JPH0288390A - Anticorrosion high strength propeller for ship - Google Patents
Anticorrosion high strength propeller for shipInfo
- Publication number
- JPH0288390A JPH0288390A JP23897988A JP23897988A JPH0288390A JP H0288390 A JPH0288390 A JP H0288390A JP 23897988 A JP23897988 A JP 23897988A JP 23897988 A JP23897988 A JP 23897988A JP H0288390 A JPH0288390 A JP H0288390A
- Authority
- JP
- Japan
- Prior art keywords
- propeller
- welding
- fatigue strength
- welded
- corrosion fatigue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims abstract description 58
- 230000007797 corrosion Effects 0.000 claims abstract description 46
- 238000005260 corrosion Methods 0.000 claims abstract description 46
- 238000003466 welding Methods 0.000 claims abstract description 26
- 239000000126 substance Substances 0.000 claims abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 3
- 229910052804 chromium Inorganic materials 0.000 claims abstract 2
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 239000013535 sea water Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 229910000851 Alloy steel Inorganic materials 0.000 description 4
- 229910000906 Bronze Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000010974 bronze Substances 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 229910003470 tongbaite Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000979 O alloy Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Arc Welding In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明は海水中で使用される舶用プロペラに関し、特に
現在使用されている鋼合金(主としてニッケル・アルミ
ニウム青銅)プロペラよシも高い腐食疲労強度を有し、
かつ高い衝撃値を有する舶用プロペラに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a marine propeller used in seawater, and in particular has a corrosion fatigue strength higher than that of currently used steel alloy (mainly nickel/aluminum bronze) propellers. has
The present invention also relates to a marine propeller having a high impact value.
現在、舶用プロペラ材料には鋼合金系材料にニッケル・
アルミニウム青銅など)が多用されているが、これは耐
海水性及び工作性が比較的に優れていることによるもの
である。しかし鋼合金材は舶用プロペラ材で酸4.ii
i要な海水中の腐食疲労強度が刈取試験片で18 kl
f/d (繰返数2X10?回)程度しかなく、より高
い腐食疲労強度を有する舶用プロペラ材の開発が強く望
まれている。Currently, marine propeller materials include steel alloy materials and nickel.
Aluminum bronze, etc.) are often used because of their relatively excellent seawater resistance and workability. However, steel alloy materials are marine propeller materials with an acid level of 4. ii
The required corrosion fatigue strength in seawater is 18 kl for the cut specimen.
There is a strong desire to develop a marine propeller material that has only about f/d (repetition rate 2 x 10? times) and has higher corrosion fatigue strength.
又、現在の舶用プロペラ材は質量効果による腐食疲労強
度の低下が大きく、直径6m以上、重量6トン以上のプ
ロペラになると、プロペラ実体(翼根部)の海水中の腐
食疲労強度はニッケル・アルミニウム青銅の場合、約1
0〜11に9f/dC繰返数2X10’)tで低下する
。し九がって質量効果による腐食疲労強度の低下の少な
いプロペラ材の開発が望まれている。In addition, the corrosion fatigue strength of current marine propeller materials is significantly reduced due to the mass effect, and for propellers with a diameter of 6 m or more and a weight of 6 tons or more, the corrosion fatigue strength of the propeller body (blade root) in seawater is higher than that of nickel/aluminum bronze. If , about 1
It decreases from 0 to 11 at 9f/dC repetition rate 2X10')t. Therefore, it is desired to develop a propeller material with less reduction in corrosion fatigue strength due to mass effect.
更に、舶用プロペラは航海中、木材等の異物に衝突した
シして翼を折損する場合がある。こO場合、鋼合金プロ
ペラ材の#零値(シャルピー 2−vノツチ、室温)
/fi5 kgfm/を一以下、例えば2〜a kgt
m/dに過ぎない。Furthermore, during voyage, marine propellers may collide with foreign objects such as wood, causing their blades to break. In this case, # zero value of steel alloy propeller material (Charpy 2-v notch, room temperature)
/fi5 kgfm/ less than 1, for example 2~a kgt
It's just m/d.
上記の技術水準にmみ、本発明は従来材である銅合金製
プロペラでは得られなかった高い腐食疲労強度と衝撃値
に優れた舶用プロペラを提供しようとする−のである。In view of the above-mentioned state of the art, the present invention aims to provide a marine propeller that has high corrosion fatigue strength and excellent impact value, which were not available with conventional copper alloy propellers.
本発明は重を鳴でO:1108鳴以下、Si:1lL1
〜L5憾、Mn : 111〜S%、Or:16〜1
9鳴、Ni : 45〜7.5%、 Mo : (
L5〜2ts、ムt :α05〜α5s及び残部が実質
的KF・からなる耐腐食高強度舶用プロペラ材によって
ボス部で分刷製作したプロペラ6翼を、ボス部で前記プ
ロペラ材と同じ化学成分の溶接材料で溶接組立ててなる
ことを特徴とする耐腐食高強度舶用プロペラである。The present invention has a heavy weight of O: 1108 or less, Si: 1lL1
~L5 Sorry, Mn: 111~S%, Or: 16~1
9 sounds, Ni: 45-7.5%, Mo: (
L5~2ts, Mut: 6 propeller blades made in parts at the boss part from a corrosion-resistant high-strength marine propeller material consisting of α05~α5s and the remainder being substantially KF. This is a corrosion-resistant, high-strength marine propeller that is assembled by welding using welded materials.
〔作用〕
0.) 特定成分(成分限定理由は後述する)O合金
組成を有するプロペラ材を使用するので、得ら几る舶用
プロペラに高い腐食疲労強度と浚れた衝撃値が賦与され
る。[Effect] 0. ) Since a propeller material having a specific component (the reason for limiting the components will be described later) O alloy composition is used, the obtained marine propeller is endowed with high corrosion fatigue strength and a dredged impact value.
(2) プロペラを6翼に分割して製作(鋳造)する
ことで6翼の鋳込重量は従来法よシA−見にな)質盪効
来が低減される。(2) By manufacturing (casting) the propeller by dividing it into six blades, the casting weight of the six blades is reduced compared to the conventional method.
(33分割翼を溶接組立てる際の溶接材料として分割翼
と同じ材料を用いることによシ、溶接部で高い腐食疲労
強度と4tI撃値が得らnlかつ溶接部の電位差腐食が
防止される。(By using the same material as the welding material for the 33-split blade when assembling the 33-split blade, high corrosion fatigue strength and 4tI impact value can be obtained at the welded part, and potential difference corrosion of the welded part can be prevented.
〔プロペラ材及び溶接材料の組成限定理由〕O: この
ものはクロム炭化物を形成し、プロペラ材の耐食性、腐
食疲労強度を左右する重要な元素である。しかし108
僑(重1%、以下同じ)を超えるとクロム炭化物が析出
し、耐食性が低下すると共に腐食疲労強度を害するので
上限を1口8sとする。[Reasons for limiting the composition of propeller materials and welding materials] O: This substance forms chromium carbide and is an important element that influences the corrosion resistance and corrosion fatigue strength of propeller materials. But 108
If the weight exceeds 1% by weight, chromium carbide will precipitate, reducing corrosion resistance and impairing corrosion fatigue strength, so the upper limit is set at 8 seconds per mouth.
Sl:こo4.oは溶解時の脱酸剤として(L11優上
添加する必要があるが、添加量がt5%を超えると脆化
するので上限をLSIとする。Sl: Ko4. It is necessary to add o as a deoxidizing agent during melting (L11), but if the amount added exceeds t5%, it will become brittle, so the upper limit is set to LSI.
Mn:このもの−81と同様脱酸剤としてα1s以上の
添加が必要であるが、5%を超えると脆化するので上限
を3優とする。Mn: Similar to this-81, it is necessary to add α1s or more as a deoxidizing agent, but if it exceeds 5%, it will become brittle, so the upper limit is set at 3.
Or=このものは耐食性を保持すると共に高い腐食疲労
強度を得るために必要な元素で最低169Iは必要であ
る。しかしOr はフェライト生成元素であることから
、フェライト量を30嘩以下に制限することが必要であ
ること\、Crが19鳴を超えると腐食疲労強度が低下
することから上限を19%とする。Or=This element is necessary to maintain corrosion resistance and obtain high corrosion fatigue strength, and a minimum of 169I is required. However, since Or is a ferrite-forming element, it is necessary to limit the amount of ferrite to 30% or less.If Cr exceeds 19%, the corrosion fatigue strength decreases, so the upper limit is set at 19%.
11:Or の添加量が16〜19憾である場合、Ml
を添加して常温でマルテンサイト組織を得、しかも耐
食性を保持するためには最低tS憾のMlが必要である
。一方、11量が7.5嘔を照光るとオーステナイト相
量が多くなシ、耐力の低下を招くので、その上限を7.
51とする。11: When the amount of Or added is 16 to 19, Ml
In order to obtain a martensitic structure at room temperature by adding Ml and maintain corrosion resistance, Ml of a minimum tS is required. On the other hand, if the amount of 11 is 7.5, the amount of austenite will be large and the yield strength will decrease, so the upper limit is set to 7.5.
51.
Mo:このものは耐食性、籍に孔食防止に有効な元素で
最低[Lsso添加は必要である。しかし2sを超える
と脆化すると共に耐食性を低下させるので、その上限t
−2%とする。Mo: This element is effective in corrosion resistance and prevention of pitting corrosion, and the addition of Lsso is necessary at the minimum. However, if it exceeds 2s, it becomes brittle and reduces corrosion resistance, so the upper limit t
-2%.
ムt :このものはSi、Mnと同様脱酸剤の働きをす
るが、より効果的な脱酸効果があり腐食疲労強度向上に
寄与する。α05暢以下では効果が少なく、α5sを超
えるとフェライト量増加をもたらし衝撃値を低下させる
ので上限をαSSとする。Mut: This substance functions as a deoxidizing agent like Si and Mn, but has a more effective deoxidizing effect and contributes to improving corrosion fatigue strength. If it is less than α05, the effect is small, and if it exceeds α5s, the amount of ferrite increases and the impact value decreases, so the upper limit is set at αSS.
第1表に本発明舶用プロペラのプロペラ材(以下、本発
明プロペラ材と略称する)、比較材の化学組成を示し、
第2表に現用プロペラ材の化学成分を示す。試料NI&
1〜−4は本発明材、翫5)翫10は比較材、−11は
現用プロペラ材である。これらの機械的性質及び腐食疲
労強度は第3表に示す通りである。Table 1 shows the chemical compositions of the propeller material of the marine propeller of the present invention (hereinafter referred to as the propeller material of the present invention) and comparative materials,
Table 2 shows the chemical composition of current propeller materials. Sample NI&
1 to -4 are materials of the present invention, 5) and 10 are comparative materials, and -11 is a currently used propeller material. Their mechanical properties and corrosion fatigue strength are shown in Table 3.
化学成分が本発明で特定する範囲外の比較材(−5〜翫
10)は、海水中の腐食疲労強度が25 kgf/−(
繰返数2X10?)以下であって、本発明材(−1〜N
a4)の28〜50 kgf/−に比較して著しく低い
。腐食疲労試験は試験機としてクエラー式回転曲げ試験
機(回転数4450r、 p、 m、 )を用い、試験
片直径:&Ow、試験液:天然海水、試験温度=20〜
30℃の試験条件で行った。Comparative materials (-5 to 10) whose chemical components are outside the range specified in the present invention have corrosion fatigue strength in seawater of 25 kgf/-(
Number of repetitions 2x10? ) or less, and the present invention material (-1 to N
This is significantly lower than a4)'s 28-50 kgf/-. The corrosion fatigue test was carried out using a Cuellar rotary bending tester (rotation speed 4450 r, p, m,
The test was conducted at 30°C.
第 1 表
表
我
本発明の舶用プロペラは、プロペラボスで6翼ごとに分
割後鋳造され、その後再びボス部を溶接して組立てられ
る。その状況を第1図に示す。第1図のムtBM O,
Driボス部1で分割された4個の翼で、夫々鋳造され
て製作された後、ボス部1で溶接されて組立てられる。Table 1 The marine propeller of the present invention is cast after being divided into six blades at the propeller boss, and then assembled by welding the boss portions again. The situation is shown in Figure 1. MutBMO in Figure 1,
The four blades are divided by the Dri boss part 1, and after being cast and produced, they are assembled by welding at the boss part 1.
2は溶接部を示す。2 indicates a welded part.
舶用プロペラは海水中で長年月使用されるため、ボス溶
接部2には良好な耐食性が必要となる。したがって溶接
材料は耐食性、機械的性質、海水中の腐食疲労強度及び
溶接性などについて良好な性質が要求される。又、溶接
材料自体の諸性質が良好でも、母材のプロペラボス1と
の海水中の電位差が大きくては溶接境界部の電位差腐食
を生ずる。以上の観点から溶接材料としても本発明にか
いてはプロペラ材と同じ化合成分のものを使用する。Since marine propellers are used in seawater for many years, the boss weld 2 needs to have good corrosion resistance. Therefore, welding materials are required to have good properties such as corrosion resistance, mechanical properties, corrosion fatigue strength in seawater, and weldability. Furthermore, even if the properties of the welding material itself are good, if the potential difference between the base material and the propeller boss 1 in seawater is large, potential difference corrosion will occur at the weld boundary. From the above viewpoint, the welding material used in the present invention has the same chemical composition as the propeller material.
第4表に本発明で使用する溶接材料(以下、本発明溶接
材と略称する)、比較材及び市販の溶接材料の化学成分
を示す。試料−12〜−14は本発明溶接材、N111
5〜Na17は比較材、−18,Na19は市販のステ
ンレス鋼溶接棒である。又、これらの溶接材を用いて溶
接継手強度試験をし九結果を第5表に示す。溶接継手試
験に用いた溶接試験片母材は本発明プロペラ材(第1表
の翫1)で、その形状は長さ250■、幅200■、厚
さ25−1開先は60度V開先で浴接はアーク溶接で行
なった。Table 4 shows the chemical components of the welding material used in the present invention (hereinafter referred to as the welding material of the present invention), comparative materials, and commercially available welding materials. Samples -12 to -14 are welding materials of the present invention, N111
5 to Na17 are comparative materials, and -18 and Na19 are commercially available stainless steel welding rods. In addition, welded joint strength tests were conducted using these welding materials and the results are shown in Table 5. The base material of the welded test piece used in the welded joint test was the propeller material of the present invention (rod 1 in Table 1), and its shape was 250 cm long, 200 cm wide, and 25-1 thick with a 60 degree V-opening. Bath welding was previously done by arc welding.
溶接継手部の海水中の腐食疲労強度は本発明溶接材の範
囲外である比較材−15〜Na17は20ゆf/−(繰
返数2X10’)以下であシ、市販材Na180.3U
831dL)、Na1?(8σ8309)は24 kl
iJf/−である。これに対して本発明溶接材によって
得られた継手部のそれは母材と同程度の29〜50ゆf
/−でらシ著しく浸れている。The corrosion fatigue strength of the welded joint in seawater is outside the range of the welding materials of the present invention. Comparative materials -15 to Na17 are below 20 Yuf/- (repetition number 2X10'), and commercially available Na180.3U
831dL), Na1? (8σ8309) is 24 kl
iJf/-. On the other hand, the joint obtained using the welding material of the present invention has a diameter of 29 to 50 yf, which is about the same as the base metal.
/-Darashi is noticeably soaked.
このように、本発明の舶用プロペラは分割翼、溶接部と
も高い腐食疲労強度を有するプロペラ材、溶接材で構成
されているので、他の溶接材を使用して溶接されたプロ
ペラに比較して耐食性な・どで優れている。In this way, the marine propeller of the present invention is constructed of propeller materials and welded materials that have high corrosion fatigue strength for both the split blades and welded parts, so compared to propellers welded using other welded materials. Excellent in corrosion resistance etc.
プロペラは直径が10m以上になると重量で40トン以
上になシ、冷却速度が遅くなると共に質量効果によシ機
械的性質が低下する。近年は推進効率向′上のため低速
、大直径プロペラの使用が増大してきている。本発明舶
用プロペラはこの情勢に鑑み、大直径(大重量)になっ
ても質量効果によって機械的性質及び腐食疲労強度が低
下しないように、プロペラをボス部で6翼ごとに分割製
作して鋳込重量を軽減するようにしたもので、この結果
、従来の一体型プロペラに比較して@濾、薄肉の高効率
プロペラを提供することが可能となった。If the diameter of the propeller exceeds 10 m, the weight of the propeller will exceed 40 tons, and the cooling rate will be slow and the mechanical properties will deteriorate due to the mass effect. In recent years, the use of low-speed, large-diameter propellers has increased in order to improve propulsion efficiency. In view of this situation, the marine propeller of the present invention is manufactured by dividing the propeller into six blades at the boss part and casting them so that the mechanical properties and corrosion fatigue strength do not deteriorate due to the mass effect even if the propeller has a large diameter (large weight). As a result, it has become possible to provide a highly efficient propeller with a thinner wall compared to conventional integrated propellers.
なお、これらの分割プロペラ谷風は浴接組立前に耐食性
および海水中腐食疲労強度を向上させるために900〜
1000℃で溶体化処理して急冷され、また溶接後の組
立プロペラは溶接部の溶接による残留応力を除去するた
め650〜900℃で熱処理される。本発明プロペラ材
でも大型プロペラ鋳造時の冷却速度では炭化物が析出し
、海水中の腐食疲労強度が低下すると共に耐食性が劣化
するためである。These split propellers, Tanikaze, were heated to 900~900 to improve corrosion resistance and seawater corrosion fatigue strength before assembly.
The propeller is solution-treated at 1000°C and rapidly cooled, and the assembled propeller after welding is heat-treated at 650-900°C to remove residual stress caused by welding at the welded portion. This is because even in the propeller material of the present invention, carbides precipitate at the cooling rate during casting of a large propeller, resulting in a decrease in corrosion fatigue strength in seawater and a deterioration in corrosion resistance.
本発明の舶用プロペラは分割翼及び溶接部のいずれも機
械的性質で引張強さ90 kgf/−以上、海水中の腐
食疲労強度29 kli)f/−以上を有すると共に、
プロペラ材として必要は耐キャビテーションエロージヨ
ン性も従来のニッケル・アルミニクム青銅製プロペラに
比較して優れたものである。又、本発明のプロペラ材は
従来の一合金材に比較して機械的性質、腐食疲労強度が
唆れているので、この材料で製造、溶接された本発明舶
用プロペラは従来のプロペラに比較して翼厚を薄くする
など軽輩で高効率のプロペラの製作が可能となる。した
がって本発明の舶用プロペラを使用することによシ、従
来よシ船舶の推進効率を向上させることができ、船舶の
省エネルギー すなわち燃料費節減に大きく貢献できる
。The marine propeller of the present invention has a mechanical tensile strength of 90 kgf/- or more and a corrosion fatigue strength of 29 kli) f/- or more in seawater for both the split blades and the welded parts, and
The propeller material must also have superior cavitation erosion resistance compared to conventional nickel-aluminum bronze propellers. In addition, the propeller material of the present invention has better mechanical properties and corrosion fatigue strength than conventional mono-alloy materials, so the marine propeller of the present invention manufactured and welded with this material has better mechanical properties and corrosion fatigue strength than conventional single-alloy materials. This makes it possible to manufacture lighter, more efficient propellers by reducing the thickness of the blades. Therefore, by using the marine propeller of the present invention, the propulsion efficiency of a marine vessel can be improved compared to the conventional one, and it can greatly contribute to the energy saving of the vessel, that is, the reduction of fuel costs.
第1図は本発明舶用プロペラの構成及びその製造過程の
一部を説明するための模式図である。FIG. 1 is a schematic diagram for explaining the structure of the marine propeller of the present invention and a part of its manufacturing process.
Claims (1)
、Mn:0.1〜3%、Cr:16〜19%、Ni:4
.5〜7.5%、Mo:0.5〜2%、Al:0.05
〜0.5%及び残部が実質的にFeからなる耐腐食高強
度舶用プロペラ材によつてボス部で分割製作したプロペ
ラ各翼を、ボス部で前記プロペラ材と同じ化学成分の溶
接材料で溶接組立ててなることを特徴とする耐腐食高強
度迫用プロペラ。C: 0.08% or less, Si: 0.1 to 1.5% by weight
, Mn: 0.1-3%, Cr: 16-19%, Ni: 4
.. 5-7.5%, Mo: 0.5-2%, Al: 0.05
Propeller blades made separately at the boss part using a corrosion-resistant high-strength marine propeller material consisting of ~0.5% Fe and the remainder being substantially Fe are welded at the boss part with welding material having the same chemical composition as the propeller material. A corrosion-resistant, high-strength propeller that can be assembled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23897988A JPH0288390A (en) | 1988-09-26 | 1988-09-26 | Anticorrosion high strength propeller for ship |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23897988A JPH0288390A (en) | 1988-09-26 | 1988-09-26 | Anticorrosion high strength propeller for ship |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0288390A true JPH0288390A (en) | 1990-03-28 |
Family
ID=17038132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23897988A Pending JPH0288390A (en) | 1988-09-26 | 1988-09-26 | Anticorrosion high strength propeller for ship |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0288390A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5021924A (en) * | 1973-06-28 | 1975-03-08 | ||
JPS63183156A (en) * | 1987-01-23 | 1988-07-28 | Mitsubishi Heavy Ind Ltd | Manufacture of marine propeller |
-
1988
- 1988-09-26 JP JP23897988A patent/JPH0288390A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5021924A (en) * | 1973-06-28 | 1975-03-08 | ||
JPS63183156A (en) * | 1987-01-23 | 1988-07-28 | Mitsubishi Heavy Ind Ltd | Manufacture of marine propeller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3427387B2 (en) | High strength welded steel structure with excellent corrosion resistance | |
US4121953A (en) | High strength, austenitic, non-magnetic alloy | |
US4443406A (en) | Heat-resistant and corrosion-resistant weld metal alloy and welded structure | |
US6712912B2 (en) | Welding method, filler metal composition and article made therefrom | |
JPH0694583B2 (en) | Heat-resistant austenitic cast steel | |
JP4312408B2 (en) | Corrosion resistant austenitic alloy | |
JP3222113B2 (en) | Welding material for high Cr ferritic heat resistant steel, TIG welding rod, submerged arc welding rod, welding wire and coated arc welding rod made of this material | |
JPH06142980A (en) | Welding material for austenitic stainless steel having excellent high-temperature strength | |
JP3819755B2 (en) | Welding method of high corrosion resistance high Mo austenitic stainless steel | |
JPH0288390A (en) | Anticorrosion high strength propeller for ship | |
JP2970432B2 (en) | High temperature stainless steel and its manufacturing method | |
JPH07214374A (en) | High ni alloy welding wire | |
JPH09225680A (en) | Welding wire for ferritic stainless steel | |
JPH07185879A (en) | Electrode with for high-strength, highly corrosion resistant martensitic stainless steel | |
JP2004148347A (en) | Welding material for welding austenitic stainless steel and welding method using the welding material | |
JP3541778B2 (en) | Welded steel pipe with excellent carbon dioxide corrosion resistance and hydrogen sulfide cracking resistance | |
JP2021011610A (en) | Austenitic heat-resistant alloy weld joint | |
JPH0120959B2 (en) | ||
JP2019130591A (en) | Weld joint | |
JPH01293992A (en) | High-ni alloy welding wire | |
JPH0211292A (en) | Welding material for weld-repairing of co base precision casting parts | |
JP3137426B2 (en) | High temperature bolt material | |
JPH108924A (en) | Manufacture of valve for large diesel engine | |
JPH049451A (en) | Seawater corrosion resisting material | |
JP2021025096A (en) | Austenitic heat-resistant alloy weld joint |