JPH0288728A - Manufacture of contact point material - Google Patents
Manufacture of contact point materialInfo
- Publication number
- JPH0288728A JPH0288728A JP24049188A JP24049188A JPH0288728A JP H0288728 A JPH0288728 A JP H0288728A JP 24049188 A JP24049188 A JP 24049188A JP 24049188 A JP24049188 A JP 24049188A JP H0288728 A JPH0288728 A JP H0288728A
- Authority
- JP
- Japan
- Prior art keywords
- infiltration
- arc
- gas
- sintering
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 72
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 230000008595 infiltration Effects 0.000 claims abstract description 45
- 238000001764 infiltration Methods 0.000 claims abstract description 45
- 238000005245 sintering Methods 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 19
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 5
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 229910052709 silver Inorganic materials 0.000 claims abstract 2
- 239000000155 melt Substances 0.000 claims description 4
- 230000007547 defect Effects 0.000 abstract description 23
- 238000007670 refining Methods 0.000 abstract description 17
- 238000002844 melting Methods 0.000 abstract description 10
- 230000008018 melting Effects 0.000 abstract description 10
- 238000007872 degassing Methods 0.000 abstract description 2
- 239000010949 copper Substances 0.000 description 25
- 239000007789 gas Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 7
- 229910017813 Cu—Cr Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017770 Cu—Ag Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000000384 rearing effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
この発明は、真空しゃ断器の再点弧発生率を軽減するに
好適な接点材料の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method of manufacturing a contact material suitable for reducing the incidence of restriking of a vacuum breaker.
(従来の技術)
第3図は真空バルブの構成を示す縦断面図である。この
第3図において、しゃ断器1は、セラミック等の絶縁材
料によりほぼ円筒状に形成された絶縁容器2と、この両
端に密閉機構3,3aを介して設けた金属製蓋体4およ
び5とで真空気密に密閉されている。このしゃ断器1の
金属製蓋体4および5を貫通するようにして一対の電極
棒6゜7が設けられ、これらの電極棒の互いに対向する
端部にそれぞれ固定電極8および可動電極9が固着され
ている。また、この可動電極9の電極棒7には、ベロー
ズ10が取り付けられ、しゃ断室1内を真空気密に保持
しながら、電極棒7の往復動により一対の電極8,9の
開閉を可能にしている。(Prior Art) FIG. 3 is a longitudinal sectional view showing the structure of a vacuum valve. In FIG. 3, the circuit breaker 1 includes an insulating container 2 formed of an insulating material such as ceramic into a substantially cylindrical shape, and metal lids 4 and 5 provided at both ends of the container via sealing mechanisms 3 and 3a. vacuum-tightly sealed. A pair of electrode rods 6°7 are provided so as to penetrate through the metal lids 4 and 5 of this breaker 1, and a fixed electrode 8 and a movable electrode 9 are fixed to the mutually opposing ends of these electrode rods, respectively. has been done. Further, a bellows 10 is attached to the electrode rod 7 of the movable electrode 9, and the pair of electrodes 8 and 9 can be opened and closed by reciprocating movement of the electrode rod 7 while keeping the interior of the breaker chamber 1 vacuum-tight. There is.
ベローズ10はフード11により覆われ、アーク蒸気の
被着を防止しており、また、しゃ断器1内にはさらに、
円筒状金属容器12が設けられ、絶縁容器2へのアーク
蒸気の被着を防止している。The bellows 10 is covered with a hood 11 to prevent deposition of arc vapor, and the breaker 1 further includes:
A cylindrical metal container 12 is provided to prevent arc vapor from adhering to the insulating container 2.
一方、可動電極9は、その拡大構造を第4図に示すよう
に、ろう材13によって電極棒7に固定されるか、ある
いは、かしめによって電極棒7に圧着接続(図示せず)
されており、その上には可動接点14がろう材15によ
って接合されている。On the other hand, as the enlarged structure of the movable electrode 9 is shown in FIG. 4, the movable electrode 9 is fixed to the electrode rod 7 with a brazing material 13, or is crimped and connected to the electrode rod 7 by caulking (not shown).
A movable contact 14 is bonded thereon by a brazing material 15.
また、固定電極8も向きが逆となるのみで、はぼ同様で
あり、これには固定接点14aが接合されている。Furthermore, the fixed electrode 8 is also the same except that the direction is reversed, and the fixed contact 14a is connected to this.
この真空バルブに用いられる接点材料には、耐溶着性、
耐電圧性および高しゃ断性がが要求される。The contact material used in this vacuum valve has welding resistance,
Voltage resistance and high breaking properties are required.
しかし、これらの3要件に対しては、相反する物理的性
質が要求されるので、理想的に両立させることは困難で
あり、適用する回路の優先要件を第1にして、他の要件
は若干犠牲にして対応しているのが現状である。However, these three requirements require contradictory physical properties, so it is difficult to ideally balance them.The priority requirements of the applied circuit should be prioritized first, and the other requirements should be set aside slightly. The current situation is that we are responding by making sacrifices.
例えば、高耐圧、大容量真空しゃ断器においては、特公
昭41−12131号公報に示されるように、溶着防止
成分(Bi、Te、Pbなど)を5重量%以下含有する
Cu合金を電極接点としている。For example, in high-voltage, large-capacity vacuum breakers, as shown in Japanese Patent Publication No. 41-12131, a Cu alloy containing 5% by weight or less of welding prevention components (Bi, Te, Pb, etc.) is used as an electrode contact. There is.
ところが、近年の高電圧化要求に対しては、耐電圧の而
で十分ではない。すなわち、真空しゃ断器は小形軽量、
メンテナンスフリー、環境調和など、他のしゃ断器に比
べ優れた特徴を有している。However, withstand voltage is not sufficient to meet the recent demand for higher voltage. In other words, the vacuum breaker is small and lightweight.
It has superior features compared to other circuit breakers, such as being maintenance-free and environmentally friendly.
従って、真空しゃ断器においては従来−船釣に使用され
ていた36kV以下の回路から更に高電圧の回路へとそ
の適用範囲が拡大され、さらに、特殊回路、例えば、コ
ンデンサ回路を開閉する需要も急増していることから、
−層の耐高電圧化が必要となっている。Therefore, the scope of application of vacuum breakers has been expanded from the 36kV or less circuits conventionally used for boat fishing to even higher voltage circuits, and the demand for opening and closing special circuits, such as capacitor circuits, has also rapidly increased. Because of what I am doing,
- It is necessary for the layer to withstand high voltage.
さて、真空しゃ断器の耐高圧化を図る上で問題となる重
要な要因の1つとして再点弧現象、再発弧現象が挙げら
れているが、再点弧現象は、製品の信頼性向上の観点か
ら重要視されているにも拘らず、未だ防止技術は勿論の
こと直接的な発生原因についても明らかになっていない
。Now, one of the important factors that poses a problem when trying to make vacuum circuit breakers withstand high voltages is the re-ignition phenomenon. Although it is considered important, not only prevention techniques but also the direct cause of its occurrence have not yet been clarified.
また、上記高耐圧化に伴って、接点材料に対しても、さ
らに、高耐圧でかつ再点弧現象の発生頻度の低い特性を
持つことが要求される。この場合、接点材料の高耐圧化
、無再点弧化を図るには、耐圧的に欠陥となる脆弱な溶
着防止成分の量そのものを極力少なくしたり、過度に集
中するのを避けること、ガス不純物やピンホール等を極
力少なくすること、接点合金自体の強度を大きくするこ
と等々が望ましい。Furthermore, as the withstand voltage increases, contact materials are also required to have characteristics such as high withstand voltage and low occurrence of restriking phenomenon. In this case, in order to achieve high pressure resistance and non-re-ignition of the contact material, it is necessary to minimize the amount of the fragile welding prevention component that causes defects in pressure resistance, avoid excessive concentration, and avoid gas It is desirable to reduce impurities, pinholes, etc. as much as possible, and to increase the strength of the contact alloy itself.
したがって、これらの観点からすれば、前述のCu−B
1合金は満足できるものではない。Therefore, from these points of view, the above-mentioned Cu-B
1 alloy is not satisfactory.
一方、高耐圧、大電流しゃ断を要求される分野では、接
点材料としてCu−Cr合金が適用される場合がある。On the other hand, in fields where high voltage resistance and large current interruption are required, Cu-Cr alloys are sometimes used as contact materials.
このCu−Cr合金は、他の接点材料はどには、構成材
料間の蒸気圧差がないため、均一な性能発揮を期待し得
る利点があり、使い方によってはその特徴を十分利用す
ることができる。Unlike other contact materials, this Cu-Cr alloy has the advantage that it can be expected to exhibit uniform performance because there is no difference in vapor pressure between the constituent materials, and its characteristics can be fully utilized depending on how it is used. .
しかしながら、再点弧現象の発生に対しては未だ十分軽
減化された状態でなく、特に真空バルブの小形化の観点
からその改善が必要とされている。However, the occurrence of the restriking phenomenon has not yet been sufficiently alleviated, and improvements are needed, particularly from the viewpoint of downsizing the vacuum valve.
(発明が解決しようとする課題)
上述したCu−Cr合金は一般に粉末冶金の手法によっ
て製作されるため、原料粉末の物理的、化学的状態、溶
浸材料の化学的状態及び接点合金の焼結技術等が再点弧
発生に深く関与していると考えられる。(Problems to be Solved by the Invention) Since the above-mentioned Cu-Cr alloy is generally produced by powder metallurgy, the physical and chemical conditions of the raw material powder, the chemical condition of the infiltration material, and the sintering of the contact alloy are It is thought that technology and other factors are deeply involved in the occurrence of restriking.
本願発明者等が原料のCr粉末を加熱焼結し、スケルト
ンを製造する過程につき詳細な観察を行ったところ、2
段階のガス放出があることをつきとめた。一つは室温か
ら350℃あたりまでの、Cr表面の汚れによるガス放
出である。二つ目は1000℃あたりから発生するCr
酸化物の部分分解によるガス放出である。The inventors of the present application conducted detailed observations on the process of heating and sintering the raw material Cr powder to produce a skeleton, and found that 2
It was discovered that there was a stage of gas release. One is gas release due to contamination on the Cr surface from room temperature to around 350°C. The second is Cr, which is generated around 1000℃.
This is gas release due to partial decomposition of oxides.
一方、溶浸材料であるCuについて注目した場合も、2
段階のガス放出が認められた。その一つはCrスケルト
ン製造時と同様に室温から350℃あたりまでの、Cu
表面の汚れによるガス放出であり、二つ目はCuの融点
近傍で見られるCuに固溶していたガス放出である。On the other hand, when focusing on Cu, which is an infiltration material, 2
Stage gas release was observed. One of them is the Cu
The second is the release of gas due to dirt on the surface, and the second is the release of gas dissolved in Cu, which is observed near the melting point of Cu.
これらの原料素材を用い、−船釣なCu−Cr接点の製
造を試みた場合、以下の不具合が発生し、これが再点弧
現象の発生原因になっていたと思われる。When an attempt was made to manufacture a Cu-Cr contact using these raw materials, the following problems occurred, which is considered to be the cause of the restriking phenomenon.
すなわち、特開昭59−25903号公報に示された「
真空しゃ断器用接触子材料の製造方法」により、Cuの
融点より低い温度、例えば1000℃にて焼結してC「
スケルトンを製造した場合、Cuを溶浸する工程におい
てCuが溶融する段階では未だC「からのガス放出が継
続し、且、Cuの溶融により、これに固溶していた内部
ガスも同時に発生し、部分的な未溶浸部の欠陥が多発し
易く、しかも、接点内に残存するガス量も多くなる。That is, "
By sintering at a temperature lower than the melting point of Cu, for example, 1000°C, C
When a skeleton is manufactured, at the stage where Cu is melted in the process of infiltrating Cu, gas release from C still continues, and as the Cu melts, internal gas that was solidly dissolved in it is also generated at the same time. , defects in partially uninfiltrated areas tend to occur frequently, and the amount of gas remaining in the contacts also increases.
また、この[真空しゃ断器用接触子材料の製造方法」で
は、仮焼結温度より溶浸温度が高いため、仮焼結で製作
したCrスケルトンの空孔率が溶浸工程で低くなる方向
にばらつき、均一なCu量を得るのが困難となる。In addition, in this [method for manufacturing contact material for vacuum breaker], the infiltration temperature is higher than the pre-sintering temperature, so the porosity of the Cr skeleton produced by pre-sintering varies as it decreases during the infiltration process. , it becomes difficult to obtain a uniform amount of Cu.
この発明は、上記の問題点を解決するためになされたも
ので、内部欠陥が少なく、再点弧発生頻度を極小化する
ことのできる接点拐料の製造方法を提供することを目的
とする。The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a contact paste that has few internal defects and can minimize the frequency of restriking.
(課題を解決するための手段)
この発明は、CrおよびTiの少なくとも一方を含む耐
弧材料を焼結してスケルトンを作り、Ag5Cu、およ
びBiの少な(とも一つを含む溶浸材料を前記スケルト
ン中に溶浸する接点材料の製造方法において、
a1前記耐弧材料を、前記溶浸材料のすべてが溶融又は
気化する温度以上で焼結して前記スケルトンを作る工程
と、
b、前記溶浸材料を10’Torrよりも高真空雰囲気
中で、ゾーンリファイニングを施して製作する工程と、
C1前記すの工程で製作した溶浸材料を、前記aの工程
の焼結温度範囲内で、このaの工程で製作されたスケル
トンに溶浸する工程と、
を備えたことを特徴としている。(Means for Solving the Problems) The present invention makes a skeleton by sintering an arc-resistant material containing at least one of Cr and Ti, and infiltrate the infiltration material containing a small amount (one of both) of Ag5Cu and Bi. A method for manufacturing a contact material that is infiltrated into a skeleton, comprising the steps of: (a) sintering the arc-resistant material at a temperature higher than that at which all of the infiltration material melts or vaporizes to form the skeleton; and (b) the infiltration. A step of zone refining the material in a vacuum atmosphere higher than 10'Torr, and a step of producing the infiltrated material in step C1 within the sintering temperature range of step a. It is characterized by comprising a step of infiltrating the skeleton produced in step a.
(作 用)
前述したように、耐弧材料に溶浸材料を溶浸する段階に
おいて、耐弧材料から放出されるガスと溶浸材料から放
出されるガスの2fiI!類がある。この放出ガスを低
減するために、本発明では、溶浸工程において耐弧材料
から放出されるガスについては予め耐弧材料のスケルト
ン制作の段階において、溶浸温度あるいは、それ以上の
温度にて焼結してガス放出し、溶浸時に耐弧材料から放
出されるガスを抑制する。(Function) As mentioned above, at the stage of infiltrating the arc-resistant material with the infiltration material, the difference between the gas released from the arc-resistant material and the gas released from the infiltration material is 2fiI! There are types. In order to reduce this released gas, in the present invention, the gas released from the arc-resistant material during the infiltration process is pre-incinerated at the infiltration temperature or higher temperature at the stage of making the skeleton of the arc-resistant material. This suppresses the gas released from the arc-resistant material during infiltration.
一方、溶浸材料から放出されるガスを低減するためには
、溶浸材料を前もって10−3Torrより高真空であ
る雰囲気でゾーンリファイニングにより脱ガスすること
によりこれを可能とする。On the other hand, in order to reduce the gas released from the infiltrated material, this is made possible by degassing the infiltrated material beforehand by zone refining in an atmosphere with a higher vacuum than 10@-3 Torr.
以上のようにして制作した耐弧材料にソファイニングを
施した溶浸材料を溶浸することによって溶浸時の全放出
ガス量を低減でき、接点の内部欠陥および残存ガス量を
も低減でき、再点弧発生頻度を極小化することができる
。By infiltrating the arc-resistant material produced as described above with the infiltration material subjected to sofalining, the total amount of gas released during infiltration can be reduced, and internal defects in the contact and the amount of residual gas can also be reduced. The frequency of restriking can be minimized.
(実施例) 第1図は、本発明の一実施例を示した工程図である。(Example) FIG. 1 is a process diagram showing an embodiment of the present invention.
すなわち、ステップ1.01では、予め脱ガスしたカー
ボンるつぼに、平均粒径100〜400メツシユのCr
粉末をタップ充填し、続いて、ステップ102にてI
X 10 ’Torrより高真空状態のもとでCuの融
点(1083℃)より高い1150℃にて60分を要し
て仮焼結を行って、スケルトンを作る。一方、ステップ
103で、溶浸材料であるゾーンリファイニングCuを
I×10 ’Torrより高真空状態のもとでゾーンリ
ファイニングを行い、ステップ104で適当な寸法に切
断し、表面被膜の除去、洗浄により溶浸材料を作る。That is, in step 1.01, a mesh of Cr having an average particle size of 100 to 400 is placed in a carbon crucible that has been degassed in advance.
Tap filling the powder followed by I in step 102
Temporary sintering is performed for 60 minutes at 1150° C., which is higher than the melting point of Cu (1083° C.), under a vacuum condition higher than X 10 ′ Torr to form a skeleton. On the other hand, in step 103, zone refining Cu, which is an infiltration material, is subjected to zone refining under a vacuum condition higher than I×10' Torr, and in step 104, it is cut into appropriate dimensions, and the surface coating is removed. The infiltration material is made by washing.
さらに、ステップ105では、I X 10−3Tor
rより高真空状態のもとで、Cuの融点以上で且Crス
ケルトン製作時の焼結温度以下の1130℃で45分を
要して溶浸する。この第1図中のステップ101および
102が本発明の工程aに、ステップ103および10
4が本発明の工程すに、ステップ105が本発明の工程
Cにそれぞれ対応している。Furthermore, in step 105, I
Infiltration takes 45 minutes at 1130° C., which is above the melting point of Cu and below the sintering temperature when producing the Cr skeleton, under a vacuum condition higher than R. Steps 101 and 102 in FIG. 1 correspond to step a of the present invention, and steps 103 and 10
4 corresponds to the process of the present invention, and step 105 corresponds to the process C of the present invention.
ここで、Cu基溶浸材料をゾーンリアイニングすること
による利点を説明する。The advantages of zone rearing Cu-based infiltration materials will now be described.
一般に市販されている無酸素銅の酸素含有量は、数1)
pmであり、これを素材として真空溶解を行った場合の
酸素含有量は、無酸素銅より若干低下するがやはり数p
pmである。一方、無酸素銅を素材としてゾーンリファ
イニングを施したものは、酸素含有量が1 ppm以下
と極度に低下する。これは、真空溶解の場合にはガスを
巻き込んだまま周囲から凝固するのに対して、ゾーンリ
ファイニングの場合には一方向より徐々に凝固するため
Cu内部にガスを包含することなく凝固できるためであ
る。The oxygen content of commercially available oxygen-free copper is expressed by the formula 1)
pm, and when vacuum melting is performed using this material, the oxygen content is slightly lower than that of oxygen-free copper, but it is still several pm.
It is pm. On the other hand, when oxygen-free copper is used as a material and subjected to zone refining, the oxygen content is extremely low to 1 ppm or less. This is because in the case of vacuum melting, the Cu solidifies from the surroundings with the gas involved, whereas in the case of zone refining, the Cu solidifies gradually from one direction, so it can solidify without trapping gas inside the Cu. It is.
この結果、内部欠陥が少なく、再点弧現象の少ないCu
−Cr基接点材料が得られるが、この評価については、
第1図に示した方法で製作した接点(以下実施例という
)と、条件を種々に変えて製作した接点(以下比較例と
いう)とについて、内部欠陥数および再点弧発生確立を
下記の手法で評価した。As a result, Cu has fewer internal defects and less restriking phenomenon.
-Cr base contact material is obtained, but regarding this evaluation,
The number of internal defects and the probability of re-ignition occurrence were determined using the following method for contacts manufactured using the method shown in Figure 1 (hereinafter referred to as examples) and contacts manufactured under various conditions (hereinafter referred to as comparative examples). It was evaluated by
a1内部欠陥数
接点を研磨エツチング後、光学顕微鏡で200倍の倍率
で任意の10視野(1視野は60X90IIIIn)で
確認できる空孔の数を用いる。a1 Number of Internal Defects After polishing and etching the contacts, use the number of holes that can be confirmed in 10 arbitrary fields of view (one field of view is 60×90IIIn) at 200x magnification using an optical microscope.
b、再点弧発生率
直径30mm、厚さ5mmの円板状接点片を、デイマウ
ンタプル形真空バルブに装着し、6kVX500Aの回
路を2000回しゃ断したときの再点弧発生頻度を測定
し、2台のしゃ断器(バルブとして6本)のばらつき幅
(最大および最小)で示した。接点の装着に際してはベ
ーキング加熱(450℃、30分)のみ行い、ろう材の
使用ならびにこれに伴う加熱は行なわなかった。b. Re-ignition occurrence rate A disc-shaped contact piece with a diameter of 30 mm and a thickness of 5 mm was attached to a day mount pull type vacuum valve, and the re-ignition frequency was measured when a 6 kVX500A circuit was interrupted 2000 times. The variation width (maximum and minimum) of two circuit breakers (six valves) is shown. When attaching the contacts, only baking heating (450° C., 30 minutes) was performed, and no brazing material or accompanying heating was performed.
以下、実施例と比較例とを対比する。Examples and comparative examples will be compared below.
先ず、実施例ではゾーンリファイニングCuを用いたの
に対して、比較例として、無酸素Cu。First, zone refining Cu was used in the examples, whereas oxygen-free Cu was used as a comparative example.
真空溶解Cuをそれぞれ用い、仮焼結条件および溶浸条
件を同じにした場合の内部欠陥数、再点弧発生数は第2
図の図表に示した通りであった。すなわち、比較例1,
2は内部欠陥数、再点弧発生確立とも高い数値を示した
のに対して、実施例1は内部欠陥数、再点弧発生確立と
も小さく良好な特性を示している。The number of internal defects and the number of re-ignition occurrences when vacuum melted Cu was used and the pre-sintering conditions and infiltration conditions were the same were as follows.
It was as shown in the diagram in the figure. That is, Comparative Example 1,
Example 2 showed high values for both the number of internal defects and the probability of restriking occurrence, whereas Example 1 showed good characteristics with both the number of internal defects and the probability of restriking occurrence being small.
次に、上記実施例と同様なゾーンリファイニングCuを
用い、仮焼結条件として1260℃×60分、溶浸条件
として1200℃X45分を採用した接点を実施例2と
し、仮焼結条件として1000℃×60分、溶浸条件と
して1130℃×45分を採用した接点を比較例3とし
、さらに、仮焼結条件として1150℃×60分、溶浸
条件として1189℃X45分を採用した接点を比較例
4とした場合の内部欠陥数、再点弧発生数は第2図の図
表に示した通りであった。この図表から明らかなように
、仮焼結温度より溶浸温度を高くしたものは内部欠陥数
も多く、再点弧発生確立も高いのに対して、仮焼結温度
より溶浸温度を低くした実施例2は内部欠陥数、再点弧
発生確立とも良好な特性を示した。Next, Example 2 is a contact in which the same zone refining Cu as in the above example was used, and the pre-sintering conditions were 1260°C x 60 minutes and the infiltration conditions were 1200°C x 45 minutes. Comparative Example 3 is a contact using 1000°C x 60 minutes and 1130°C x 45 minutes as the infiltration condition, and a contact using 1150°C x 60 minutes as the pre-sintering condition and 1189°C x 45 minutes as the infiltration condition. The number of internal defects and the number of re-ignition occurrences in Comparative Example 4 were as shown in the chart of FIG. As is clear from this chart, when the infiltration temperature is higher than the pre-sintering temperature, the number of internal defects is larger and the probability of restriking is also higher, whereas when the infiltration temperature is lower than the pre-sintering temperature, the infiltration temperature is lower than the pre-sintering temperature. Example 2 showed good characteristics in both the number of internal defects and the probability of restriking occurrence.
次に、Cr粉末を単にるつぼに充填したものと、充填後
軽く加圧したものについて、実施例1と同様な条件でC
u−Cr接点を製作し、これを実施例3,4としてその
評価結果を第2図に示した。Next, Cr powder was simply filled into the crucible and Cr powder was lightly pressurized after filling.
U-Cr contacts were manufactured and evaluated as Examples 3 and 4, the results of which are shown in FIG.
これによれば、いずれの実施例も内部欠陥数および再点
弧発生確立が共に少ないことが分かる。従って、Cr含
有量が35〜70重量%の範囲内でばらついたとしても
、内部欠陥数および再点弧発生確率にはそれほど影響し
ないと判断される。According to this, it can be seen that both the number of internal defects and the probability of occurrence of restriking are small in all Examples. Therefore, even if the Cr content varies within the range of 35 to 70% by weight, it is judged that it does not significantly affect the number of internal defects and the probability of restriking.
次に、上記実施例1〜4がそれぞれゾーンリファイニン
グCuを溶浸材料としているのに対して、Biを0.1
重量%含み、ゾーンリファイニングでなるCu−B1系
の溶浸材料と、Biを1.5重量%含み、ゾーンリファ
イニングでなるCuB1系の溶浸材料を用いてそれぞれ
実施例1と同様な条件で製作したCu−Cr接点を実施
例5゜6とし、Biを1.0%含み、真空溶解でなるC
u−B1系の溶浸材料を用いて実施例1と同様な条件で
製作したCu−Cr接点を比較例5として、その評価結
果を第2図に示す。この評価結果によれば、真空溶解に
て製造したCu−B1を溶浸したものは内部欠陥、再点
弧発生確率とも高いのに対して、ゾーンリファイニング
にて製造したCu−B1を溶浸したものは、Biの量と
は関係なく、いずれも内部欠陥も少なく、再点弧発生確
率も低いことが分かる。Next, whereas the above Examples 1 to 4 each use zone refining Cu as the infiltration material, 0.1% Bi was used as the infiltration material.
The same conditions as in Example 1 were carried out using a Cu-B1-based infiltration material containing 1.5% by weight of Bi and subjected to zone refining, and a Cu-B1-based infiltration material containing 1.5% by weight of Bi and subjected to zone refining. The Cu-Cr contact made in Example 5゜6 is made by vacuum melting and containing 1.0% Bi.
Comparative Example 5 is a Cu-Cr contact fabricated using u-B1 based infiltration material under the same conditions as Example 1, and the evaluation results are shown in FIG. According to the evaluation results, those infiltrated with Cu-B1 manufactured by vacuum melting have a high probability of internal defects and restriking, whereas those infiltrated with Cu-B1 manufactured by zone refining It can be seen that, irrespective of the amount of Bi, all of them have few internal defects and have a low probability of restriking.
次に、別の組み合わせとして、耐弧飼料としてCr30
.1重態%、Ti15.3%となるようにCr5Tiの
粉末を混合してカーボンるつぼにタップ充填した後、実
施例1と同様な工程にて仮焼結と、リファイニングCu
の溶浸を施したものを実施例7として示したが、この場
合も内部欠陥率、再点弧発生確率の低い接点が得られる
。Next, as another combination, Cr30 is used as arc-resistant feed.
.. After mixing Cr5Ti powder to have a concentration of 1% in solid state and 15.3% Ti and tapping it into a carbon crucible, it was pre-sintered and refined in the same process as in Example 1.
In Example 7, a contact with a low internal defect rate and a low probability of restriking can be obtained.
次に、溶浸材としてソファイニングを施した28.3%
のCu−Agと、リファイニングを施したAgとをそれ
ぞれ用い、1100℃×60分で仮焼結し、1050℃
×45分で溶浸した接点をそれぞれ実施例8,9として
示した。この場合も、上述したと同様に、内部欠陥数、
再点弧発生確率の少ない接点を得ることが出来る。Next, 28.3% was treated with sofa lining as an infiltration material.
Cu-Ag and refined Ag were pre-sintered at 1100°C for 60 minutes,
Contacts infiltrated for 45 minutes are shown as Examples 8 and 9, respectively. In this case as well, the number of internal defects,
A contact point with a low probability of restriking can be obtained.
以上の説明から明らかなように、耐弧材料を、溶浸材料
の溶融温度以上で焼結してスケルトンを作る工程aと、
溶浸飼料を103Torrよりも高真空雰囲気中で、ゾ
ーンリファイニングを施して製作する工程すと、この工
程すで製作した溶浸飼料を、工程aの焼結温度範囲内で
、工程aで製作されたスケルトンに溶浸する工程Cとに
より、内部欠陥数、再点弧発生確立の少ない接点が得ら
れる。As is clear from the above description, step a of creating a skeleton by sintering the arc-resistant material at a temperature higher than the melting temperature of the infiltration material;
When the infiltration feed is produced by zone refining in a vacuum atmosphere higher than 103 Torr, the infiltration feed produced in this step is produced in step a within the sintering temperature range of step a. By infiltrating the skeleton thus obtained, a contact with a small number of internal defects and a low probability of restriking can be obtained.
以上の説明によって明らかなように、この発明によれば
、溶浸材料のすべてが溶融する温度以上で焼結してスケ
ルトンを製作した後、ゾーンリファイニングを施した溶
浸材料をスケルトンの焼結温度範囲内で溶浸させたので
、接点の内部欠陥および再点弧発生確率を極小化するこ
とができる。As is clear from the above description, according to the present invention, after a skeleton is manufactured by sintering the infiltrated material at a temperature higher than the temperature at which all of the infiltrated material melts, the infiltrated material subjected to zone refining is sintered to form the skeleton. Since the infiltration is performed within a temperature range, internal defects in the contact and the probability of restriking can be minimized.
第1図はこの発明の一実施例を示す工程図、第2図は同
実施例による接点材料を評価するために、条件を種々に
変化させた他の接点材料とを対比して示した図表、第3
図は本発明に係る接点材料を適用する真空バルブの縦断
面図、第4図はこの真空バルブの主要部の拡大断面図で
ある。
1・・・しゃ断器、2・・・絶縁容器、3,3a・・・
密閉機構、4,5・・・金属製蓋体、6,7・・・電極
棒、8・・・固定電極、9・・・可動電極、14・・・
可動接点、14a・・・固定接点。Fig. 1 is a process diagram showing one embodiment of the present invention, and Fig. 2 is a diagram showing a comparison between other contact materials under various conditions in order to evaluate the contact material according to the same embodiment. , 3rd
The figure is a longitudinal cross-sectional view of a vacuum valve to which the contact material according to the present invention is applied, and FIG. 4 is an enlarged cross-sectional view of the main parts of this vacuum valve. 1... Breaker, 2... Insulating container, 3, 3a...
Sealing mechanism, 4, 5... Metal lid body, 6, 7... Electrode rod, 8... Fixed electrode, 9... Movable electrode, 14...
Movable contact, 14a... fixed contact.
Claims (1)
結してスケルトンを作り、Ag、Cu、およびBiの少
なくとも一つを含む溶浸材料を前記スケルトン中に溶浸
する接点材料の製造方法において、 a、前記耐弧材料を、前記溶浸材料のすべてが溶融する
温度以上で焼結して前記スケルトンを作る工程と、 b、前記溶浸材料を10^−^3Torrよりも高真空
雰囲気中で、ゾーンリファイニングを施して製作する工
程と、 c、前記bの工程で製作した溶浸材料を、前記aの工程
の焼結温度範囲内で、このaの工程で製作されたスケル
トンに溶浸する工程と、 を備えたことを特徴とする接点材料の製造方法。[Claims] A contact in which a skeleton is made by sintering an arc-resistant material containing at least one of Cr and Ti, and an infiltration material containing at least one of Ag, Cu, and Bi is infiltrated into the skeleton. The method for manufacturing the material includes: a. Sintering the arc-resistant material at a temperature higher than that at which all of the infiltration material melts to form the skeleton; b. Sintering the infiltration material at a temperature of 10^-^3 Torr. (c) The infiltration material produced in step b above is produced in step a within the sintering temperature range of step a above. 1. A method for producing a contact material, comprising: a step of infiltrating a skeleton formed by the method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24049188A JPH0288728A (en) | 1988-09-26 | 1988-09-26 | Manufacture of contact point material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24049188A JPH0288728A (en) | 1988-09-26 | 1988-09-26 | Manufacture of contact point material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0288728A true JPH0288728A (en) | 1990-03-28 |
Family
ID=17060305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24049188A Pending JPH0288728A (en) | 1988-09-26 | 1988-09-26 | Manufacture of contact point material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0288728A (en) |
-
1988
- 1988-09-26 JP JP24049188A patent/JPH0288728A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4032301A (en) | Composite metal as a contact material for vacuum switches | |
US5687472A (en) | Method of manufacturing a vacuum interrupter | |
EP0155322B1 (en) | Electrode of vacuum breaker | |
US3985512A (en) | Telluride containing impregnated electric contact material | |
JP3597544B2 (en) | Contact material for vacuum valve and manufacturing method thereof | |
KR0170052B1 (en) | Contact material for vacuum valve & method of manufacturing the same | |
JP2766441B2 (en) | Contact material for vacuum valve | |
JP3441331B2 (en) | Manufacturing method of contact material for vacuum valve | |
JPH0288728A (en) | Manufacture of contact point material | |
JP4143308B2 (en) | Contact material for vacuum valve, manufacturing method thereof, and vacuum valve | |
JP2005150032A (en) | Manufacturing method for contact for vacuum bulb | |
JP3251779B2 (en) | Manufacturing method of contact material for vacuum valve | |
JP4209183B2 (en) | Contact material for vacuum valves | |
JP2653467B2 (en) | Manufacturing method of contact alloy for vacuum valve | |
JP2006032036A (en) | Contact material for vacuum valve | |
JP2002208335A (en) | Vacuum bulb contact point and its manufacturing method | |
JP2511043B2 (en) | Manufacturing method of contact alloy for vacuum valve | |
JP3106598B2 (en) | Manufacturing method of electrode material | |
JP2004211173A (en) | Manufacturing method of contact material for vacuum valve | |
JP3382000B2 (en) | Contact material for vacuum valve | |
JP4619821B2 (en) | Contact material and vacuum valve | |
JPH076671A (en) | Contact material and manufacture thereof for vacuum valve | |
JPH0193018A (en) | Contact material for vacuum bulb | |
JPH0347931A (en) | Contact material for vacuum valve | |
JPH04132127A (en) | Contact point for vacuum bulb |