すなわち2〜12°の撚り角度αで撚り合わせて1体の太径のケーブルとしたものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
2 to 6 show an embodiment of a high-strength fiber composite cable according to the present invention, wherein 1 denotes the whole high-strength fiber composite cable, and 2 denotes a high-strength low-stretch fiber and a thermosetting respectively. This is a single twisted cable composed of resin.
The high-strength fiber composite cable 1 is a single large-diameter cable obtained by twisting the single-stranded cable 2 with a plurality of strands (seven in the drawing) at a long twist pitch, that is, a twist angle α of 2 to 12 °. It is what.

この例では、7本の片撚りケーブル2を用いているため、中心に1本の片撚りケーブル2aを心ストランドとして配置し、その周りに6本の片撚りケーブル2a2bを側ストランドとして配置しており、芯ストランドの片撚りケーブル2aの周りには介在層3が設けられている。   In this example, since seven single twisted cables 2 are used, one single twisted cable 2a is arranged as a core strand in the center, and six single twisted cables 2a2b are arranged as side strands around it. An intervening layer 3 is provided around the single strand cable 2a of the core strand.

詳述すると、ストランドとしての片撚りケーブル2(2a、2b)は、図3のように、炭素繊維、アラミド繊維、炭化珪素繊維などから選択される高強度低伸度繊維にエポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂などから選択される熱硬化性樹脂を含浸させた多数の複合素線20からなっている。複合素線20は、高強度低伸度繊維のプリプレグ200の多数本を収束し、あるいは長い撚りピッチで撚り合わせ、外周に高強度低伸度繊維あるいはポリエステル繊維などの合成繊維糸202をラッピングの形態で被覆している。   More specifically, as shown in FIG. 3, the single-stranded cable 2 (2a, 2b) as a strand is made of epoxy resin, unsaturated, high strength low elongation fiber selected from carbon fiber, aramid fiber, silicon carbide fiber, etc. It consists of a number of composite strands 20 impregnated with a thermosetting resin selected from polyester resins, polyurethane resins and the like. The composite strand 20 converges a large number of high-strength low-stretch fiber prepregs 200 or twists them with a long twist pitch, and wraps synthetic fiber yarn 202 such as high-strength low-stretch fiber or polyester fiber on the outer periphery. Covered in form.

前記片撚りケーブル2(2a、2b)の撚り方向と高強度繊維複合材ケーブル1の撚り方向は逆方向になっている。すなわち、前記片撚りケーブル2(2a、2b)の撚り方向がたとえばS方向であれば、高強度繊維複合材ケーブル1の撚り方向はZ方向とされる。これは、自転性を小さくし、捻れにくく型崩れしにくくするためである。   The twist direction of the single twist cable 2 (2a, 2b) and the twist direction of the high strength fiber composite material cable 1 are opposite to each other. That is, if the twist direction of the single twist cable 2 (2a, 2b) is, for example, the S direction, the twist direction of the high-strength fiber composite cable 1 is the Z direction. This is to reduce the rotation and make it difficult to twist and lose shape.

前記片撚りケーブル2(2a、2b)を高強度繊維複合材ケーブル1に撚り合わせるときの撚り角度αを限定したのは、後述するように、損傷や型崩れを起させずに目標とする引張り強度を達成させるため、また、既存の撚線機で容易に撚り合わせ工程を実施できるようにするため、さらに、後に説明するが、熱硬化性樹脂の硬化工程が最終工程に限定されない利点があるからである。より好ましい撚り角度αは、2〜8°である。   The reason why the twist angle α when the single-stranded cable 2 (2a, 2b) is twisted onto the high-strength fiber composite cable 1 is limited is that the target tension is achieved without causing damage or deformation as described later. In order to achieve the strength and to enable the twisting process to be easily performed with an existing twisting machine, there is an advantage that the curing process of the thermosetting resin is not limited to the final process, as will be described later. Because. A more preferable twist angle α is 2 to 8 °.

撚り角度の下限を2°としたのは、これ未満では、引張り強度は高いものの、平行に近づくため、先に述べた従来のケーブルの欠点、すなわち、リールヘ巻くと型崩れを起し、取り扱いが困難となる点、ケーブルの内側と外側の径の差により曲げ応力が働き、ケーブルが損傷する可能性がある点や、捻れに弱く、特にケーブルの撚り方向とは逆方向に捻られた揚合、素線が開き、破損してしまう点を解消できなくなるからである。   If the lower limit of the twist angle is 2 °, the tensile strength is high below this, but it approaches parallel, so the disadvantages of the conventional cable mentioned above, that is, when it is wound around a reel, it loses its shape and is handled. Difficult points, bending stress due to the difference between the inner and outer diameters of the cable, which may cause damage to the cable, and weakness against twisting, especially the twisting in the direction opposite to the twisting direction of the cable This is because the point that the wire opens and breaks cannot be solved.

撚り角度の上限を12°としたのは、引張り強度が低下するからである。すなわち、高強度繊維複合材は、曲げ、せん断、ねじれに弱く、完全脆性材料であるため大きな撚り角度で撚り合わせると、引張り方向と繊維方向の角度差が大きくなり、せん断により強度低下をきたすからである。
なお、通常の場合、片撚りケーブル2(2a、2b)を得る場合の撚りピッチP1よりも、高強度繊維複合材ケーブル1に撚り合わせるときの撚りピッチPの方を大きくする。
The reason why the upper limit of the twist angle is set to 12 ° is that the tensile strength is lowered. In other words, high-strength fiber composite materials are weak against bending, shearing and twisting, and are completely brittle materials. When twisted at a large twist angle, the angle difference between the tensile direction and the fiber direction becomes large, and the strength is reduced by shearing. It is.
In a normal case, the twist pitch P when twisting the high-strength fiber composite cable 1 is made larger than the twist pitch P1 when obtaining the single twist cable 2 (2a, 2b).

介在層3は無くてもよいが、あった方が好ましい。その理由は、各片撚りケーブルが接触する場合には、高強度繊維複合材ケーブルに張力がかかった場合や、曲げられた場合に互いの素線同士の擦れや側圧で素線が損傷し、十分な強度が発揮できなくなるが、介在層3が存在することにより、心ストランドと側ストランド間の接触を緩和でき、また、介在層3の存在による拡径作用で、側ストランド相互間の接触も緩和され、内部摩耗による引張り強度の低下(撚減り)を低減できるからである。
さらに、高強度繊維複合材ケーブル1を穴や筒に入れ、セメントミルクや樹脂などの充填材を注入した時に、ケーブルの内部(ストランド同士の隙間)から充填材が流出しなくなるからである。
The intervening layer 3 may be omitted, but is preferably present. The reason for this is that when each single twisted cable comes into contact, when the high-strength fiber composite cable is tensioned or bent, the strands are damaged by the friction and lateral pressure between each strand, Although sufficient strength cannot be exerted, the presence of the intervening layer 3 can alleviate the contact between the core strand and the side strand, and the diameter expanding action due to the presence of the intervening layer 3 also allows the contact between the side strands. This is because it is mitigated and the reduction in tensile strength (twisting loss) due to internal wear can be reduced.
Furthermore, when the high-strength fiber composite material cable 1 is put into a hole or a cylinder and a filler such as cement milk or resin is injected, the filler does not flow out from the inside of the cable (gap between strands).

介在層3は、図6(a)のように合成樹脂製の線状体30などをストランド2aの各外周谷間に配してもよい。この方式は、片撚りケーブル2(2a、2b)を高強度繊維複合材ケーブルに撚り合わせるときに実施できる利点がある。これに代え、図6(b)のように、溶融樹脂を押し出すなどして、あらかじめ片撚りケーブル2aの外周に樹脂被覆31を施してもよい。線状体30、被覆樹脂31は、ポリエチレンなどの熱可塑性樹脂が好ましい。   In the intervening layer 3, as shown in FIG. 6A, a linear body 30 made of synthetic resin or the like may be disposed between the outer peripheral valleys of the strand 2a. This method has an advantage that can be implemented when the single-stranded cable 2 (2a, 2b) is twisted together with a high-strength fiber composite cable. Instead of this, as shown in FIG. 6B, a resin coating 31 may be applied to the outer periphery of the single twisted cable 2a in advance by extruding molten resin or the like. The linear body 30 and the coating resin 31 are preferably thermoplastic resins such as polyethylene.

本発明は、図示する例に限定されるものではない。
1)片撚りケーブル2を構成する複合素線20の数は、3本以上であればよく、第2図のように7本である場合に限定されない。図4(b)、(c)のように19本などであってもよい。
2)高強度繊維複合材ケーブル1は、必ずしも片撚りケーブル2aからなる心ストランドを有している場合に限定されない。図4(a)、(b)のように3本の片撚りケーブル2を用いた構造であってもよい。この例では、3×7構造、3×19構造を採用している。このような芯ストランドがない場合、介在層3は図4(a)で代表的に示すように、片撚りケーブル2,2間に介在される。この介在層3は樹脂などで断面が多角形ないしこれに類する形状に成形した条体を使用できる。
3)片撚りケーブルからなる心ストランド2aを有している場合、図4(c)で例示するように、7×19構造も採用できる。なお、この図では介在層3を省略している。
The invention is not limited to the example shown.
1) The number of the composite strand 20 which comprises the single twisted cable 2 should just be 3 or more, and is not limited to the case where it is seven like FIG. As shown in FIGS. 4B and 4C, 19 may be used.
2) The high-strength fiber composite material cable 1 is not necessarily limited to the case where the high-strength fiber composite material cable 1 has a core strand made of a single twisted cable 2a. A structure using three single-stranded cables 2 as shown in FIGS. In this example, a 3 × 7 structure and a 3 × 19 structure are adopted. In the absence of such a core strand, the intervening layer 3 is interposed between the single twisted cables 2 and 2 as representatively shown in FIG. The intervening layer 3 may be a strip formed of a resin or the like in a polygonal shape or a similar shape.
3) When the core strand 2a made of a single-stranded cable is provided, a 7 × 19 structure can also be adopted as illustrated in FIG. In this figure, the intervening layer 3 is omitted.

次に本発明による高強度繊維複合材ケーブルの製作工程を説明すると、図7と図8は製作工程の2つの例を示している。
第1の方式は、レヤー工程―ラッピング工程―1次クロージング工程で樹脂が未硬化状態の片撚りケーブルを製作し、その未硬化の片撚りケーブルの複数本を2次クロージング工程で高強度繊維複合材ケーブル1に撚り合わせ、最後にキュア工程によって全体を硬化させる。
第2の方式は、レヤー工程―ラッピング工程―1次クロージング工程―キュア工程によって樹脂が硬化した片撚りケーブルを製作し、得られた片撚りケーブルの複数本を、2次クロージング工程で高強度繊維複合材ケーブル1に撚り合わせる。
Next, the manufacturing process of the high strength fiber composite cable according to the present invention will be described. FIGS. 7 and 8 show two examples of the manufacturing process.
The first method is to manufacture a single twisted cable in which the resin is uncured in the layer process-lapping process-primary closing process, and to combine a plurality of uncured single twisted cables in a high-strength fiber composite in the secondary closing process. The material cable 1 is twisted, and finally the whole is cured by a curing process.
The second method is to produce a single twisted cable in which the resin is cured by the layer process-lapping process-primary closing process-curing process, and the resulting multiple twisted cables are made of high strength fibers in the secondary closing process. Twist the composite cable 1.

なお、片撚りケーブルの心ストランドがある場合に適用される第3の方式がある。これは、レヤー工程―ラッピング工程―1次クロージング工程―キュア工程によって樹脂が硬化した片撚りケーブルを1本製作し、それとは別にレヤー工程―ラッピング工程―1次クロージング工程で樹脂が未硬化状態の片撚りケーブルを製作し、樹脂硬化した片撚りケーブルを心ストランドとして、その周りに樹脂が未硬化状態の片撚りケーブルを側ストランドとして配し、2次クロージング工程で高強度繊維複合材ケーブル1に撚り合わせ、最後にキュア工程によって樹脂が未硬化状態の片撚りケーブルからなる側ストランドを硬化させる。   In addition, there exists a 3rd system applied when there exists a core strand of a single twist cable. This is because a single twisted cable in which the resin is hardened by the layer process-lapping process-primary closing process-curing process is manufactured, and in addition, the resin is uncured in the layer process-lapping process-primary closing process. A single twisted cable is manufactured, and a resin-cured single twisted cable is used as a core strand, and a single twisted cable in which the resin is uncured is arranged as a side strand around the single twisted cable. Twist together, and finally cure the side strand made of a single twisted cable in which the resin is uncured by a curing process.

レヤー工程は、図8(a)のように、熱硬化性樹脂を含浸させたプリプレグ200を多数本たとえば10〜20本、それぞれボビンから撚り機5に送って所定のピッチで撚り合わせ、素線20’を得る。
ラッピング工程は、図8(b)のように、素線20´を複数本たとえば7本送り出しつつ、ラッピング機6から合成繊維糸202を繰り出して素線20’の外周にスパイラル状に巻きつける。
1次クロージング工程は、図8(c)のように、ラッピング済素線20をたとえば7本それぞれボビンから繰り出し、クロージング機7で所定のピッチたとえば100〜200mmで撚り合わせる。これで、樹脂が未硬化の片撚りケーブル2´が得られる。
In the layer process, as shown in FIG. 8 (a), a large number of prepregs 200 impregnated with a thermosetting resin, for example, 10 to 20, are sent from the bobbin to the twister 5 and twisted at a predetermined pitch. Get 20 '.
In the wrapping step, as shown in FIG. 8B, a plurality of, for example, seven strands 20 'are fed out, and the synthetic fiber yarn 202 is fed out from the wrapping machine 6 and wound around the outer periphery of the strand 20' in a spiral shape.
In the primary closing step, as shown in FIG. 8C, for example, seven lapped strands 20 are unwound from the bobbin and twisted at a predetermined pitch, for example, 100 to 200 mm by the closing machine 7. Thus, a single twisted cable 2 ′ in which the resin is uncured is obtained.

第1の方式では、ラッピング済素線20をクロージング機7で所定のピッチたとえば100〜200mmで撚り合わせて、樹脂が未硬化の片撚りケーブル2´を得たならば、そのまま、図8(d)のようにクロージング機9で撚り角度を2〜12°の範囲とし、撚り方向を片撚りケーブル撚り工程での撚り方向と逆にして撚り合わせて、樹脂未硬化状態の素高強度繊維複合材ケーブル1´を得、それをトンネル状の熱処理炉8を通過させて120〜135℃で加熱し、樹脂を硬化させて本発明高強度繊維複合材ケーブル1を得る。   In the first method, if the wrapped strand 20 is twisted at a predetermined pitch, for example, 100 to 200 mm, with the closing machine 7 to obtain an uncured single twisted cable 2 ′, the state shown in FIG. ) With a closing machine 9 in the range of 2 to 12 °, twisted with the twisting direction reversed to the twisting direction in the single twisted cable twisting process, and the resin uncured raw high strength fiber composite material A cable 1 'is obtained, and it is passed through a tunnel-shaped heat treatment furnace 8 and heated at 120 to 135 [deg.] C. to cure the resin, thereby obtaining the high-strength fiber composite cable 1 of the present invention.

第2方式では、樹脂が未硬化の片撚りケーブル2´を、図8(e)のように、トンネル状の熱処理炉8を通過させて120〜135℃で加熱し、樹脂を硬化させた片撚りケーブル2を得る。そして、それら樹脂硬化片撚りケーブル2をクロージング機9で撚り合わせ、本発明高強度繊維複合材ケーブル1を得る。このときに、撚り角度を2〜12°の範囲とし、撚り方向を片撚りケーブル撚り工程での撚り方向と逆にする。第1と第2の方式では、キュア工程は1度で足りるので、工程が簡易である。   In the second method, a piece of uncured piece twisted cable 2 ′ that is cured at a temperature of 120 to 135 ° C. through a tunnel-shaped heat treatment furnace 8 as shown in FIG. A twisted cable 2 is obtained. And these resin hardening piece twisted cables 2 are twisted together by the closing machine 9, and this invention high strength fiber composite material cable 1 is obtained. At this time, the twist angle is set in the range of 2 to 12 °, and the twist direction is reversed to the twist direction in the single twist cable twisting step. In the first and second methods, the curing process is simple, so the process is simple.

なお、介在層3を設ける場合、心ストランドがないケーブル構造では、介在層となるべき条体や線条体を中央に配してその周りにストランドを配して2次クロージング工程を行なえばよい。
また、心ストランドがある高強度繊維複合材ケーブル構造の場合には、一本の片撚りケーブルからなるストランドの外周に介在層を施し、それを中心にして他の片撚りケーブルからなるストランド2bを配して2次クロージング工程を行なえばよい。片撚りケーブルは硬化されていても、未硬化であってもよい。
なお、第3の方式は、未硬化の片撚りケーブルからなる側ストランド2bを撚り合せる際に、中心に樹脂を硬化させた剛性のある片撚りケーブルからなるストランド2aが存するので、撚り工程が楽であるという利点がある。
In addition, when providing the intervening layer 3, in the cable structure without the core strand, the secondary closing process may be performed by arranging the strands and the filaments to be the intervening layer in the center and arranging the strands around them. .
Further, in the case of a high-strength fiber composite cable structure having a core strand, an intervening layer is applied to the outer periphery of the strand made of one piece of twisted cable, and the strand 2b made of another piece of twisted cable is formed around that. And the secondary closing process may be performed. The single twisted cable may be cured or uncured.
In the third method, when the side strand 2b made of an uncured single twisted cable is twisted, the strand 2a made of a rigid single twisted cable in which resin is cured is present at the center, so that the twisting process is easy. There is an advantage of being.

具体例を示すと、製作法として、第2の方式を用い、本発明高強度繊維複合材ケーブルを製作した。
炭素繊維にエポキシ樹脂を含浸させた径が7ミクロンの繊維を12000本束ねたプリプレグを15本、撚り方向Z、ピッチ90mmで撚り合わせ、次いでラッピングを施して外径4.2mmの素線を得た。
この素線を7本撚り方向S,ピッチ160mmで撚り合わせて1×7構造の片撚りケーブルを得た。該片撚りケーブルを熱処理炉で130度×90分加熱して樹脂を硬化させた。
As a specific example, the high strength fiber composite material cable of the present invention was manufactured using the second method as a manufacturing method.
15 prepregs made by bundling 12,000 fibers with a diameter of 7 microns with carbon fiber impregnated with epoxy resin are twisted in a twisting direction Z and a pitch of 90 mm, and then lapped to obtain a strand having an outer diameter of 4.2 mm. It was.
Seven strands of this strand were twisted in a twisting direction S and a pitch of 160 mm to obtain a single twisted cable having a 1 × 7 structure. The single stranded cable was heated in a heat treatment furnace at 130 ° C. for 90 minutes to cure the resin.

この片撚りケーブルの7本のうち、1本の外周にポリエチレンの被覆を施して心ストランドとし、被覆を施さないもの6本を側ストランドとして、撚り方向Z,撚り角度αを2〜18°の範囲にとって撚り合わせ、7×7構造の本発明複撚りケーブルを得た。ちなみに、撚り角度α:2°の撚りピッチは2200mm、撚り角度α:4.1°の撚りピッチは1100mm、撚り角度α:5°の撚りピッチは900mmである。 Of the seven stranded cables, one outer periphery is coated with polyethylene to form a core strand, and six uncoated ones are side strands, and the twist direction Z and the twist angle α are 2 to 18 °. The range was twisted to obtain a double twisted cable of the present invention having a 7 × 7 structure. Incidentally, the twist pitch α: 2 ° has a twist pitch of 2200 mm, the twist angle α: 4.1 ° has a twist pitch of 1100 mm, and the twist angle α: 5 ° has a twist pitch of 900 mm.

得られた複撚りケーブルについて、9水準の引張試験を行った結果を図9に示す。この結果から、撚り角度を2〜12°の範囲、特に2〜8°にすると、破断荷重の低下はほとんど見られないことがわかる。   FIG. 9 shows the results of a nine-level tensile test performed on the obtained double-stranded cable. From this result, it can be seen that when the twist angle is in the range of 2 to 12 °, particularly 2 to 8 °, almost no decrease in the breaking load is observed.

比較のため、撚り角度α=4°とし、片撚りケーブルからなる心ストランドに被覆を施さずにα=4°で前記7×7構造の複撚りケーブルを製作し、引張り試験を行った。その結果、破断荷重は1100kNであり、撚り角度α=4°とし、心ストランドに被覆を施した複撚りケーブルは1250kNであった。
また、前記ストランドを7本、平行状に束ねた従来ケーブル(従来例2という)について破断荷重の比較も行った。この結果、該従来例2は、1070kNで、本発明よりも劣っていた。
For comparison, a twisted angle α = 4 °, a double-stranded cable having the 7 × 7 structure was manufactured at α = 4 ° without coating a core strand made of a single-stranded cable, and a tensile test was performed. As a result, the breaking load was 1100 kN, the twist angle α = 4 °, and the double-stranded cable in which the core strand was coated was 1250 kN.
Further, the breaking load of the conventional cable (referred to as Conventional Example 2) in which the seven strands were bundled in parallel was also compared. As a result, the conventional example 2 was 1070 kN, which was inferior to the present invention.

前記高強度繊維複合材ケーブルについて、リールの胴径と撚り長さの関係を巻取り実験により調査した。その結果、撚り角度αが2〜18°の範囲内にある場合、撚り長さP/リール胴径Dが0.73以下であれば、図10(a)のように正常に巻取り可能であることが確認された。撚り角度αが1.6°すなわち撚りピッチ2800mmでは、P/Dが0.93では巻取り中にケーブルに損傷や型崩れが発生した。比較のため、前記従来例2についても巻取り試験を行ったが、その結果は、図10(b)のように型崩れが発生し、重ね巻きができなかった。   Regarding the high-strength fiber composite cable, the relationship between the reel diameter and the twist length was investigated by a winding experiment. As a result, when the twist angle α is in the range of 2 to 18 °, if the twist length P / reel barrel diameter D is 0.73 or less, it can be normally wound as shown in FIG. It was confirmed that there was. When the twist angle α was 1.6 °, that is, the twist pitch was 2800 mm, the cable was damaged or deformed during winding when the P / D was 0.93. For comparison, a winding test was also performed on the conventional example 2, but as a result, the shape was deformed as shown in FIG.

片撚りケーブルからなる心ストランドにポリエチレン被覆を施したタイプで、撚り角度α:4°の本発明ケーブル(7×7構造)について、図11(a)のように、曲げ径200mmとして曲げ角度2θが0°〜8°となる範囲で曲げ引張試験を行った。
比較のため、断面積が同一となる1×37構造(従来例1)と、7本のストランドを束ねたケーブル(従来例2)についても同様の曲げ引張試験を行った。その結果を図11(b)に示す。この図からわかるように、本発明ケーブルは良好な曲げ性能を呈し、これに対して、従来例2は、曲げによる破断荷重の低下が最も大きかった。
For the cable of the present invention (7 × 7 structure) having a twist angle α of 4 °, a core strand made of a single-stranded cable and having a twist angle α of 4 °, a bending angle of 2θ with a bending diameter of 200 mm as shown in FIG. The bending tensile test was performed in the range of 0 ° to 8 °.
For comparison, a similar bending tensile test was performed on a 1 × 37 structure (conventional example 1) having the same cross-sectional area and a cable in which seven strands were bundled (conventional example 2). The result is shown in FIG. As can be seen from this figure, the cable of the present invention exhibited good bending performance, whereas the conventional example 2 had the greatest decrease in breaking load due to bending.

図12のように、片撚りケーブルからなる心ストランドにポリエチレン披覆を施した7×7構造のケーブル外周へ筒体を被せ、筒体の両端開口にエポキシ粘土を詰め込んでシールした状態で、筒体下部に設けた注入孔からセメントミルクを注入したところ、ケーブル内部からセメントが流れ出ることなく充填が成功した。この結果から、介在層が効果的であることがわかる。
また、定着性を検討するため、図13のように鋼管製のスリーブ15に本発明高強度繊維複合材ケーブル1を挿入し、セメントミルク16を注入した。比較のため図14のように、従来例1について素線をばらしてスリーブに挿入しセメントミルクを注入した。この結果、本発明高強度繊維複合材ケーブル1は片撚りケーブルからなる各ストランドをばらさないにもかかわらず、高い定着強度が得られた。これは、本発明の高強度繊維複合材ケーブルではストランドである片撚りケーブル同士が点接触であるためケーブル外周の凹凸が大きく、付着表面積が大きいこと、しかも片撚りケーブルのらせんが引き抜き抵抗となったことによるものである。
As shown in FIG. 12, a cylindrical body is covered with a 7 × 7 cable outer periphery in which a core strand made of a single twisted cable is covered with polyethylene, and the cylinder is packed with epoxy clay at both ends of the cylindrical body and sealed. When cement milk was injected from the injection hole provided in the lower part of the body, the filling was successful without the cement flowing out of the cable. From this result, it can be seen that the intervening layer is effective.
Further, in order to examine the fixability, the high-strength fiber composite material cable 1 of the present invention was inserted into a steel pipe sleeve 15 as shown in FIG. For comparison, as shown in FIG. 14, the wire of Conventional Example 1 was separated and inserted into the sleeve, and cement milk was injected. As a result, the high-strength fiber composite material cable 1 of the present invention obtained high fixing strength even though each strand made of a single-stranded cable was not separated. This is because, in the high-strength fiber composite cable of the present invention, the single-stranded cables that are strands are in point contact with each other, so that the irregularities on the outer periphery of the cable are large, the adhesion surface area is large, and the spiral of the single-stranded cable becomes the pulling resistance It is because of that.

(a)と(b)はそれぞれ従来の高強度繊維複合材ケーブルの部分的斜視図である。(A) And (b) is a partial perspective view of the conventional high-strength fiber composite cable, respectively. 本発明による高強度繊維複合材ケーブルの一例を示す部分的斜視図である。It is a fragmentary perspective view which shows an example of the high strength fiber composite material cable by this invention. 本発明における複合素線を示す部分的斜視図である。It is a fragmentary perspective view which shows the composite strand in this invention. (a)(b)(c)は本発明ケーブルの他の例を示す断面図である。(A) (b) (c) is sectional drawing which shows the other example of this invention cable. (a)は本発明ケーブルの撚り角度を示す説明図、(b)は撚り長さを示す説明図である。(A) is explanatory drawing which shows the twist angle of this invention cable, (b) is explanatory drawing which shows twist length. (a)(b)は本発明ケーブルの介在層を例示した側面図である。(A) (b) is the side view which illustrated the intervening layer of this invention cable. (a)(b)は本発明ケーブルの製造工程例を示す説明図である。(A) (b) is explanatory drawing which shows the example of a manufacturing process of this invention cable. (a)はレヤー工程の説明図、(b)はラッピング工程の説明図、(c)は1次クロージング工程の説明図、(d)は2次クロージング工程の説明図、(e)はキュア工程の説明図である。(A) is an explanatory view of a layer process, (b) is an explanatory view of a lapping process, (c) is an explanatory view of a primary closing process, (d) is an explanatory view of a secondary closing process, and (e) is a curing process. It is explanatory drawing of. 撚り角度と破断荷重の関係を示す線図である。It is a diagram which shows the relationship between a twist angle and a breaking load. (a)は本発明ケーブルの巻取り試験状態を示す平面図、(b)は従来ケーブルの巻取り試験状態を示す平面図である。(A) is a top view which shows the winding test state of this invention cable, (b) is a top view which shows the winding test state of the conventional cable. (a)は曲げ引張り試験の概要を示す説明図、(b)は本発明ケーブルと従来ケーブルの曲げ角度と破断荷重を示す線図である。(A) is explanatory drawing which shows the outline | summary of a bending tension test, (b) is a diagram which shows the bending angle and breaking load of this invention cable and a conventional cable. 充填試験状態を示す斜視図である。It is a perspective view which shows a filling test state. (a)は本発明ケーブルの端末定着加工の状態を示す縦断側面図、(b)は横断面図である。(A) is a longitudinal side view showing a state of terminal fixing processing of the cable of the present invention, and (b) is a cross-sectional view. (a)は従来の多層撚りケーブルの端末定着加工状態を示す縦断側面図、(b)は横断面図である。(A) is a vertical side view showing the terminal fixing processing state of a conventional multilayer twisted cable, and (b) is a cross-sectional view.

符号の説明Explanation of symbols

1 本発明の高強度繊維複合材ケーブル
2 片撚りケーブル
2a 心ストランド
2b 側ストランド
20 複合素線
DESCRIPTION OF SYMBOLS 1 High-strength fiber composite material cable of the present invention 2 Single-stranded cable 2a Core strand 2b Side strand 20 Composite strand

Claims (1)

高強度低伸度繊維に熱硬化性樹脂を含浸させたプリプレグを多数本収束しあるいは撚り合せた複合素線(20)を複数本片撚りした片撚りケーブル(2)をストランドとし、前記片撚りケーブル(2)の複数本を撚り角度2〜12°で片撚りケーブル(2)の撚り方向と逆方向に撚り合わせてなることを特徴とする高強度繊維複合材ケーブル。
A single twisted cable (2) in which a plurality of composite strands (20) obtained by converging or twisting a large number of prepregs impregnated with a thermosetting resin into a high-strength low-stretch fiber is used as a strand. A high-strength fiber composite cable comprising a plurality of cables (2) twisted at a twist angle of 2 to 12 ° and twisted in the opposite direction to the twist direction of the single-twist cable (2).
JP2006035305A 2006-02-13 2006-02-13 High strength fiber composite cable Expired - Lifetime JP4362484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035305A JP4362484B2 (en) 2006-02-13 2006-02-13 High strength fiber composite cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035305A JP4362484B2 (en) 2006-02-13 2006-02-13 High strength fiber composite cable

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003104545A Division JP3859611B2 (en) 2003-04-08 2003-04-08 High strength fiber composite cable

Publications (2)

Publication Number Publication Date
JP2006169714A JP2006169714A (en) 2006-06-29
JP4362484B2 true JP4362484B2 (en) 2009-11-11

Family

ID=36670755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035305A Expired - Lifetime JP4362484B2 (en) 2006-02-13 2006-02-13 High strength fiber composite cable

Country Status (1)

Country Link
JP (1) JP4362484B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012165B2 (en) 2018-07-31 2022-01-27 本田技研工業株式会社 Scooter type vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5492768B2 (en) * 2007-06-12 2014-05-14 ヘクセル ランフォルセマン Method for producing a composite material in which at least one twisted yarn is arranged
JP2015048179A (en) * 2013-08-30 2015-03-16 東芝エレベータ株式会社 Elevator apparatus
GB2558654A (en) * 2017-01-16 2018-07-18 Univ Bath Fibre ropes and composite materials containing fibre ropes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012165B2 (en) 2018-07-31 2022-01-27 本田技研工業株式会社 Scooter type vehicle

Also Published As

Publication number Publication date
JP2006169714A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
US7650742B2 (en) Cable made of high strength fiber composite material
US8250845B2 (en) Fiber composite twisted cable
US9045856B2 (en) Hybrid rope and method for manufacturing the same
KR102333904B1 (en) Rope and Rope Manufacturing Method
JPS636289A (en) Novel high-pressure hose and manufacture thereof
CA1248774A (en) Flexible tension members
JP4362484B2 (en) High strength fiber composite cable
SK36998A3 (en) Process for producing a steel cord
EP3775365B1 (en) Synthetic fiber rope
KR101913074B1 (en) Method 0f wire rope having enhanced quality properties
JP3859611B2 (en) High strength fiber composite cable
EP0633348A1 (en) Complex fiber string and method of manufacturing the same
CN111535178A (en) Prestressed FRP (fiber reinforced Plastic) rib capable of being used for clamping piece anchoring and preparation method thereof
KR102486074B1 (en) elevator rope
CN216474216U (en) Impact-resistant carbon fiber inhaul cable body
JP4503940B2 (en) Ground anchor
JP4037041B2 (en) Terminal processing method and terminal fixing method of fiber composite material
KR100194254B1 (en) Rotating Paper Wire Rope
US20140326358A1 (en) Flat wire and method of manufacturing same
JPS58105109A (en) Aerial wire attached with optical communication wire along said wire
JP3721228B2 (en) High pressure hose
KR101913075B1 (en) Wire rope having enhanced quality properties
CN115287924A (en) Basalt fiber mooring rope and production method thereof
KR20230095116A (en) Ropes, strands, and methods and apparatus for making ropes and strands
JPH0669296U (en) Fiber Composite Twisted Multi-Strand Rope Terminal Structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4362484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term