JP4257020B2 - Thermoplastic resin-coated CFRP reinforcing bar connection method - Google Patents

Thermoplastic resin-coated CFRP reinforcing bar connection method Download PDF

Info

Publication number
JP4257020B2
JP4257020B2 JP2000176329A JP2000176329A JP4257020B2 JP 4257020 B2 JP4257020 B2 JP 4257020B2 JP 2000176329 A JP2000176329 A JP 2000176329A JP 2000176329 A JP2000176329 A JP 2000176329A JP 4257020 B2 JP4257020 B2 JP 4257020B2
Authority
JP
Japan
Prior art keywords
reinforcing bar
reinforcing
thermoplastic resin
cfrp
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000176329A
Other languages
Japanese (ja)
Other versions
JP2001355313A (en
Inventor
繁宏 松野
尚之 近藤
洋治 井田
嘉司 松本
忠彦 伊藤
貴快 椎名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Ube-Nitto Kasei Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Ube-Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd, Ube-Nitto Kasei Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP2000176329A priority Critical patent/JP4257020B2/en
Publication of JP2001355313A publication Critical patent/JP2001355313A/en
Application granted granted Critical
Publication of JP4257020B2 publication Critical patent/JP4257020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5042Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like covering both elements to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/562Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits using extra joining elements, i.e. which are not integral with the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5007Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like characterised by the structure of said adhesive tape, threads or the like
    • B29C65/5014Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like characterised by the structure of said adhesive tape, threads or the like being fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reinforcement Elements For Buildings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セメントモルタルやコンクリート等の無機構造材料等の補強に使用される熱可塑性樹脂被覆CFRP補強筋の接続方法に関する。
【0002】
【従来の技術】
セメントモルタルやコンクリート等の無機構造材の補強には鉄筋、金網などが一般的に使用されているが、これら鉄製材料は重量が大きく運搬作業性に難があった。また、鉄製材料に共通する錆びやすく低い耐食性しか有しないといった問題も存在する。このため、コンクリートにおけるかぶりが薄い場合や、海岸などの腐食性環境下でのこれら鉄製補強材の使用には大きな問題を抱えていたのが現状である。
【0003】
他方、近年では上記の鉄製補強材に代わり、軽く扱いやすい上、錆びることのないアラミド繊維や炭素繊維などの長繊維を補強繊維としたFRP(繊維強化プラスチック)が補強材として注目され、一部実用化もされている。特に、プレキャストコンクリート用の緊張材(PC緊張材)や、NOMST(Novel Material Shield-cuttable Tunnel-wall System)工法におけるNOMST補強筋、ならびにトンネル工事用のロックボルトや法面や地盤の補強用アースアンカーなどに用いられつつある。
【0004】
上記NOMST補強筋としては、特に高強度、高弾性率で、シールドマシーンカッター刃による切削性のよいCFRP(Carbon Fiber Reinforced Plastic)が使用されているが、なかでも炭素繊維等の長繊維を硬化性の高い、スチレン含有ウレタンアクリレート樹脂で結着した矩形状のCFRPをポリサルホン樹脂(PSF)などの耐熱、耐アルカリ性熱可塑性樹脂により被覆一体化した構造の熱可塑性樹脂被覆CFRP補強筋が優れた性質を発現するとされている(特願平11−165623号参照)。
【0005】
【発明が解決しようとする課題】
しかしながら、このような熱可塑性樹脂被覆CFRP補強筋を種々の工法に適用する場合、例えばケーソン施工の場合など、当該補強筋同士を接続しなければならない状況が発生する場合がある。従来の鉄筋等の場合には互いを溶接すれば比較的容易に接続可能であるが、熱可塑性樹脂被覆CFRP補強筋同士の接続方法については十分な検討がなされていなかった。
【0006】
一方、この接続作業に際しては、前述のように高強度、高弾性率、耐腐食性、及びシールドマシンによる切削良好性を要求するNOMST工法等の性格から鉄製部材など在来の金属部材の使用は好ましくない。したがって、高強度、高弾性率、耐腐食性、及びシールドマシンによる切削良好性といった補強筋自体が備える特性と同程度または類似の特性を備える材料による接続により、熱可塑性樹脂被覆CFRP補強筋の上記性状を余すとこなく発現できる接続方法の開発が望まれていた。
【0007】
そこで、本発明はこのような従来の課題に着目してなされたもので、接続作業が簡便であり、かつ接続後の引張り強度にも優れて、熱可塑性樹脂被覆CFRP補強筋の持つ優れた性状を余すところ無く発現できる熱可塑性樹脂被覆CFRP補強筋の接続方法を提供するものである。
【0008】
【課題を解決するための手段】
この発明は上記目的を達成するためになされたもので、略一方向に配列された補強繊維としての長繊維の束を熱硬化性樹脂で結着してなる芯部に、熱可塑性樹脂を被覆することで形成される炭素繊維強化プラスチック複合材を、コンクリート構造物等の補強筋として適用した熱可塑性樹脂被覆CFRP補強筋の接続方法であって、接続する前記CFRP補強筋同士において、その端面を突き合わせる端部当接過程と、該端部当接過程において当接されたCFRP補強筋同士の少なくとも当接箇所上下を所定サイズの補強用CFRP補強筋でカバーし、前記当接箇所と併せて接着剤で一体に接着する接着過程と、前記接着過程により互いに接着された前記CFRP補強筋を、該CFRP補強筋両側部に沿って一定間隔にてボルト穴を備え繊維強化樹脂製或いは繊維強化熱可塑性樹脂製の補強片により挟み込み、繊維強化樹脂製或いは繊維強化熱可塑性樹脂製のボルトにて、補強筋を貫通せず、補強筋の側部より一体に締結固定する接続補強過程とを備えることを特徴とする。
【0009】
また、第2の発明として、略一方向に配列された補強繊維としての長繊維の束を熱硬化性樹脂で結着してなる芯部に、熱可塑性樹脂を被覆することで形成される炭素繊維強化プラスチック複合材を、コンクリート構造物等の補強筋として適用した熱可塑性樹脂被覆CFRP補強筋の接続方法であって、接続する前記CFRP補強筋同士において、その端部を適宜ラップ長をもって重ね継ぎする端部当接過程と、前記端部当接過程における当接箇所を接着剤で一体に接着する接着過程と、前記接着過程により互いに接着された前記CFRP補強筋を、該CFRP補強筋両側部に沿って一定間隔にてボルト穴を備える繊維強化樹脂製或いは繊維強化熱可塑性樹脂製の補強片により挟み込み、繊維強化樹脂製或いは繊維強化熱可塑性樹脂製のボルトにて、補強筋を貫通せず、補強筋の側部より一体に締結固定する接続補強過程とを備えることを特徴とする。
【0010】
なお、前記繊維強化樹脂製或いは繊維強化熱可塑性樹脂製の補強片は、例えばヤング率(弾性率)が9.8Gpa(1000kg/mm)以上のものであると好適であり、この値より小さいとボルト締めした際の圧力がボルト穴周辺に偏ってしまい締付け効果が小さくなる。また、部材の厚みは20mm以下が作業性の点から好ましい。また、前記補強片の材質はCFRP等だけでなく、GFRP(Glass Fiber Reinforced Plastic)等がコスト、剛性、強度の点から適宜選択可能である。
【0011】
【発明の実施の形態】
===実施例1===
以下、本発明の好ましい実施の形態につき、添付図面を参照して詳細に説明する。
【0012】
(1)熱可塑性樹脂被覆CFRP補強筋の製造
長繊維の束を被覆する被覆樹脂としてポリサルホン(商品名:ポリサルホンP1700BK937、テイジンアモコ株式会社製)を使用し、厚さ5.5mm、幅20.3mm(FRP部の寸法は厚さ4.0mm、幅19.0mm)のCFRP補強筋(以下FTCと称する)を以下のように製造した。なおこの製造過程について特に図示はしない。
【0013】
まず炭素繊維(商品名:トレカT−700SC 24K、東レ株式会社製)50本をスタンドより供給し、樹脂材料(商品名:ユピカ8921、日本ユピカ株式会社製)と、10時間半減期の温度が72℃である触媒(商品名:カドックスB−CH50、化薬アクゾ株式会社製)を4部と、10時間半減期の温度が105℃である触媒(商品名:カヤブチルB、化薬アクゾ株式会社製)を0.5部とを添加混合してウレタンアクリレート樹脂を形成し、これを含浸槽にて前記炭素繊維に含浸させる。
【0014】
続いて絞りノズルで過剰な樹脂を徐々に絞り込んで断面を矩形状(縦横4×19mm、繊維含有率58.5vol%)とし、これをクロスヘッドダイスに導き、前記ポリサルホンを円環状に押出して被覆した。被覆ポイント直後より室温水により冷却した後、全長8.5mの熱湯硬化槽(95〜99℃)及び熱風発生機を利用した乾熱硬化炉(全長8m、100〜120℃)で硬化させる。
【0015】
上記工程における引き取り速度は2.5m/minとし、硬化後には被覆表面にエンボス加工を施すこととした。このエンボス加工は、予備加熱として乾熱硬化炉を使用し(150〜160℃)、ローラー温度330℃にて加工が行われる。 そして、この熱可塑性樹脂被覆CFRP補強筋(以下、単に補強筋とする)を1500mmにカットし、その端末部をエポキシ樹脂が含浸されたガラステープを巻き付けることで補強し室温で24時間硬化させた。硬化後、この補強筋について、負荷100トンのアムスラー型引張試験機(図示しない)にて引張り試験を行ったところ、引張り強力は19.0tf(186kN)となった。以下、引張り試験にはこのアムスラー型引張試験機を使用することとする。
【0016】
(2)接合品の作成と接合部の引張強力
次に以下のように、本発明の接続方法をもって接続された補強筋の引張強力を試験するべく、試験片Aの作成を行った。
【0017】
長さ750mmにカットした補強筋10をその端面11で突き合わせ(端部当接過程)、この端部当接過程において当接された補強筋10同士の少なくとも当接箇所12上下を補強用補強筋13(長さ500〜950mm)にて挟み込んだ。この挟み込み作業に続き、前記当接箇所12と併せてこの補強用補強筋13をエポキシ樹脂接着剤(商品名:アラルダイトAW106、チバガイギー社製)で一体に接着し(接着過程)、更に、補強片14として採用した補強用補強筋13と同じ長さのGFRP板(厚さ10mm、幅60mmで、40mm幅、50mmピッチで1対のφ11mmボルト穴14aを設けたもの。図1参照)で補強筋10及び補強用補強筋13を挟み込む作業を行う。このGFRP板のヤング率は1400kg/mm(137Gpa)であった。
【0018】
そして繊維強化樹脂製(或いは繊維強化熱可塑性樹脂製)のボルト15、ナット16(例えばサイズM10)にて、上記補強片14を通して補強筋10及び補強用補強筋13を一体に締結固定した(接続補強過程)。この際のボルト締結トルクは、好ましくは15Nm〜20Nmであり、また、ボルト穴14aの配置間隔は20〜100mm程度が好適である。
【0019】
上記のように作成した試験片Aの構造概要を図2(a)、(b)に示す。なお、引張り試験に際して、試験片Aの端末をエポキシ樹脂が含浸されたガラステープにより補強し評価を行った。補強用補強筋13と補強筋10との重ね長を500mm〜950mmと変化させ各重ね長における引張り試験結果を得た(実施例1−1〜1−4)。他方、比較例として重ね長を500mmと650mmの2種設定し、その他にボルトピッチ、ボルト締付けトルクを変化させて試験を同様に行った(比較例1−1〜1−6)。これらの試験結果は表1に示す。
【0020】
【表1】

Figure 0004257020
【0021】
比較例1−1は重ね長が他の実施例及び比較例より短く、比較例1−2、1−3はボルトの締付け間隔が他より広いため破断強力が低い結果となった。比較例1−4では接着剤の不使用、また、比較例1−5ではボルト締め無し、比較例1−6ではボルトの締付け力不足にそれぞれ由来して破断強力が著しく低くなった(比較例と実施例の試験結果ではおよそ1.5〜2倍程度の強力差が見られる)。これと比して、実施例1−1〜1−4はいずれも高い破断強力を示し、良好な接続方法であることが明らかとなった。
【0022】
===実施例2、比較例2===
実施例1と同様にして補強筋を作成し、補強筋同士を単純重ね継ぎにより当接した試験片Bを以下のように作成し試験を行った。925、1000、1075、1150mmとカットした各補強筋20同士を、単純重ね長を、350、500、650、800mmとして接着剤で接着し、更に接着後のこれら補強筋20を、補強片21として前記重ね長と同じ長さのGFRP板(実施例1に同じく、厚み10mm、幅60mm、40mm幅、50mmピッチで1対のφ11ボルト穴21aを設けたもの)で挟み込んだ。使用したGFRP板のヤング率は1400kg/mm2(137Gpa)である。
【0023】
補強片21により挟み込んだら、ボルト孔21aにFRPボルト22、ナット23(M10)を挿通させて締結した。補強片21同士の接合面はエポキシ樹脂(商品名:アラルダイトAW106、チバガイギー社製)にて接着し固定することとした。この実施例2における試験片Bの構造概要を図3(a)、(b)に示す。引張り試験に際して、試験片Bの端末をエポキシ樹脂が含浸されたガラステープにて補強し、実施例1と同様の引張り強力を評価を行った。比較例2−1として、重ね長を350mmとした例も示した。これらの引張り試験結果を表2に示す。
【0024】
【表2】
Figure 0004257020
【0025】
実施例2−1〜2−3のいずれの試験結果も、実施例1と同様の優れた引張り破断強力を示したが、比較例2−1の結果は引張り破断強力が実施例より50%ほど大幅に低下し満足のいくものではなかった。
【0026】
===実施例3、比較例3===
実施例1と同様に、長さ750mmにカットした補強筋30をその端面31で突き合わせ(端部当接過程)、この端部当接過程において当接された補強筋30同士の少なくとも当接箇所32上下を補強用補強筋33(長さ500〜800mm)にて挟み込んだ。前記当接箇所32と併せてこの補強用補強筋33をエポキシ樹脂接着剤(商品名:アラルダイトAW106、チバガイギー社製)で一体に接着し(接着過程)、更に、補強片34として採用した長さ150mのGFRP板(厚さ10mm、幅60mmで、40mm幅、50mmピッチで3対のφ11mmボルト穴34aを設けたもの。図4(a)、(b)参照)で補強筋30及び補強用補強筋33を挟み込み、この接合面はエポキシ樹脂(商品名:アラルダイトAW106、チバガイギー社製)にて接着する。このGFRP板のヤング率は1400kg/mm(137Gpa)であった。
【0027】
つづいて、繊維強化樹脂製(或いは繊維強化熱可塑性樹脂製)のボルト35、ナット36(例えばサイズM10)にて、上記補強片34を通して補強筋30及び補強用補強筋33を一体に締結固定する(接続補強過程)。この実施例3における試験片Cの構造概要を図4に示す。引張り試験に際し、試験片Cの端末をエポキシ樹脂が含浸されたガラステープにて補強し、実施例1と同様に引張り強力を評価した。また、比較例3−1として重ね長が350mmである場合を同様に試験した。これらの引張り試験結果を表3に示す。
【0028】
【表3】
Figure 0004257020
【0029】
実施例3−1〜3−3のいずれの試験結果も、実施例1及び2と同様の優れた引張り破断強力を示したが、比較例3−1の結果は重ね長が短いことに由来して引張り破断強力が60%ほど低下し満足のいくものではなかった。
【0030】
【発明の効果】
以上詳細に説明したように、本発明の熱可塑性樹脂被覆CFRP補強筋の接続方法は、略一方向に配列された補強繊維としての長繊維の束を熱硬化性樹脂で結着してなる芯部に、熱可塑性樹脂を被覆することで形成される炭素繊維強化プラスチック複合材を、コンクリート構造物等の補強筋として適用した熱可塑性樹脂被覆CFRP補強筋の接続方法であって、接続する前記CFRP補強筋同士において、その端面を突き合わせる端部当接過程と、該端部当接過程において当接されたCFRP補強筋同士の少なくとも当接箇所上下を所定サイズの補強用CFRP補強筋でカバーし、前記当接箇所と併せて接着剤で一体に接着する接着過程と、前記接着過程により互いに接着された前記CFRP補強筋を、該CFRP補強筋両側部に沿って一定間隔にてボルト穴を備える繊維強化樹脂製或いは繊維強化熱可塑性樹脂製の補強片により挟み込み、繊維強化樹脂製或いは繊維強化熱可塑性樹脂製のボルトにて、補強筋を貫通せず、補強筋の側部より一体に締結固定する接続補強過程とを備えることを特徴とする。
【0031】
したがって、補強筋自体に高強度、高弾性率、耐腐食性、及びシールドマシンによる切削良好性を要求するNOMST工法等においても、鉄製部材など在来の金属部材を使用することなく、熱可塑性樹脂被覆CFRP補強筋の優れた性状を余すとこなく発現できる接続方法が実現される。しかも、この接続方法を実施するにあたり、接続作業が非常に簡便であり、かつ接続後の引張り強度にも優れるといった格別な効果をも奏するのである。
【図面の簡単な説明】
【図1】本発明の熱可塑性樹脂被覆CFRP補強筋の接続方法の第1実施例における、補強片の概要を示す説明図である。
【図2】本発明の熱可塑性樹脂被覆CFRP補強筋の接続方法の第1実施例における、補強筋接続後の構造概要を示し、(a)は平面図、(b)は側断面図である。
【図3】本発明の熱可塑性樹脂被覆CFRP補強筋の接続方法の第2実施例における、補強筋接続後の構造概要を示し、(a)は平面図、(b)は側断面図である。
【図4】本発明の熱可塑性樹脂被覆CFRP補強筋の接続方法の第3実施例における、補強筋接続後の構造概要を示し、(a)は平面図、(b)は側断面図である。
【符号の説明】
10 熱可塑性樹脂被覆CFRP補強筋、補強筋
11 補強筋端面
12 当接箇所
13 補強用CFRP補強筋、補強用補強筋
14 補強片
15 ボルト[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for connecting a thermoplastic resin-coated CFRP reinforcing bar used for reinforcing inorganic structural materials such as cement mortar and concrete.
[0002]
[Prior art]
For reinforcement of inorganic structural materials such as cement mortar and concrete, rebars, wire mesh, etc. are generally used, but these iron materials are heavy and difficult to carry. There is also a problem that it is easy to rust and has only low corrosion resistance common to iron materials. For this reason, there is a big problem in the use of these iron reinforcements in the case where the cover in the concrete is thin or in a corrosive environment such as the coast.
[0003]
On the other hand, in recent years, FRP (fiber reinforced plastic), which is made of long fibers such as aramid fibers and carbon fibers that do not rust, has been attracting attention as a reinforcing material instead of the above-mentioned iron reinforcing materials. It has also been put into practical use. In particular, tension material for precast concrete (PC tension material), NOMST reinforcement in NOMST (Novel Material Shield-cuttable Tunnel-wall System) method, and rock bolt for tunnel construction, earth anchor for reinforcement of slope and ground It is being used for such as.
[0004]
As the NOMST reinforcing bar, CFRP (Carbon Fiber Reinforced Plastic) is used, which is particularly high strength, high elastic modulus, and good machinability with a shield machine cutter blade. Among them, long fibers such as carbon fiber are hardened. High-quality, rectangular CFRP bound with styrene-containing urethane acrylate resin is coated with a heat- and alkali-resistant thermoplastic resin such as polysulfone resin (PSF). It is said to be expressed (see Japanese Patent Application No. 11-165623).
[0005]
[Problems to be solved by the invention]
However, when such a thermoplastic resin-coated CFRP reinforcing bar is applied to various construction methods, there may occur a situation where the reinforcing bars must be connected to each other, for example, in the case of caisson construction. In the case of conventional reinforcing bars and the like, they can be connected relatively easily if they are welded to each other. However, a method for connecting the thermoplastic resin-coated CFRP reinforcing bars has not been sufficiently studied.
[0006]
On the other hand, in this connection work, the use of conventional metal members such as iron members is not possible due to the characteristics such as the NOMST method that requires high strength, high elastic modulus, corrosion resistance, and good cutting performance with a shield machine as described above. It is not preferable. Therefore, the connection of the thermoplastic resin-coated CFRP reinforcing bar by the connection with the material having characteristics similar to or similar to the characteristics of the reinforcing bar itself such as high strength, high elastic modulus, corrosion resistance, and good cutting performance by the shield machine. There has been a demand for the development of a connection method that can fully express its properties.
[0007]
Therefore, the present invention has been made paying attention to such a conventional problem. The connection work is simple, the tensile strength after connection is excellent, and the excellent properties of the thermoplastic resin-coated CFRP reinforcing bar. The present invention provides a method for connecting a thermoplastic resin-coated CFRP reinforcing bar that can be fully developed.
[0008]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and a thermoplastic resin is coated on a core formed by binding a bundle of long fibers as reinforcing fibers arranged substantially in one direction with a thermosetting resin. A method of connecting a thermoplastic resin-coated CFRP reinforcing bar in which a carbon fiber reinforced plastic composite formed by applying the carbon fiber reinforced plastic composite material as a reinforcing bar for a concrete structure or the like is provided. The abutting end contact process, and at least the upper and lower contact portions of the CFRP reinforcing bars abutted in the end contact process are covered with a CFRP reinforcing bar for reinforcement of a predetermined size. The bonding process of bonding together with an adhesive and the CFRP reinforcing bars bonded to each other by the bonding process are provided with bolt holes at regular intervals along both sides of the CFRP reinforcing bar. A connection that is sandwiched between reinforcing pieces made of resin or fiber reinforced thermoplastic resin, and is tightened and fixed integrally from the side of the reinforcing bar with a bolt made of fiber reinforced resin or fiber reinforced thermoplastic resin without penetrating the reinforcing bar. And a reinforcing process.
[0009]
Further, as a second invention, carbon formed by coating a thermoplastic resin on a core formed by binding a bundle of long fibers as reinforcing fibers arranged in approximately one direction with a thermosetting resin. A method of connecting a thermoplastic resin-coated CFRP reinforcing bar in which a fiber reinforced plastic composite material is applied as a reinforcing bar for a concrete structure or the like, wherein the ends of the CFRP reinforcing bars to be connected are overlapped with an appropriate lap length. An end contact process, an adhesive process in which contact portions in the end contact process are integrally bonded with an adhesive, and the CFRP reinforcing bars bonded to each other by the bonding process. A bolt made of fiber reinforced resin or fiber reinforced thermoplastic resin is sandwiched between reinforcing pieces made of fiber reinforced resin or fiber reinforced thermoplastic resin having bolt holes at regular intervals along Te, without penetrating the reinforcement, characterized in that it comprises a connection reinforcement process of fastened together from the sides of the reinforcement.
[0010]
The reinforcing piece made of fiber reinforced resin or fiber reinforced thermoplastic resin preferably has a Young's modulus (elastic modulus) of, for example, 9.8 Gpa (1000 kg / mm 2 ) or more, and is smaller than this value. When the bolts are tightened, the pressure is biased around the bolt holes and the tightening effect is reduced. The thickness of the member is preferably 20 mm or less from the viewpoint of workability. The material of the reinforcing piece is not limited to CFRP or the like, but GFRP (Glass Fiber Reinforced Plastic) or the like can be appropriately selected from the viewpoint of cost, rigidity, and strength.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
=== Example 1 ===
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0012]
(1) Production of thermoplastic resin-coated CFRP reinforcing bars Polysulfone (trade name: Polysulfone P1700BK937, manufactured by Teijin Amoco Co., Ltd.) is used as a coating resin for coating a bundle of long fibers, and the thickness is 5.5 mm and the width is 20.3 mm. A CFRP reinforcing bar (hereinafter referred to as FTC) having a thickness of 4.0 mm and a width of 19.0 mm was manufactured as follows. This manufacturing process is not particularly illustrated.
[0013]
First, 50 carbon fibers (trade name: Torayca T-700SC 24K, manufactured by Toray Industries, Inc.) are supplied from a stand, and the resin material (trade name: Iupika 8921, manufactured by Nippon Iupika Co., Ltd.) and a temperature of 10 hours half-life 4 parts of a catalyst (trade name: Kadox B-CH50, manufactured by Kayaku Akzo Co., Ltd.) at 72 ° C. and a catalyst (product name: Kayabutyl B, Kayaku Akzo Co., Ltd.) having a 10 hour half-life temperature of 105 ° C. 0.5 part) is added and mixed to form a urethane acrylate resin, which is impregnated into the carbon fiber in an impregnation tank.
[0014]
Subsequently, excess resin is gradually squeezed out with a squeezing nozzle to make the cross section rectangular (vertical and horizontal 4 × 19 mm, fiber content 58.5 vol%), which is led to a crosshead die, and the polysulfone is extruded into an annular shape and coated did. After cooling with room temperature water immediately after the coating point, it is cured in a hot water curing tank (95 to 99 ° C.) having a total length of 8.5 m and a dry heat curing furnace (total length 8 m, 100 to 120 ° C.) using a hot air generator.
[0015]
The take-off speed in the above process was 2.5 m / min, and after the curing, the coating surface was embossed. This embossing is performed at a roller temperature of 330 ° C. using a dry heat curing furnace as preheating (150 to 160 ° C.). The thermoplastic resin-coated CFRP reinforcing bars (hereinafter simply referred to as reinforcing bars) were cut to 1500 mm, and the end portions were reinforced by wrapping a glass tape impregnated with an epoxy resin and cured at room temperature for 24 hours. . After hardening, the reinforcing bars were subjected to a tensile test using an Amsler type tensile tester (not shown) with a load of 100 tons, and the tensile strength was 19.0 tf (186 kN). Hereinafter, this Amsler type tensile tester is used for the tensile test.
[0016]
(2) Preparation of bonded product and tensile strength of bonded portion Next, as described below, a test piece A was prepared in order to test the tensile strength of the reinforcing bars connected by the connection method of the present invention.
[0017]
The reinforcing bars 10 cut to a length of 750 mm are butted at the end face 11 (end contact process), and at least the upper and lower contact points 12 of the reinforcing bars 10 contacted in the end contact process are reinforcing reinforcing bars. 13 (length: 500 to 950 mm). Following this pinching operation, the reinforcing reinforcing bars 13 are bonded together with an epoxy resin adhesive (trade name: Araldite AW106, manufactured by Ciba Geigy) together with the contact portion 12 (bonding process). GFRP plate of the same length as the reinforcing reinforcing bar 13 adopted as 14 (thickness 10 mm, width 60 mm, 40 mm width, 50 mm pitch and a pair of φ11 mm bolt holes 14a, see FIG. 1). 10 and the reinforcing reinforcing bars 13 are sandwiched. The Young's modulus of this GFRP plate was 1400 kg / mm 2 (137 Gpa).
[0018]
Then, the reinforcing bar 10 and the reinforcing bar 13 for reinforcement are integrally fastened and connected through the reinforcing piece 14 with bolts 15 and nuts 16 (for example, size M10) made of fiber reinforced resin (or fiber reinforced thermoplastic resin). Reinforcement process). The bolt fastening torque at this time is preferably 15 Nm to 20 Nm, and the arrangement interval of the bolt holes 14a is preferably about 20 to 100 mm.
[0019]
An outline of the structure of the test piece A prepared as described above is shown in FIGS. In the tensile test, the end of the test piece A was reinforced with a glass tape impregnated with an epoxy resin for evaluation. Tensile test results at each overlap length were obtained by changing the overlap length of the reinforcement reinforcing bars 13 and the reinforcement bars 10 to 500 mm to 950 mm (Examples 1-1 to 1-4). On the other hand, as a comparative example, two types of overlap lengths of 500 mm and 650 mm were set, and the test was similarly performed by changing the bolt pitch and bolt tightening torque (Comparative Examples 1-1 to 1-6). These test results are shown in Table 1.
[0020]
[Table 1]
Figure 0004257020
[0021]
Comparative Example 1-1 had a shorter overlap length than the other Examples and Comparative Examples, and Comparative Examples 1-2 and 1-3 had a lower breaking strength because the bolt tightening interval was wider than the others. In Comparative Example 1-4, no adhesive was used, in Comparative Example 1-5, no bolting, and in Comparative Example 1-6, the breaking strength was remarkably reduced due to insufficient bolt tightening force (Comparative Example). And the test results of the examples show a strength difference of about 1.5 to 2 times). Compared to this, Examples 1-1 to 1-4 all showed high breaking strength, and it became clear that they were good connection methods.
[0022]
=== Example 2, Comparative Example 2 ===
Reinforcing bars were prepared in the same manner as in Example 1, and a test piece B in which the reinforcing bars were in contact with each other by a simple lap joint was prepared and tested as follows. The reinforcing bars 20 cut to 925, 1000, 1075, and 1150 mm are bonded with an adhesive with a simple overlap length of 350, 500, 650, and 800 mm. Further, these reinforcing bars 20 after bonding are used as reinforcing pieces 21. It was sandwiched between GFRP plates having the same length as the overlap length (as in Example 1, with a pair of φ11 bolt holes 21a provided at a thickness of 10 mm, a width of 60 mm, a width of 40 mm, and a pitch of 50 mm). The Young's modulus of the GFRP plate used is 1400 kg / mm 2 (137 Gpa).
[0023]
When sandwiched by the reinforcing piece 21, the FRP bolt 22 and the nut 23 (M10) were inserted into the bolt hole 21a and fastened. The joining surfaces of the reinforcing pieces 21 are bonded and fixed with an epoxy resin (trade name: Araldite AW106, manufactured by Ciba Geigy Corporation). An outline of the structure of the test piece B in Example 2 is shown in FIGS. In the tensile test, the end of the test piece B was reinforced with a glass tape impregnated with an epoxy resin, and the same tensile strength as in Example 1 was evaluated. As Comparative Example 2-1, an example in which the overlap length was 350 mm was also shown. Table 2 shows the results of these tensile tests.
[0024]
[Table 2]
Figure 0004257020
[0025]
Although all the test results of Examples 2-1 to 2-3 showed the same excellent tensile breaking strength as that of Example 1, the results of Comparative Example 2-1 showed that the tensile breaking strength was about 50% of the examples. It was significantly lower and not satisfactory.
[0026]
=== Example 3, Comparative Example 3 ===
Similar to the first embodiment, the reinforcing bars 30 cut to a length of 750 mm are butted at the end face 31 (end contact process), and at least the contact points of the reinforcing bars 30 that are contacted in the end contact process. 32 The upper and lower sides were sandwiched by reinforcing bars 33 (length: 500 to 800 mm). Along with the contact portion 32, the reinforcing reinforcing bar 33 is integrally bonded with an epoxy resin adhesive (trade name: Araldite AW106, manufactured by Ciba Geigy Co., Ltd.) (adhesion process). 150m GFRP plate (Thickness 10mm, Width 60mm, 40mm Width, 50mm Pitch with 3 pairs of φ11mm bolt holes 34a. See Fig. 4 (a) and 4 (b)). The joint 33 is sandwiched with an epoxy resin (trade name: Araldite AW106, manufactured by Ciba Geigy). The Young's modulus of this GFRP plate was 1400 kg / mm 2 (137 Gpa).
[0027]
Subsequently, the reinforcing bar 30 and the reinforcing reinforcing bar 33 are integrally fastened and fixed through the reinforcing piece 34 with a bolt 35 and a nut 36 (for example, size M10) made of fiber reinforced resin (or fiber reinforced thermoplastic resin). (Connection reinforcement process). An outline of the structure of the test piece C in Example 3 is shown in FIG. In the tensile test, the end of the test piece C was reinforced with a glass tape impregnated with an epoxy resin, and the tensile strength was evaluated in the same manner as in Example 1. Moreover, the case where the overlap length was 350 mm was similarly tested as Comparative Example 3-1. Table 3 shows the results of these tensile tests.
[0028]
[Table 3]
Figure 0004257020
[0029]
All the test results of Examples 3-1 to 3-3 showed the same excellent tensile fracture strength as in Examples 1 and 2, but the result of Comparative Example 3-1 was derived from the short overlap length. As a result, the tensile strength at break was reduced by about 60%, which was not satisfactory.
[0030]
【The invention's effect】
As described above in detail, the method for connecting the thermoplastic resin-coated CFRP reinforcing bars of the present invention is a core formed by binding a bundle of long fibers as reinforcing fibers arranged in substantially one direction with a thermosetting resin. A CFRP reinforcing bar connecting method in which a carbon fiber reinforced plastic composite formed by coating a thermoplastic resin on a part is applied as a reinforcing bar for a concrete structure or the like, and the CFRP to be connected The reinforcing bars are covered with an end abutting process in which the end faces abut each other, and at least the upper and lower contact portions of the CFRP reinforcing bars abutted in the end abutting process are covered with a CFRP reinforcing bar of a predetermined size. The bonding process of bonding together with the contact portion with an adhesive and the CFRP reinforcing bars bonded to each other by the bonding process are fixed along both sides of the CFRP reinforcing bars. It is sandwiched between reinforcing pieces made of fiber reinforced resin or fiber reinforced thermoplastic resin having bolt holes at intervals, and does not penetrate the reinforcing bar with bolts made of fiber reinforced resin or fiber reinforced thermoplastic resin. And a connection reinforcing process for fastening and fixing integrally from the side portion.
[0031]
Therefore, in the NOMST method that requires high strength, high elastic modulus, corrosion resistance, and good cutting performance with a shield machine for the reinforcing bar itself, a thermoplastic resin can be used without using conventional metal members such as iron members. A connection method that can fully express the excellent properties of the coated CFRP reinforcing bar is realized. Moreover, in carrying out this connection method, the connection work is very simple, and there is an extraordinary effect that the tensile strength after connection is excellent.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an outline of a reinforcing piece in a first embodiment of a method for connecting a thermoplastic resin-coated CFRP reinforcing bar of the present invention.
FIGS. 2A and 2B show an outline of the structure after connecting reinforcing bars in the first embodiment of the connecting method of the thermoplastic resin-coated CFRP reinforcing bars of the present invention, FIG. 2A is a plan view, and FIG. 2B is a side sectional view; .
FIGS. 3A and 3B show an outline of a structure after connecting reinforcing bars in a second embodiment of the method for connecting a thermoplastic resin-coated CFRP reinforcing bar of the present invention, FIG. 3A is a plan view, and FIG. 3B is a side sectional view; .
FIGS. 4A and 4B show an outline of the structure after connecting reinforcing bars in a third embodiment of the connecting method of the thermoplastic resin-coated CFRP reinforcing bars according to the present invention, FIG. 4A is a plan view, and FIG. .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Thermoplastic resin coated CFRP reinforcing bar, reinforcing bar 11 Reinforcing bar end face 12 Contact point 13 Reinforcing CFRP reinforcing bar, reinforcing reinforcing bar 14 Reinforcing piece 15 Bolt

Claims (2)

略一方向に配列された補強繊維としての長繊維の束を熱硬化性樹脂で結着してなる芯部に、熱可塑性樹脂を被覆することで形成される炭素繊維強化プラスチック複合材を、コンクリート構造物等の補強筋として適用した熱可塑性樹脂被覆CFRP補強筋の接続方法であって、
接続する前記CFRP補強筋同士において、その端面を突き合わせる端部当接過程と、該端部当接過程において当接されたCFRP補強筋同士の少なくとも当接箇所上下を所定サイズの補強用CFRP補強筋でカバーし、前記当接箇所と併せて接着剤で一体に接着する接着過程と、前記接着過程により互いに接着された前記CFRP補強筋を、該CFRP補強筋両側部に沿って一定間隔にてボルト穴を備える繊維強化樹脂製或いは繊維強化熱可塑性樹脂製の補強片により挟み込み、繊維強化樹脂製或いは繊維強化熱可塑性樹脂製のボルトにて、補強筋を貫通せず、補強筋の側部より一体に締結固定する接続補強過程とを備えることを特徴とする熱可塑性樹脂被覆CFRP補強筋の接続方法。
A carbon fiber reinforced plastic composite formed by coating a thermoplastic resin on a core formed by binding a bundle of long fibers as reinforcing fibers arranged in approximately one direction with a thermosetting resin, A method of connecting a thermoplastic resin-coated CFRP reinforcing bar applied as a reinforcing bar for a structure or the like,
A CFRP reinforcement for reinforcement of a predetermined size at an end part contact process in which the end surfaces of the CFRP reinforcement bars to be connected are abutted, and at least a contact portion between the CFRP reinforcement bars abutted in the end part contact process. An adhesive process of covering with a streak and integrally bonding with an adhesive together with the contact portion, and the CFRP reinforcing bars bonded to each other by the adhesive process at regular intervals along both sides of the CFRP reinforcing bar It is sandwiched between reinforcing pieces made of fiber reinforced resin or fiber reinforced thermoplastic resin with bolt holes, and does not penetrate the reinforcing bar with the bolt made of fiber reinforced resin or fiber reinforced thermoplastic resin, from the side of the reinforcing bar A method of connecting a thermoplastic resin-coated CFRP reinforcing bar, comprising a connection reinforcing process for fastening and fixing together.
略一方向に配列された補強繊維としての長繊維の束を熱硬化性樹脂で結着してなる芯部に、熱可塑性樹脂を被覆することで形成される炭素繊維強化プラスチック複合材を、コンクリート構造物等の補強筋として適用した熱可塑性樹脂被覆CFRP補強筋の接続方法であって、
接続する前記CFRP補強筋同士において、その端部を適宜ラップ長をもって重ね継ぎする端部当接過程と、前記端部当接過程における当接箇所を接着剤で一体に接着する接着過程と、前記接着過程により互いに接着された前記CFRP補強筋を、該CFRP補強筋両側部に沿って一定間隔にてボルト穴を備える繊維強化樹脂製或いは繊維強化熱可塑性樹脂製の補強片により挟み込み、繊維強化樹脂製或いは繊維強化熱可塑性樹脂製のボルトにて、補強筋を貫通せず、補強筋の側部より一体に締結固定する接続補強過程とを備えることを特徴とする熱可塑性樹脂被覆CFRP補強筋の接続方法。
A carbon fiber reinforced plastic composite formed by coating a thermoplastic resin on a core formed by binding a bundle of long fibers as reinforcing fibers arranged in approximately one direction with a thermosetting resin, A method of connecting a thermoplastic resin-coated CFRP reinforcing bar applied as a reinforcing bar for a structure or the like,
In the CFRP reinforcing bars to be connected, an end part contact process in which end parts are overlapped with an appropriate lap length, an adhesive process in which the contact part in the end part contact process is integrally bonded with an adhesive, The CFRP reinforcing bars bonded to each other by the bonding process are sandwiched by reinforcing pieces made of fiber reinforced resin or fiber reinforced thermoplastic resin having bolt holes at regular intervals along both sides of the CFRP reinforcing bar, and the fiber reinforced resin A thermoplastic resin-coated CFRP reinforcing bar comprising a connection reinforcing process in which bolts made of fiber or fiber reinforced thermoplastic resin do not penetrate the reinforcing bar and are fastened and fixed integrally from the side of the reinforcing bar Connection method.
JP2000176329A 2000-06-13 2000-06-13 Thermoplastic resin-coated CFRP reinforcing bar connection method Expired - Fee Related JP4257020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000176329A JP4257020B2 (en) 2000-06-13 2000-06-13 Thermoplastic resin-coated CFRP reinforcing bar connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000176329A JP4257020B2 (en) 2000-06-13 2000-06-13 Thermoplastic resin-coated CFRP reinforcing bar connection method

Publications (2)

Publication Number Publication Date
JP2001355313A JP2001355313A (en) 2001-12-26
JP4257020B2 true JP4257020B2 (en) 2009-04-22

Family

ID=18678063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000176329A Expired - Fee Related JP4257020B2 (en) 2000-06-13 2000-06-13 Thermoplastic resin-coated CFRP reinforcing bar connection method

Country Status (1)

Country Link
JP (1) JP4257020B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7721495B2 (en) * 2005-03-31 2010-05-25 The Boeing Company Composite structural members and methods for forming the same
DE102009021373A1 (en) 2009-05-14 2010-11-18 Lzh Laserzentrum Hannover E.V. Method for joining components
CN104831871B (en) * 2015-05-21 2018-01-02 中冶建筑研究总院有限公司 The jointing of FRP tendons material and connection method
CN106499123B (en) * 2016-11-29 2018-09-21 中冶建筑研究总院有限公司 A kind of fiber answers the attachment device of material muscle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200592A (en) * 1993-01-06 1994-07-19 Mitsubishi Kasei Corp Fiber reinforced rod connected with joint and connecting method therefor
JP3276800B2 (en) * 1995-02-28 2002-04-22 清水建設株式会社 Joint and connection structure of lattice reinforcement
JPH1128769A (en) * 1997-07-10 1999-02-02 Ube Nitto Kasei Co Ltd Frp-reinforced material and its manufacture
JP2000054646A (en) * 1998-08-04 2000-02-22 Mitsui Constr Co Ltd Device for reinforcing concrete columnar body
JP4262358B2 (en) * 1999-06-11 2009-05-13 宇部日東化成株式会社 Carbon fiber reinforced plastic composite

Also Published As

Publication number Publication date
JP2001355313A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
Meier Composite materials in bridge repair
US5617685A (en) Method and apparatus for increasing the shear strength of a construction structure
US5613334A (en) Laminated composite reinforcing bar and method of manufacture
Das et al. Applications of fiber reinforced polymer composites (FRP) in civil engineering
CN210420905U (en) Seismic damage pier mixed reinforcement structure based on shape memory alloy and carbon fiber cloth
JP4257020B2 (en) Thermoplastic resin-coated CFRP reinforcing bar connection method
CA3005009C (en) System and method for embedding substrate in concrete structure
JP3806252B2 (en) Reinforcing method of concrete structure with reinforcing fiber sheet
JP2005105697A (en) Reinforced fiber resin plate and reinforcing method of structure using the same
JP3350447B2 (en) Fiber sheet for reinforcement and repair
CN104895345A (en) Building continuous-collapse-resistant reinforcing system and method based on FRP cloth materials
CN212478627U (en) Steel column reinforcing and repairing structure based on closed-section prestress FRP
JP2019044542A (en) Concrete column reinforcement device
KR20030010499A (en) Reinforcement mixed with Wirerope and Spring for Concrete Structure and Repair Method using thereof
JPH0296044A (en) Joint construction of fiber-reinforced resin reinforcing wire and reinforcing bar
CN111350370A (en) Steel column reinforcing and repairing structure and method based on closed-section prestress FRP
JP4906320B2 (en) Concrete structure
KR101818153B1 (en) Strengthening Apparatus for Reinforced Concrete Sturcure And Strengthening Method Using the Same
JP2007514077A (en) Component
JP2842129B2 (en) Tendon structure for prestressed concrete
JPH08218646A (en) Method of reinforcing concrete structure
US12006259B2 (en) Ultra-high-molecular-weight polyethylene concrete reinforcing bar
JP2001073559A (en) Reinforcing joint for concrete structure and reinforcing structure
JP4029767B2 (en) Fixing structure and fixing method of fiber reinforced resin material on concrete
JPH09220707A (en) Prestressed laminated wood and its production

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees