JPH0287211A - Constant voltage circuit - Google Patents

Constant voltage circuit

Info

Publication number
JPH0287211A
JPH0287211A JP23921188A JP23921188A JPH0287211A JP H0287211 A JPH0287211 A JP H0287211A JP 23921188 A JP23921188 A JP 23921188A JP 23921188 A JP23921188 A JP 23921188A JP H0287211 A JPH0287211 A JP H0287211A
Authority
JP
Japan
Prior art keywords
current mirror
constant voltage
circuit
current
mirror circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23921188A
Other languages
Japanese (ja)
Inventor
Hiroaki Kimuro
木室 浩昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23921188A priority Critical patent/JPH0287211A/en
Publication of JPH0287211A publication Critical patent/JPH0287211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To reduce energy consumption and to exactly design an arbitrary voltage by providing a means to set a resistance load in the output side of a current mirror circuit smaller than a resistance load in an input side, and to switch the bias voltage of the current mirror circuit. CONSTITUTION:Means S1-S4 are provided to set a resistance load R1 in a current source side smaller than a resistance load R2 in a bias circuit side and to switch the bias of the current mirror circuit. At the time of normal operation, the switches S1 and S2 are turned on and the S3 and S4 are tuned off. At the time saving power not to need a constant voltage output, the S1 and S2 are turned off and the S3 and S4 are turned on. Thus, M1 and M2 are biases in an interruption area and a normal current does not flow. Thus, the energy consumption can be reduced and further, when the gm of a transistor in the current mirror is enlarged, the arbitrary constant voltage output can be designed by the value of R2/R1(R1>>R2).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は定電圧回路に関し、特にMOS−LSI内蔵型
の定電圧回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a constant voltage circuit, and particularly to a constant voltage circuit built in a MOS-LSI.

〔従来の技術〕[Conventional technology]

従来、IC内部で抵抗分割回路によって、定電圧を作る
場合には、消費電力の点から、IOK〜100I(Ωの
抵抗値を使えば、定常電流を少なくおさえることができ
るが、電源電圧の過渡的な変動の影器を受けやすく、ま
たチップ内面積も大きいため、IKΩ〜10にΩの抵抗
を用いることが多い。
Conventionally, when creating a constant voltage using a resistor divider circuit inside an IC, from the point of view of power consumption, if a resistance value of IOK to 100I (Ω) is used, the steady current can be kept low, but the transient current of the power supply voltage Since the resistor is easily affected by fluctuations and the internal area of the chip is large, a resistor of IKΩ to 10Ω is often used.

この場合、基準電圧を得る必要のない時には、パワーセ
ーブの必要からこの抵抗を流れる定常電流を遮断するこ
とが望まれる。第4図に遮断機能付きの回路例を示す。
In this case, when there is no need to obtain a reference voltage, it is desirable to cut off the steady current flowing through this resistor in order to save power. FIG. 4 shows an example of a circuit with a cutoff function.

同図中のトランジスタTI。Transistor TI in the same figure.

T2はそれぞれ同じオン抵抗を持つNチャネル。T2 is an N channel with the same on-resistance.

Pチャネルのトランジスタであり、通常使用時はオンす
る様にバイアスを加えるが、前述した様にトランジスタ
のオン抵抗が高いと、電源電圧の過渡的な変動に弱くな
るため、オン抵抗はできるだけ小さく設計して使われて
いた。
It is a P-channel transistor, and a bias is applied to turn it on during normal use, but as mentioned above, if the transistor's on-resistance is high, it becomes vulnerable to transient fluctuations in the power supply voltage, so the on-resistance is designed to be as small as possible. It was used as

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した電流遮断機能を持った抵抗分割定電圧回路は、
2つのトランジスタのオン抵抗の値が等しく、抵抗R,
=R2とした場合には、オン抵抗の直に関係なく V 
c c −GND間の中点電圧を発生するが、中点以外
の任意電圧を所望の場合には、オン抵抗の値を含めて、
設計する必要がある。
The resistor divider constant voltage circuit with the current cutoff function described above is
The on-resistance values of the two transistors are equal, and the resistance R,
= R2, V
A midpoint voltage between c c and GND is generated, but if any voltage other than the midpoint is desired, including the on-resistance value,
need to be designed.

MOSプロセスではオン抵抗の値はVTに依存するため
バラツキがあり、正確な設計はできないという欠点があ
る。
In the MOS process, the value of on-resistance varies because it depends on VT, and has the drawback that accurate design cannot be performed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の定電圧回路は、相互コンダクタンスの等しいM
OSトランジスタを用いたカレントミラー回路を含み電
流源側の抵抗負荷での電圧降下を出力とする定電圧回路
において、前記電流源側の抵抗負荷をバイアス回路側の
抵抗負荷よりも小さく設定し、前記カレントミラー回路
のバイアスを切り換える手段を設けて構成される。
The constant voltage circuit of the present invention has an equal mutual conductance M
In a constant voltage circuit that includes a current mirror circuit using an OS transistor and outputs a voltage drop across a resistive load on the current source side, the resistive load on the current source side is set smaller than the resistive load on the bias circuit side, and the It is constructed by providing means for switching the bias of the current mirror circuit.

〔実施例〕〔Example〕

次に本発明の一実施例について図面を参照して説明する
Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を説明するための定電圧回路
である。同図において、トランジスタMl。
FIG. 1 shows a constant voltage circuit for explaining one embodiment of the present invention. In the figure, the transistor Ml.

M2が飽和領域で動作し、負荷抵抗R1とR2に同一の
電流■。が流れる場合、R2による電圧降下分の電圧出
力は次式の様になる。
M2 operates in the saturation region, and the same current ■ in load resistors R1 and R2. When R2 flows, the voltage output corresponding to the voltage drop due to R2 is as shown in the following equation.

(但し、VD!1はMlのドレイン・ソース間電圧)上
式においてvastはプロセス要因によるvTのバラツ
キに変動するが、R,:>R2とすればVア変動の影響
は小さくできる。
(However, VD!1 is the drain-source voltage of M1.) In the above equation, vast changes due to variations in vT due to process factors, but by setting R,:>R2, the influence of variations in VA can be reduced.

本回路は、通常動作時に、スイッチ31.82をオンさ
せて、S3.S4をオフさせる。定電圧出力を必要とし
ないパワーセーブ時にはSlと82がオフし、S3と8
4がオンすることによってMl、M2を遮断領域にバイ
アスし、定常電流を流さない。
During normal operation, this circuit turns on the switch 31.82 and performs S3. Turn off S4. During power saving when constant voltage output is not required, SL and 82 are turned off, and S3 and 8 are turned off.
4 is turned on, Ml and M2 are biased to the cutoff region, and no steady current flows.

第2図は、第1図におけるスイッチS1とS2をN−M
O8)ランジスタ、S3とS4をP −MOSトランジ
スタで構成した実施例である。本回路は、通常動作時に
は、Sl、S2,33.S4の各MOSトランスフアゲ
−) ニVa (> VD31 + VT)なるハイ電
圧を加えてSl、S2をオンさせS3゜S4をオフさせ
る。この状態でカレンミラー回路が動作し、(1)式に
示すように定電圧V R,、が出力される。但し各MO
SトランジスタS1乃至S4のゲート電圧がV。<Vo
s++VTの状態では、これらが飽和領域にバイアスさ
れてしまい、伝達出力がVo−V、までしか上昇しない
ため、ゲート電圧は電源電圧近傍まで印加する必要があ
る。逆に、トランジスタSl、S2をオフ、S3.S4
をオンさせることにより、パワーセーブ時になり、カレ
ントミラー回路に電流が流れなくなる。
FIG. 2 shows switches S1 and S2 in FIG.
O8) This is an embodiment in which transistors S3 and S4 are constructed of P-MOS transistors. During normal operation, this circuit operates as follows: Sl, S2, 33 . A high voltage of Va (> VD31 + VT) is applied to each MOS transfer gate of S4 to turn on Sl and S2 and turn off S3 and S4. In this state, the Karen mirror circuit operates and outputs a constant voltage VR, as shown in equation (1). However, each MO
The gate voltage of S transistors S1 to S4 is V. <Vo
In the state of s++VT, these are biased to the saturation region and the transmitted output increases only to Vo-V, so it is necessary to apply the gate voltage to the vicinity of the power supply voltage. Conversely, transistors Sl and S2 are turned off, S3 . S4
By turning on the power save mode, no current flows through the current mirror circuit.

またR1とR2の抵抗値は、チップ内面積を考慮してI
 K〜l0I(Ωにする必要があるが、その場合、トラ
ンジスタMl、M2のgm(相互コンダクタンス)を大
きく設計して、電流工。を増加させ、R2による電圧降
下を確保すればよい。
Also, the resistance values of R1 and R2 are determined by considering the internal area of the chip.
It is necessary to set K to l0I (Ω), but in that case, the gm (mutual conductance) of the transistors M1 and M2 may be designed to be large to increase the current flow rate and ensure the voltage drop due to R2.

本実施例により、トランジスタS1と82をオフにし、
S3と84をオンにすることによりパワーモールドにし
て、消費電力を減少でき、更にR2/ R+ (R+ 
> R2)により定電圧出力を設定することができる。
According to this embodiment, transistors S1 and 82 are turned off,
By turning on S3 and 84, it becomes a power mold, reducing power consumption and further increasing R2/R+ (R+
> R2) allows the constant voltage output to be set.

第3図は本発明の第2の実施例の回路図である。FIG. 3 is a circuit diagram of a second embodiment of the present invention.

第1の実施例との構成の相違は、カレントミラー回路が
MO8)ランジスタM3及びM4を加えたカスコード構
成になっていることである。MOSトランジスタは、ピ
ンチオフ電圧を越えてドレイン電圧を増加させていくと
実効チャネル長が減少し、明確な飽和特性を示さなくな
る。この場合ドレイン電流が、ドレイン電圧に依存して
しま′うため、ミラー回路の2つの電流は一致しなくな
る。
The difference in configuration from the first embodiment is that the current mirror circuit has a cascode configuration in which transistors M3 and M4 are added. When the drain voltage of a MOS transistor is increased beyond the pinch-off voltage, the effective channel length decreases and the MOS transistor no longer exhibits clear saturation characteristics. In this case, the drain current depends on the drain voltage, so the two currents in the mirror circuit no longer match.

そこでカレントミラー回路を本実施例のようにカスコー
ド構成にしてチャネル長変調効果の影響を減じ、より精
確の定電圧値の設定に適した構成をとった。
Therefore, the current mirror circuit was configured in a cascode configuration as in this embodiment to reduce the influence of the channel length modulation effect, and a configuration suitable for setting a more accurate constant voltage value was adopted.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明では抵抗負荷のカレントミラー
回路のバイアス電圧をスイッチ回路によって切り換え、
スタンバイモード時にカレントミラー回路を流れる定常
電流を遮断することにより、消費電力を減らすことがで
き、更に、カレントミラーのトランジスタのgmを大き
くすれば、R2/ R1(R+ > R2)の値によっ
て任意の定電圧出力を設計することができる効果を有す
る。
As explained above, in the present invention, the bias voltage of the current mirror circuit of the resistive load is switched by the switch circuit,
By cutting off the steady current flowing through the current mirror circuit during standby mode, power consumption can be reduced.Furthermore, by increasing the gm of the current mirror transistor, any value can be achieved depending on the value of R2/R1 (R+ > R2). This has the effect of allowing constant voltage output to be designed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するための基準電圧回路図、第2
図は本発明の第1の実施例を説明するための回路図、第
3図は本発明の第2の実施例を説明するための回路図、
第4図は従来の基準電圧源に電流遮断スイッチをつけた
構成図である。 Sl乃至S4・・・・・・MOS)ランジスタ、Ml乃
至M4・・・・・・MOS)ランジスタ、R1,R2・
・・・・・抵抗。 代理人 弁理士  内 原   晋 第4図
Figure 1 is a reference voltage circuit diagram for explaining the present invention, Figure 2 is a reference voltage circuit diagram for explaining the present invention.
The figure is a circuit diagram for explaining the first embodiment of the present invention, FIG. 3 is a circuit diagram for explaining the second embodiment of the present invention,
FIG. 4 is a configuration diagram in which a current cutoff switch is attached to a conventional reference voltage source. Sl to S4...MOS) transistor, Ml to M4...MOS) transistor, R1, R2...
·····resistance. Agent: Susumu Uchihara, patent attorney Figure 4

Claims (1)

【特許請求の範囲】[Claims] 相互コンダクタンスの等しいMOSトランジスタを用い
たカレントミラー回路を含む定電圧回路において、前記
カレントミラー回路の出力側の抵抗負荷を入力側の抵抗
負荷より小さく設定し、前記カレントミラー回路のバイ
アス電圧を切り換える手段をもうけたことを特徴とする
定電圧回路。
In a constant voltage circuit including a current mirror circuit using MOS transistors having equal mutual conductance, a means for setting a resistive load on the output side of the current mirror circuit to be smaller than a resistive load on the input side and switching a bias voltage of the current mirror circuit. A constant voltage circuit characterized by the following.
JP23921188A 1988-09-22 1988-09-22 Constant voltage circuit Pending JPH0287211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23921188A JPH0287211A (en) 1988-09-22 1988-09-22 Constant voltage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23921188A JPH0287211A (en) 1988-09-22 1988-09-22 Constant voltage circuit

Publications (1)

Publication Number Publication Date
JPH0287211A true JPH0287211A (en) 1990-03-28

Family

ID=17041396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23921188A Pending JPH0287211A (en) 1988-09-22 1988-09-22 Constant voltage circuit

Country Status (1)

Country Link
JP (1) JPH0287211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226627A (en) * 2006-02-24 2007-09-06 Seiko Instruments Inc Voltage regulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226627A (en) * 2006-02-24 2007-09-06 Seiko Instruments Inc Voltage regulator

Similar Documents

Publication Publication Date Title
US11467613B2 (en) Adaptable low dropout (LDO) voltage regulator and method therefor
JPH04229315A (en) Reference generator
JPH0332923B2 (en)
JPH11202002A (en) Current detection circuit
US6426614B1 (en) Boot-strapped current switch
JPS6259924B2 (en)
EP1422588B1 (en) Constant voltage power supply
JPH0287211A (en) Constant voltage circuit
JPH10126223A (en) Monolithic mos-sc circuit
JP2000330657A (en) Semiconductor device
US6515537B2 (en) Integrated circuit current source with switched capacitor feedback
JPS6398214A (en) Analog switch
JP2002093187A (en) On-state resister automatic adjusting circuit and sample- and-hold circuit
JP2614621B2 (en) Logic output circuit
JP2002164772A (en) Semiconductor switch integrated circuit
JPH11284437A (en) Oscillator circuit
JPH0256614A (en) Voltage dividing resistance circuit
JP2577295Y2 (en) Voltage controlled oscillator
JPS63146503A (en) Oscillation circuit
JPS6262093B2 (en)
JP2730044B2 (en) Loop filter for phase locked loop
JP2000278046A (en) Oscillation circuit
JPH07170158A (en) Voltage controlled oscillation circuit device
JPH0263219A (en) Charge pump circuit
JPH03220909A (en) Mos integrated circuit device