JPH0287544A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0287544A
JPH0287544A JP63238744A JP23874488A JPH0287544A JP H0287544 A JPH0287544 A JP H0287544A JP 63238744 A JP63238744 A JP 63238744A JP 23874488 A JP23874488 A JP 23874488A JP H0287544 A JPH0287544 A JP H0287544A
Authority
JP
Japan
Prior art keywords
wiring
current
teg
wafer
coverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63238744A
Other languages
Japanese (ja)
Inventor
Jun Munakata
棟方 純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63238744A priority Critical patent/JPH0287544A/en
Publication of JPH0287544A publication Critical patent/JPH0287544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable the evaluation to be accelerated by a method wherein a testing dummy wiring circuit is made on a part of a wafer surface and then the dummy wiring is impressed with a current using probes to evaluate the quality and reliability of a wiring on a semiconductor circuit by the fusing current level thereof. CONSTITUTION:The dimensions (diameter, depth) of contact holes 4 and the dimensions (width, thickness) of Al wiring 5 in a testing dummy wiring circuit (TEG) are specified to be in common with those in the semiconductor circuit formed on a wafer. After formation of the Al wiring, probers (arrow marks A, B) are brought into contact with both terminals 5a, 5b to impress the contact hole TEG with current for measuring the fusing current at that time. When the fusing current level is notably lower than the level decided by the width and thickness of the Al wiring, it can be confirmed that the current is fused at any defective Al coverage part. Through these procedures, the acceptability of Al coverage can be evaluated easily within a short time thereby enabling the judgement confirming the high reliability upon the manufacturing processes to be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法、特に製造段階における
半導体回路の配線の品質・信頼性評価技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a technology for evaluating the quality and reliability of semiconductor circuit wiring at the manufacturing stage.

〔従来の技術〕[Conventional technology]

半導体集積回路(IC)の装造方法における半導体チッ
プ内部の故障解析に関する技術については、日経マグロ
ウヒル社昭和61年1月1日発行の[日経マイクロデバ
イスJ I47号、p109〜pi 10に、論理回路
などのPN接合部にレーザな照射する際に醋起される光
電流を検出することによって、内部の論理状聾を解析す
るレーザ・プローバ技術が記載されている。上記技術に
よれば、レーザ・プローバを使用して被検査物の所定の
照射領域の間の移動時には、レーザの出力を減薮または
遮断するようにして、レーザ、ビームの走査径路に位置
される回路がレーザの照射によって誤動作することを防
止し、論理解析の精度を向上させている。
For technology related to failure analysis inside semiconductor chips in semiconductor integrated circuit (IC) packaging methods, see Nikkei Microdevices J I47, p109-pi 10, published by Nikkei McGraw-Hill on January 1, 1986, on logic circuits. A laser prober technique has been described that analyzes internal logical state deafness by detecting the photocurrent generated when a laser beam is irradiated to a PN junction. According to the above technology, when a laser prober is used to move an object to be inspected between predetermined irradiation areas, the laser output is reduced or cut off, and the laser is positioned in the scanning path of the beam. This prevents circuits from malfunctioning due to laser irradiation and improves the accuracy of logic analysis.

このレーザ・ブローバ技術を実施するには高価な装置を
必要とし、必ずしも一般的ではない。また、今後おこり
うる故障を事前に検出することは困難である。
Implementing this laser blower technology requires expensive equipment and is not necessarily common. Furthermore, it is difficult to detect in advance future failures.

半導体回路のA看(アルミニクム)配線については、多
くの場合、下地段差におけるAA配線の’fir 線’
P薄膜化に関するカバレッジ評価が問題となっている。
For A-type (aluminum) wiring in semiconductor circuits, in many cases the 'fir' wires of AA wiring at the base step are used.
Coverage evaluation regarding thinning of the P film has become a problem.

従来のA4?配線のカバレッジ評価法としては、走査型
電子顕微鏡(S EM :Scanning Elec
tronMicroscope ) Kよる試料断面観
察や、長時間通電や熱的ストレスによる劣化をしらべる
寿命テストが行われている。
Conventional A4? As a wiring coverage evaluation method, scanning electron microscopy (SEM) is used.
Sample cross-sections are observed using a tron microscope (Tron Microscope) K, and life tests are conducted to examine deterioration due to long-term energization and thermal stress.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記したSEMによる観察は試料作成に
時間がかかり、讐だ、寿命テストには長時間かかるとい
う問題があり、いずれも製造工程内での評価法としては
適切ではない。また、いずれも破壊試験である。
However, the observation using the SEM described above has problems in that it takes time to prepare the sample and, moreover, it takes a long time to perform the life test, and neither of these methods is suitable as an evaluation method within the manufacturing process. In addition, both tests are destructive tests.

本発明は上述した従来技術の欠点を解決し、短時間で評
価できる半導体装置の製造技術の提供を目的とする。
The present invention aims to solve the above-described drawbacks of the prior art and to provide a semiconductor device manufacturing technique that can be evaluated in a short time.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の半導体装置の製造
方法に16いては、半導体ウェハの・段階でウェハの一
部に試験用ダミー配線回路(TEG)を形成し、上記ダ
ミー配線に対しブローμを用いて電流を印加し、その溶
断電流値により、上記半導体回路における配線の評価を
行うものである。
In order to achieve the above object, in the method for manufacturing a semiconductor device of the present invention, a test dummy wiring circuit (TEG) is formed on a part of the wafer at the semiconductor wafer stage, and the dummy wiring is blown. A current is applied using μ, and the wiring in the semiconductor circuit is evaluated based on the value of the fusing current.

〔作用〕[Effect]

上記のように構成された半導体装置の製造方法によれば
、へ2カバレッジの悪い配線を有するウェハでは、溶断
i!流が低い値を示し、この電流値を管理することでA
2配線の品質の良否を簡単に判定することができる。
According to the method for manufacturing a semiconductor device configured as described above, in a wafer having wiring with poor coverage, fusing i! The current shows a low value, and by managing this current value, A
2. It is possible to easily judge whether the quality of the wiring is good or bad.

しかもこの方法によればプローブテストと同時に評価か
でき、寿命テストのような長時間を必要としない。
Moreover, according to this method, evaluation can be performed at the same time as the probe test and does not require a long period of time unlike a life test.

更に、試験用ダミー配線回路を用いるので、SEMによ
る断面!!察や寿命テストのようK、牛導体ワエーハ又
は半導体チップを破壊する必要がな〔実施例〕 実施例について図面を参照して説明する。
Furthermore, since a dummy wiring circuit for testing is used, a cross-section taken by SEM! ! There is no need to destroy the conductor wafer or the semiconductor chip during inspection or life test. [Embodiment] An embodiment will be described with reference to the drawings.

+11  第1図乃至第2図は単層人!配線を対象とす
るT E G (試験用ダミー配線回路)の例であって
、すなわち、ウェハの一部に、lt配線のコンタクトT
EGを設けた場合を示し、第1図は平面図、第2図は縦
断面図である。
+11 Figures 1 and 2 are single-layer people! This is an example of TEG (test dummy wiring circuit) that targets wiring, that is, a contact T of lt wiring is placed on a part of the wafer.
A case in which an EG is provided is shown, with FIG. 1 being a plan view and FIG. 2 being a longitudinal sectional view.

1はSi基板、2はペースなどの不純物拡散領域、3は
酸化FIX (S + 01膜)、4はコンタトホール
、5はA!配線であって第1図に示すよ5 Txパター
ンを有する。このTEGにおけるコンタクトホール4の
寸法(径、深さ)AA配線の寸法(幅、厚さ)はウェハ
上に形成された半導体回路におけるコンタクトホールの
寸法、A1配線の寸法と共通のものとする。
1 is a Si substrate, 2 is an impurity diffusion region such as a paste, 3 is an oxidized FIX (S + 01 film), 4 is a contact hole, and 5 is an A! The wiring has a 5 Tx pattern as shown in FIG. The dimensions (diameter, depth) of the contact hole 4 in this TEG and the dimensions (width, thickness) of the AA wiring are the same as the dimensions of the contact hole in the semiconductor circuit formed on the wafer and the dimensions of the A1 wiring.

A、6配線形成後、第2図に示すようにブローμ(矢印
A、Bで示す)を配線の両端子5a、5bに接触させて
コンタクトホールT E Gに電流を印加し、その際の
溶断電流を測定する。
A, 6 After the wiring is formed, as shown in Fig. 2, a blow μ (indicated by arrows A and B) is brought into contact with both terminals 5a and 5b of the wiring, and a current is applied to the contact hole TEG. Measure the fusing current.

溶断電流がA、6配線幅、厚さで決まる値よりも著ろし
く低い場合、人!カバレジの悪い部分で溶断しているの
が確認できる。
If the fusing current is significantly lower than the value determined by the A, 6 wiring width and thickness, people! You can see that the fuse is blown in areas with poor coverage.

(2)  第3図乃至第4図は2層のA2配線を対象と
するTEGの例であって、すなわち、第1層のA2配線
6の上に層間絶縁膜7のスルーホール9を介して第2層
のへ2配#8’Y接続してAノ配線スルーホー# T 
E Gを設けた場合を示し、第3図は平面図、第4図は
縦断面図である。
(2) FIGS. 3 to 4 are examples of a TEG that targets two layers of A2 wiring, that is, a TEG is installed on the first layer of A2 wiring 6 through a through hole 9 in an interlayer insulating film 7. Connect the 2nd wiring #8'Y to the 2nd layer and connect the A wiring through hole #T
3 is a plan view and FIG. 4 is a longitudinal sectional view.

6は第1層A!配線、7は層間絶縁膜、8は第’2 H
I A A配線、9はスルーホールである。
6 is the first layer A! Wiring, 7 is interlayer insulating film, 8 is '2nd H
IAA wiring, 9 is a through hole.

A2配線形成後、第4図に示すようにブローμ(矢印A
、C)を配線の両熾子(8a + 6 c )に接触さ
せてスルーホールTEGにおける溶断1!流を測定する
After forming the A2 wiring, blow μ (arrow A
, C) in contact with both wires (8a + 6c) to cause melting in the through-hole TEG 1! Measure the flow.

また、TEGのA1配線の両端子8aと6cにブローμ
を接触させることで第1層A1配線8と第2層A4配線
6との導通状態の良不良を検査することができる。
Also, blow μ to both terminals 8a and 6c of A1 wiring of TEG.
By bringing them into contact with each other, it is possible to inspect whether the conduction state between the first layer A1 wiring 8 and the second layer A4 wiring 6 is good or bad.

(3:  第5図はウェハ上における凸部(段部)10
によって生じるA2配線(TEG)のカバレッジ状態を
示すもので、lalはカバレッジ良好、lblは不良の
場合を示す。
(3: Figure 5 shows the protrusion (step) 10 on the wafer.
This shows the coverage state of the A2 wiring (TEG) caused by the above, where lal indicates good coverage and lbl indicates poor coverage.

第6図はウェハ上における凹部(コンタクトホ−ル、ス
ルーホー/L/)の段部11によって生じる人!配線(
TEG)のカバレッジ状態を示すもので、lalはカバ
レッジ良好、(blは不良の場合を示す。
FIG. 6 shows the shape of a person caused by the stepped portion 11 of the recess (contact hole, through hole/L/) on the wafer! wiring(
TEG) indicates the coverage state, where lal indicates good coverage and (bl indicates poor coverage).

いずれの場合も段部の上のAffl配線を対象としてお
り、TEGのパターンを自由に選ぶことができる。
In either case, the Affl wiring above the stepped portion is targeted, and the TEG pattern can be freely selected.

なお、TEGはウェハにおけるチップ内の任意の個所、
チップ境界領域(スクライプ領域)の任意の個所に設け
ることができ。
Note that TEG refers to any location within a chip on a wafer,
It can be provided at any location in the chip boundary area (scribe area).

〔発明の効果〕〔Effect of the invention〕

本発明は以上に説明したように構成されて−・るので下
記の効果を奏する。
Since the present invention is constructed as described above, it achieves the following effects.

ウェハ上に形成したTEGにより、A!カバレッジの良
否を短時間で簡単に評価することができ、製造工程内で
の高信頼化を目的とした判定が可能とする〇 本発明はA、8配線長層構造の半導体装置、スルーホー
ルを有する多層配線基板に適用してもつとも効果が得ら
れる。
With the TEG formed on the wafer, A! It is possible to easily evaluate the quality of coverage in a short time, and it is possible to make judgments for the purpose of increasing reliability in the manufacturing process.〇The present invention is applicable to Effects can also be obtained when applied to a multilayer wiring board having a multilayer wiring board.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第2図は1層AA配線を対象とするTEGの
実施例であって、第1図は平面図、第2図は第1図のA
−A視断面図である。 第3図乃至第4図は2層の人!配線を対象とするTEG
の実施例でありて、第3図は平面図、第4図は第3図の
A−A視断面図である。 第5図181 、 (blは凸部におけるA2配線カバ
レッジの状態を示す断面図で、lalはカバレッジ良の
場合、fblはカバレッジ不良の場合を示す。 第6図tal 、 (blは凹部におけるA、6を配線
のカバレッジ状態を示す断面図で、lalはカバレッジ
良、(blはカバレッジ不良を示す。 1・・・Si基板、2・・・拡散領域、3・・・酸化膜
、4・・・コンタクトホール、5・・・人!配線、6・
・・第1層A4配線、7・・・層間絶縁膜、8・・・第
2届A1配線、9・・・スルーホール、10・・・A、
!3配線、11・・・絶縁膜。 第  1 図 第3図 り 第  2 図 第4図
1 and 2 show examples of TEG for one-layer AA wiring, in which FIG. 1 is a plan view and FIG. 2 is an A of FIG.
-A sectional view. Figures 3 and 4 are people in the second layer! TEG for wiring
FIG. 3 is a plan view, and FIG. 4 is a sectional view taken along line AA in FIG. 3. Fig. 5 181, (bl is a cross-sectional view showing the state of A2 wiring coverage in the convex part, lal shows the case of good coverage, and fbl shows the case of poor coverage. 6 is a cross-sectional view showing the wiring coverage state, where lal indicates good coverage (bl indicates poor coverage) 1...Si substrate, 2...diffusion region, 3...oxide film, 4... Contact hole, 5... people! Wiring, 6...
...First layer A4 wiring, 7...Interlayer insulating film, 8...Second notification A1 wiring, 9...Through hole, 10...A,
! 3 wiring, 11...insulating film. Figure 1 Figure 3 Diagram 2 Figure 4

Claims (1)

【特許請求の範囲】 1、半導体ウェハの一主表面に複数の半導体チップに対
応する半導体回路を形成するとともに、上記ウェハ表面
の一部に試験用ダミー配線回路を形成し、上記ダミー配
線に対しプローバを用いて電流を印加し、その溶断電流
値により上記半導体回路における配線の品質、信頼性評
価を行うことを特徴とする半導体装置の製造方法。 2、上記試験用ダミー配線は絶縁膜及び金属膜による段
差を設けてその上に金属膜配線を形成したものである請
求項1に記載の半導体装置の製造方法。
[Claims] 1. A semiconductor circuit corresponding to a plurality of semiconductor chips is formed on one main surface of a semiconductor wafer, and a dummy wiring circuit for testing is formed on a part of the surface of the wafer, and a test dummy wiring circuit is formed on a part of the wafer surface. A method for manufacturing a semiconductor device, comprising applying a current using a prober and evaluating the quality and reliability of wiring in the semiconductor circuit based on the value of the fusing current. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the test dummy wiring has a step formed by an insulating film and a metal film, and a metal film wiring is formed thereon.
JP63238744A 1988-09-26 1988-09-26 Manufacture of semiconductor device Pending JPH0287544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63238744A JPH0287544A (en) 1988-09-26 1988-09-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63238744A JPH0287544A (en) 1988-09-26 1988-09-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0287544A true JPH0287544A (en) 1990-03-28

Family

ID=17034614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63238744A Pending JPH0287544A (en) 1988-09-26 1988-09-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0287544A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179661B1 (en) * 1999-12-14 2007-02-20 Kla-Tencor Chemical mechanical polishing test structures and methods for inspecting the same
US7656170B2 (en) 2000-04-18 2010-02-02 Kla-Tencor Technologies Corporation Multiple directional scans of test structures on semiconductor integrated circuits

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179661B1 (en) * 1999-12-14 2007-02-20 Kla-Tencor Chemical mechanical polishing test structures and methods for inspecting the same
US7656170B2 (en) 2000-04-18 2010-02-02 Kla-Tencor Technologies Corporation Multiple directional scans of test structures on semiconductor integrated circuits
US7655482B2 (en) * 2000-04-18 2010-02-02 Kla-Tencor Chemical mechanical polishing test structures and methods for inspecting the same

Similar Documents

Publication Publication Date Title
JP4898139B2 (en) Probe pad, substrate on which semiconductor element is mounted, and semiconductor element inspection method
KR100402044B1 (en) Non-destructive inspection method
JP2003133377A (en) Inspection pattern of multilayered wring structure, semiconductor device having inspection pattern, and method and system for inspecting semiconductor device
CN111477262B (en) Failure analysis method of semiconductor device
JP3356056B2 (en) Wiring fault detecting circuit, wiring fault detecting semiconductor wafer, and wiring fault detecting method using the same
JP2002368049A (en) Method and equipment for inspecting semiconductor device and method for fabricating semiconductor device
JP2002313859A (en) Nondestructive inspection method and device and semiconductor chip
US5976898A (en) Localization of defects of a metallic layer of a semiconductor circuit
EP2385551A1 (en) Silicon substrate wafer and test method
JPH0287544A (en) Manufacture of semiconductor device
JP2006214950A (en) Semiconductor chip, and inspection device and method therefor
US5448179A (en) Screening of conductors and contacts on microelectronic devices
US7932119B2 (en) Laser optical path detection in integrated circuit packaging
KR100683386B1 (en) Method and apparatus for detecting failures of semiconductor device using laser scan
CA1271849A (en) Electron beam testing of semiconductor wafers
JPH06216207A (en) Inspection of wafer
JP2004309413A (en) Lsi inspection method and analyzer for flaw inspection data
JP2008041757A (en) Device and method for semiconductor inspection
US6184569B1 (en) Semiconductor chip inspection structures
KR100244916B1 (en) Analysis method for a wafer defect
Qian et al. Precise defect localization of scan logic failures by thermal laser stimulation (TLS)
KR100576474B1 (en) Method for detecting a fine defect of semiconductor device
Walraven et al. Failure Analysis and Process Verification of High-Density Copper ICs Used in Multichip Modules
Jacobs et al. Fault isolation approaches for nanoscale TSV interconnects in 3D heterogenous integration
KR20220053293A (en) Semiconductor Apparatus Including Test Dummy Pattern, Method of Manufacturing The Same and Method of Inspection Error Using The Test Dummy Pattern