JPH0287673A - Insulating gate type semiconductor device - Google Patents

Insulating gate type semiconductor device

Info

Publication number
JPH0287673A
JPH0287673A JP24146188A JP24146188A JPH0287673A JP H0287673 A JPH0287673 A JP H0287673A JP 24146188 A JP24146188 A JP 24146188A JP 24146188 A JP24146188 A JP 24146188A JP H0287673 A JPH0287673 A JP H0287673A
Authority
JP
Japan
Prior art keywords
gate
source
insulating film
region
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24146188A
Other languages
Japanese (ja)
Inventor
Hideyuki Ooka
大岡 秀幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24146188A priority Critical patent/JPH0287673A/en
Publication of JPH0287673A publication Critical patent/JPH0287673A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a fine gate without being restricted by photolithography and realize making of a MOS transistor having high current gain and then, improve a resistance to hot electrons by forming gate electrodes at both sidewall parts of an insulating coat which is formed on a gate region, thereby making up a structure wherein a semiconductor layer directly below the coat has the same conductivity type as those of source and drain regions, and the other semiconductor layer directly below the gate electrodes has the conductivity type contrary to those of the source and drain regions. CONSTITUTION:After forming a field insulating film 2 and a gate insulating film 3 on a P-type silicon substrate 1, an insulating film 7 is formed on a gate region. Gate electrodes 4 are formed on both side walls of the insulating film 7 and source and drain regions 8 and 9 are formed in terms of a self-alignment system to the gate region. Although a channel region directly below the gate electrodes of the sidewall parts has a P-type semiconductor layer, an N-type layer 6 is formed on the channel region between source and drain regions that is other than the above channel region below the gate electrodes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁ゲート型半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an insulated gate semiconductor device.

〔従来の技術〕[Conventional technology]

従来、絶縁ゲート型半導体装置内で用いられるエンハン
スメント型MOSトランジスタは、例えば第5図に示す
ように、P型シリコン基板lの表面にフィールド絶縁膜
2、ゲート絶縁膜3、ゲート電極4を形成し、ゲート電
極4に対して自己整合的にN型のソース・ドレイン領域
8,9を形成している。
Conventionally, an enhancement type MOS transistor used in an insulated gate type semiconductor device has a field insulating film 2, a gate insulating film 3, and a gate electrode 4 formed on the surface of a P-type silicon substrate l, as shown in FIG. , N-type source/drain regions 8 and 9 are formed in self-alignment with the gate electrode 4.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、素子寸法の微細化に伴い、上述した従来の構
造及び製造方法では、以下のような問題が生じる。まず
、ゲート電極のバターニングに関し、ホトリングラフィ
では、サブ(クロン以下のパターンを精度良く形成する
ことが回能となる。
However, with the miniaturization of element dimensions, the following problems arise in the conventional structure and manufacturing method described above. First, regarding patterning of gate electrodes, photolithography is capable of forming patterns of sub-micron size or smaller with high accuracy.

また、ドレイン電流の通路となるチャネルは、従来構造
ではゲート絶縁膜3の下の半導体ν版のこく表面だけに
形成されるため、トランジスタが導通した際のチャネル
抵抗は、余り大きくできない。
Furthermore, in the conventional structure, the channel through which the drain current flows is formed only on the solid surface of the semiconductor v plate under the gate insulating film 3, so that the channel resistance when the transistor is turned on cannot be made very large.

このため、大きなドレイン電流を得ることかできない。Therefore, it is only possible to obtain a large drain current.

さらに、微細化による内部電界の増大により、ホットエ
レクトロンによる素子特性の劣化が問題となる。
Furthermore, as the internal electric field increases due to miniaturization, deterioration of device characteristics due to hot electrons becomes a problem.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、半導体基板表面上にゲート絶縁膜を介して所
定領域に形成されるゲート電極と、前記ゲート電極に対
して自己整合的に形成されたソース・ドレイン領域とを
有する絶縁ゲート型半導体装置にυいて、前記ゲート電
極はゲート領域に形成された少くとも表面が絶縁体であ
る被膜の両側壁部に形成され、前記被膜直下の半導体層
は前記ソース・ドレイン領域と同導電型、前記ゲート電
極直下の半導体層は前記ソース・ドレイン領域とは逆導
電型の半導体層となるように構成したものである。
The present invention provides an insulated gate type semiconductor device having a gate electrode formed in a predetermined region on the surface of a semiconductor substrate via a gate insulating film, and a source/drain region formed in a self-aligned manner with respect to the gate electrode. υ, the gate electrode is formed on both side walls of a film formed in the gate region and whose surface is at least an insulator, and the semiconductor layer directly under the film is of the same conductivity type as the source/drain region, and the gate electrode is of the same conductivity type as the source/drain region. The semiconductor layer directly under the electrode is configured to be a semiconductor layer of a conductivity type opposite to that of the source/drain regions.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment of the invention.

P型シリコン基板1にフィールド絶縁膜2、ゲート絶縁
膜3を形成した後、ゲート領域上に絶縁膜7を形成する
。この絶縁膜7の両側壁にゲート電極4を形成し、ゲー
ト領域に対して自己整合的にソース・ドレイン領域8,
9を形成する。この側壁部のゲート電極4直下のチャネ
ル領域は、P型半導体I−であるが、この領域以外のソ
ース・ドレイン間のチャネル領域にはN型層6を形成す
る。
After forming a field insulating film 2 and a gate insulating film 3 on a P-type silicon substrate 1, an insulating film 7 is formed on the gate region. Gate electrodes 4 are formed on both side walls of this insulating film 7, and source/drain regions 8,
form 9. The channel region directly under the gate electrode 4 on this side wall portion is a P-type semiconductor I-, but an N-type layer 6 is formed in the channel region between the source and drain other than this region.

次に1この実施例の製造方法について説明する。Next, the manufacturing method of this embodiment will be explained.

第2図(a)〜(d)は本発明の第1の実施例の製造方
法を説明するための工程順に示した半導体チップの断面
図である。
FIGS. 2(a) to 2(d) are cross-sectional views of a semiconductor chip shown in order of steps for explaining the manufacturing method of the first embodiment of the present invention.

まず、第2図(a)に示すように、P型シリコン基板l
の素子分離鎖酸にフィールド絶縁膜2を通常の選択酸化
法により形成し、活性領域上にゲート絶縁膜3を成長し
た後、4に膜として、例えばN型多結晶シリコン膜4a
を気相成長法により堆積する。ホトリングラフィ技術を
用いてゲート電極予定部以外を檀うレジスト膜5のパタ
ーンを形成する。なお、図示していないが、活性領域の
シリコン基板表面には、トランジスタのしきい値電圧調
整のため、任意の不純物をイオン注入法により導入して
もよい。また、フィールド絶縁膜2の直下に、寄生チャ
ネル抑制のため、基板と同導電型の高濃度拡散層を配置
してもよい。
First, as shown in FIG. 2(a), a P-type silicon substrate l
A field insulating film 2 is formed on the element isolation chain acid by a normal selective oxidation method, and a gate insulating film 3 is grown on the active region.
is deposited by vapor phase growth. Using photolithography technology, a pattern of the resist film 5 is formed that covers the area other than the area where the gate electrode is to be formed. Although not shown, arbitrary impurities may be introduced into the silicon substrate surface of the active region by ion implantation in order to adjust the threshold voltage of the transistor. Furthermore, a heavily doped diffusion layer having the same conductivity type as the substrate may be placed directly under the field insulating film 2 in order to suppress parasitic channels.

次に、第2図(b)に示すように、レジス+膜5をマス
クに多結晶シリコン膜4aを反応性イオンエッチ等によ
り選択エッチし、形成された凹部12に対し、自己整合
的に、例えばドーズilocm〜lQcm  程度でヒ
素をイオン注入することによりN型層6を形成する。次
に、凹部12内を埋るように、減圧CVD法等により絶
縁膜7を堆積する。
Next, as shown in FIG. 2(b), the polycrystalline silicon film 4a is selectively etched by reactive ion etching using the resist + film 5 as a mask, and the recesses 12 formed are self-aligned. For example, the N-type layer 6 is formed by ion-implanting arsenic at a dose of about ilocm to lQcm. Next, the insulating film 7 is deposited by low pressure CVD or the like so as to fill the inside of the recess 12.

次に、第2図(C)に示すように、凹部12内のみに絶
縁膜が残るように基板上の絶縁膜7を選択的にエツチン
グする。
Next, as shown in FIG. 2C, the insulating film 7 on the substrate is selectively etched so that the insulating film remains only in the recess 12.

次に、第2図(d)に示すように、シリコン基板上に霧
出した多結晶シリコン膜4aを選択的に異方性エツチン
グし、絶縁膜7の側壁部のみに残存させ、これをゲート
電極4とする。
Next, as shown in FIG. 2(d), the polycrystalline silicon film 4a sprayed on the silicon substrate is selectively anisotropically etched so that it remains only on the sidewalls of the insulating film 7, and this is etched at the gate. It is assumed to be electrode 4.

最後に、ゲート領域及びフィールド絶縁膜に対して、自
己整合的に例えばlQcmi度でヒ素をイオン注入し、
ソース・ドレイン領域8,9を形成することにより第1
図に示す構造を得る。以下、通常の工程に従って、配線
等を形成し、絶縁ゲート型半導体装置を構成させる。
Finally, arsenic is ion-implanted into the gate region and the field insulating film in a self-aligned manner at a degree of, for example, 1Q cm.
By forming the source/drain regions 8 and 9, the first
Obtain the structure shown in the figure. Thereafter, wiring and the like are formed according to normal steps to construct an insulated gate semiconductor device.

第3図は本発明の第2の実施例の断面図である5、本実
施例では、ゲート領域上に形成された多結晶シリコン膜
4bの両側壁部に絶縁膜10を介してゲート電極4が形
成され、ゲート領域に対して自己整合的にソース・ドレ
イン領域8.9が形成される。この実施例ではゲート電
極4はシリサイドで作っであるが、第1の実施例と同様
に多結晶シリコンで作ることもできる。
FIG. 3 is a cross-sectional view of a second embodiment of the present invention. are formed, and source/drain regions 8.9 are formed in self-alignment with the gate region. Although the gate electrode 4 is made of silicide in this embodiment, it can also be made of polycrystalline silicon as in the first embodiment.

次にこの実施例の製造方法について説明する。Next, the manufacturing method of this example will be explained.

第4図(a)〜(d)は本発明の第2の実施例の製造方
法を説明するための工程順に示した半導体チップの断面
図である。
FIGS. 4(a) to 4(d) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining the manufacturing method of the second embodiment of the present invention.

まず、第4図(a)に示すように、P型シリコン基板l
上にフィールド絶縁膜2を形成した後、活性領域にゲー
ト絶縁膜3を形成し、例えば、リンをドーズ[10cm
  −10cm  でイオン注入し、N型層6を形成す
る。そして、多結晶シリコン換4aを気相成長法により
200〜800 nm程度の厚さに堆積し、ホトリング
ラフィ技術を用いてゲート領域を覆うレジスト膜5のパ
ターンを形成する。
First, as shown in FIG. 4(a), a P-type silicon substrate l
After forming a field insulating film 2 thereon, a gate insulating film 3 is formed in the active region and, for example, phosphorus is dosed [10 cm
Ion implantation is performed at −10 cm to form an N-type layer 6. Then, polycrystalline silicon film 4a is deposited to a thickness of about 200 to 800 nm by vapor phase epitaxy, and a pattern of resist film 5 covering the gate region is formed using photolithography.

次に、第4図(b)に示すようにレジスト膜5をマスク
に多結晶シリコン膜4aを異方性エッチし、形成された
多結晶シリコン膜4bとフィールド絶縁膜2に対して、
自己整合的に例えばホウ素をドーズ量1011012C
〜1014cm−2程度でイオン注入して、多結晶シリ
コン714bの直下以外の基板表面をP型半導体層にす
る。
Next, as shown in FIG. 4(b), the polycrystalline silicon film 4a is anisotropically etched using the resist film 5 as a mask, and the formed polycrystalline silicon film 4b and field insulating film 2 are
For example, the dose of boron is 1011012C in a self-aligned manner.
Ion implantation is performed at about 10<14 >cm<-2> to convert the surface of the substrate other than directly under the polycrystalline silicon 714b into a P-type semiconductor layer.

次に第4図(C) K示すように、熱酸化して多結晶シ
リコン膜4bの表面に絶縁膜10を形成した後、例えば
タングステン・シリサイド等のシリサイド11を堆積す
る。
Next, as shown in FIG. 4C, an insulating film 10 is formed on the surface of the polycrystalline silicon film 4b by thermal oxidation, and then a silicide 11 such as tungsten silicide is deposited.

次に、第4図(d)に示すように、シリサイド膜11を
選択的に異方性エッチし、多結晶シリコン層4bの側壁
にのみシリサイド膜11を残存させ、ゲート電極4とす
る。
Next, as shown in FIG. 4(d), the silicide film 11 is selectively anisotropically etched so that the silicide film 11 remains only on the side walls of the polycrystalline silicon layer 4b to form the gate electrode 4.

最後に、形成されたゲート領域とフィールド絶縁膜に対
して自己整合的に、例えばヒ素をドーズ量t o25 
Cm−2程度でイオン注入し、ソース・ドレイン領域8
,9を形成し、第3図に示す構造を得る。
Finally, for example, arsenic is dosed to25 in a self-aligned manner with respect to the formed gate region and field insulating film.
Ion implantation is performed at approximately Cm-2 to form source/drain regions 8.
, 9 to obtain the structure shown in FIG.

以上、本発明の実施例をNチャネルMOSトランジスタ
について説明したが、PチャネルMUSトランジスタの
場合についても、同様に実施し得るのはもちろんである
Although the embodiments of the present invention have been described above with respect to N-channel MOS transistors, it goes without saying that they can be similarly implemented in the case of P-channel MUS transistors as well.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、ゲート領域に形成した
被膜の側壁部にゲート電極を形成することによυ、微細
なゲートを7トトリングラフイの制約なく形成でき、′
また、チャネル領域内に基板と同導電型の半導体層を自
己整合的に配置することによυ、チャネル抵抗の低い、
すなわち高いit流利得を有するMOSトランジスタを
実現できる。
As explained above, the present invention enables the formation of fine gates without the constraints of 7-to-trine graphs by forming gate electrodes on the sidewalls of the film formed in the gate region.
In addition, by arranging a semiconductor layer of the same conductivity type as the substrate in the channel region in a self-aligned manner, the channel resistance is low.
That is, a MOS transistor with high IT current gain can be realized.

さらに、ドレインとソースとの間にソース・ドレインと
同導電型の拡散層を設け′fC7cめ、ソース・ドレイ
ン間の電圧がドレイン側とソース側のチャネルに分配さ
れ、電界が緩和され、ホットエレクトロンに対する耐性
が向上するという効果がある。
Furthermore, by providing a diffusion layer of the same conductivity type as the source and drain between the drain and the source, the voltage between the source and drain is distributed between the channels on the drain side and the source side, the electric field is relaxed, and hot electrons are This has the effect of improving resistance to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の断面図、第2図(a)
〜(d)は本発明の第1の実施例の製造方法を説明する
ための工程順に示した半導体チップの断面図、第3図は
本発明の第2の実施例の断面図、第4図(a)〜(d)
は本発明の第2の実施例の製造方法を説明するための工
程順に示した半導体チップの断面図、第5図は従来のM
OSトランジスタの断面図である。 1・・・・・・PiシlJコン基板、2・・・・・・フ
ィールド絶縁膜、3・・・・・・ゲート絶縁膜、4,4
a、4b・・・・・・多結晶シリコン膜、6・・・・・
・n層、7・・・・・・絶縁膜、8゛°°°゛N型ンー
ス領域、9・・・・・・N型ドレイン領域、10・・・
・・・絶縁膜、11・・・・・・シリサイド膜。 代理人 弁理士  内 原   晋 差 閏 $4 図 竿 φ 図 菱 ガ
Fig. 1 is a sectional view of the first embodiment of the present invention, Fig. 2(a)
-(d) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining the manufacturing method of the first embodiment of the present invention, FIG. 3 is a cross-sectional view of the second embodiment of the present invention, and FIG. (a)-(d)
5 is a cross-sectional view of a semiconductor chip shown in the order of steps for explaining the manufacturing method of the second embodiment of the present invention, and FIG.
FIG. 2 is a cross-sectional view of an OS transistor. 1... Pi silicon J-con board, 2... Field insulating film, 3... Gate insulating film, 4, 4
a, 4b...polycrystalline silicon film, 6...
・N layer, 7...Insulating film, 8゛°°°゛N type source region, 9...N type drain region, 10...
... Insulating film, 11... Silicide film. Agent: Patent Attorney Susumu Uchihara

Claims (1)

【特許請求の範囲】[Claims]  半導体基板表面上にゲート絶縁膜を介して所定領域に
形成されるゲート電極と、前記ゲート電極に対して自己
整合的に形成されたソース・ドレイン領域とを有する絶
縁ゲート型半導体装置において、前記ゲート電極はゲー
ト領域に形成された少くとも表面が絶縁体である被膜の
両側壁部に形成され、前記被膜直下の半導体層は前記ソ
ース・ドレイン領域と同導電型、前記ゲート電極直下の
半導体層は前記ソース・ドレイン領域とは逆導電型の半
導体層であることを特徴とする絶縁ゲート型半導体装置
In an insulated gate type semiconductor device having a gate electrode formed in a predetermined region on the surface of a semiconductor substrate via a gate insulating film, and a source/drain region formed in self-alignment with the gate electrode, the gate The electrodes are formed on both side walls of a film formed in the gate region and whose surface is at least an insulator, the semiconductor layer directly under the film is of the same conductivity type as the source/drain region, and the semiconductor layer directly under the gate electrode is of the same conductivity type as the source/drain region. An insulated gate semiconductor device characterized in that the source/drain region is a semiconductor layer of a conductivity type opposite to that of the source/drain region.
JP24146188A 1988-09-26 1988-09-26 Insulating gate type semiconductor device Pending JPH0287673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24146188A JPH0287673A (en) 1988-09-26 1988-09-26 Insulating gate type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24146188A JPH0287673A (en) 1988-09-26 1988-09-26 Insulating gate type semiconductor device

Publications (1)

Publication Number Publication Date
JPH0287673A true JPH0287673A (en) 1990-03-28

Family

ID=17074663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24146188A Pending JPH0287673A (en) 1988-09-26 1988-09-26 Insulating gate type semiconductor device

Country Status (1)

Country Link
JP (1) JPH0287673A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444481A (en) * 1977-09-14 1979-04-07 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444481A (en) * 1977-09-14 1979-04-07 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its manufacture

Similar Documents

Publication Publication Date Title
US5489546A (en) Method of forming CMOS devices using independent thickness spacers in a split-polysilicon DRAM process
US5192992A (en) Bicmos device and manufacturing method thereof
US5612240A (en) Method for making electrical connections to self-aligned contacts that extends beyond the photo-lithographic resolution limit
JPH06252359A (en) Manufacture of semiconductor device
US5547903A (en) Method of elimination of junction punchthrough leakage via buried sidewall isolation
JPH0824144B2 (en) Method for manufacturing semiconductor device
JPH09232458A (en) Bicmos device and its manufacture
JPH09172062A (en) Semiconductor device and its manufacture
KR20000044936A (en) Method for fabricating cmos transistor
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
JPH0287673A (en) Insulating gate type semiconductor device
US5950080A (en) Semiconductor device and method of manufacturing the same
JPH05275637A (en) Method of manufacturing complementary semiconductor device
JP2573303B2 (en) Method for manufacturing semiconductor device
JP3062028B2 (en) Method for manufacturing semiconductor device
JPH10242460A (en) Semiconductor integrated circuit device and its manufacture
JPS6129551B2 (en)
JP2001257343A (en) Semiconductor integrated circuit device
JPH10261795A (en) Insulating gate-type field-effect transistor and its manufacture
JPS6039868A (en) Manufacture of semiconductor device
JP3400326B2 (en) Semiconductor device and manufacturing method thereof
US20020163038A1 (en) Semiconductor device and method for fabricating the same
JPH05110082A (en) Semiconductor device
JPH09246535A (en) Semiconductor integrated circuit device and its manufacture
JPS6255310B2 (en)