JPH02855B2 - - Google Patents

Info

Publication number
JPH02855B2
JPH02855B2 JP55134570A JP13457080A JPH02855B2 JP H02855 B2 JPH02855 B2 JP H02855B2 JP 55134570 A JP55134570 A JP 55134570A JP 13457080 A JP13457080 A JP 13457080A JP H02855 B2 JPH02855 B2 JP H02855B2
Authority
JP
Japan
Prior art keywords
epoxy resin
semiconductor element
resin
resin composition
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55134570A
Other languages
Japanese (ja)
Other versions
JPS5759366A (en
Inventor
Tooru Nishimura
Katsumi Shimada
Takashi Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP55134570A priority Critical patent/JPS5759366A/en
Publication of JPS5759366A publication Critical patent/JPS5759366A/en
Publication of JPH02855B2 publication Critical patent/JPH02855B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は半導体封止用エポキシ樹脂組成物特に
セラミツク基板との接着性にすぐれる半導体封止
用エポキシ樹脂組成物に関するものである。 セラミツクステム面上に載置された半導体素子
を樹脂封止する際には、従来エポキシ樹脂組成物
が用いられているが、樹脂封止して得られた封止
体は温度環境下の異なる雰囲気に置かれるとセラ
ミツク面と硬化樹脂体の境界面にクラツツクが入
り、さらにひどい場合には剥離現象が生ずるとい
う欠点を有する。 そしてこのような欠点を克服する方法としては
充填剤を多量に加えたり、硬化樹脂のガラス転移
温度を下げたりすることが考えられるが、半導体
素子が発光ダイオードである場合には前者では光
透過率が悪くなる恐れがあり好ましくない。 また後者の場合には耐熱性が悪くなり煮沸試験
においても白濁し易くなる。 また発光ダイオードモールドの場合、光透過率
の高い樹脂組成物中に極微粉子のシリカ粉などを
1〜20重量%加え光拡散効果を出すが、この場合
従来の樹脂組成物を使用すると硬化樹脂とシリカ
粉の密着性が悪く煮沸試験に於て白濁現象を呈し
た。 また発光ダイオード以外の半導体素子を報止す
るための半導体素子用樹脂組成物の改良方法とし
て、従来知られてるものの低線膨腸化を計るため
に充填剤の多量添加が考えられるが、添加量にも
限度があり、またその要求特性によつても添加限
界があり、さらにヒートサイクル特性の改良の場
合低線膨脹化の改良だけでは要求される所を満た
さない場合が多い。 本発明はこのような欠点を改良してなるもの
で、エポキシ樹脂および硬化剤を含むエポキシ樹
脂系100重量部に、γ−メルカプトプロピルトリ
メトキシシラン0.2〜5重量部を添加することを
特徴とする、セラミツクステム面上に載置された
半導体素子を封止するための半導体封止用エポキ
シ樹脂組成物に関するものである。 本発明に於いて用いられるエポキシ樹脂組成物
としては、上記セラミツクステムポツテイング用
には常温で液状のものが一般に用いられるが、そ
れ以外ではどのような性状のものであつてもよ
い。 またエポキシ樹脂の種類としては公知のビスフ
エノール系エポキシ樹脂、フエノールノボラツク
系エポキシ樹脂、シクロ系エポキシ樹脂等を挙げ
ることができる。 硬化剤としては光半導体素子封止用途の場合
は、透明性、耐熱変色性の点から酸無水物系硬化
剤を使用するのがよく、これらの例としては、無
水テトラヒドフタル酸、無水ヘキサヒドロフタ
ル、無水フタル酸、、無水メチルヘキサヒドロフ
タル酸、無水メチルテトラヒドロフタル酸、無水
ハイミツク酸等を挙げることができる。 上記酸無水系硬化剤と併用される硬化促進剤と
しては、2−メチルイミダゾール、1−ベンジル
−2−メチルイミダゾールの如きイミダゾール
類、ベンジルジメチルアミンのような第3級アミ
ン類、オクチル酸スズ、オクチル酸悪鉛のような
カルボン酸金属塩等を挙げることができる。 光半導体素子封止用以外の用途の場合に使用す
る硬化剤としては上記した酸無水物系硬化剤以外
にジアミノジフエニルスルホン、4.4′−メチレン
ジアニリン、m−フエニレンジアミン、o−フエ
ニレンジアミン等のアミン系硬化剤を挙げること
ができる。 なお本発明においては、必要に応じて公知の添
加剤をエポキシ樹脂系中に含ませることが可能
で、これらの例としては、シリカ、アルミナ、タ
ルク、クレー、ガラス繊維などの無機質充填剤、
酸化アンチモンハロゲン化物、リン化物などの難
燃化剤、離型剤、顔料等を挙げることができる。 本発明の組成物を使用して実際に半導体素子を
封止するには常法に準じ、ポツテイング、トラン
スフアー成形法等により行なえればよい。 本発明に於て添加すべきγ−メルカプトプロピ
ルトリメトキシシランの量をエポキシ樹脂系100
重量部に対して0.2〜5重量部と限定した理由は
0.2重量部以下の添加で添加効果がなく、一方5
以上では得られる硬化物の耐熱特性が低下するか
らである。 そして上記の如き本発明のエポキシ樹脂組成物
により、セラミツクステム面上に載置された半導
体素子を封止して得られる半導体素子封止体は次
の如き効果を有する。 (a) 半導体素子封止体が、異なる温度環境雰囲気
下に置かれても、セラミツクステム面と硬化樹
脂体の境界面にクラツクあるいは剥離が生じな
い(冷熱サイクルテスト結果に優れる。) (b) 上記(a)のため、本発明の樹脂組成物を用いる
とセラミツクステム面上に載置された半導体素
子を封止するとき、従来の如く封止用樹脂に充
填剤を多量に加えなくとも、冷熱ササイクルテ
ストにすぐれる半導体素子封止体を得ることが
できる。 (C) 半導体素子封止体の封止体樹脂に、極微粒子
のシリカ粉などを加え、光拡散効果を出す場
合、従来の封止体では煮沸試験性に劣り、硬化
樹脂が白濁するが、本発明の組成物より得られ
る封止体ではそのような欠点はなくなる。 以下本発明を実施例により具体的に説明する。 実施例中の部は重量部である。 実施例 1 エポキシ樹脂(シエル社製エピコート828)、硬
化剤(無水メチルヘキサヒドロフタル酸)、オク
チル酸スズ、シランカツプリング剤(γ−メルカ
プトプロピルトリメトキシシラン)を下記第1表
の量で配合してなる液状樹脂をセラミツクステム
上にポツテイングし120℃の乾燥機中で16時間加
熱硬化させて得たサンプルの特性試験(冷熱サイ
クルテスト)を行なつた。 その結果を下記第1表に併記する。 なお第1表中にはシランカツプリング剤無添加
の場合も記載した。
The present invention relates to an epoxy resin composition for semiconductor encapsulation, particularly to an epoxy resin composition for semiconductor encapsulation that has excellent adhesiveness to ceramic substrates. Conventionally, epoxy resin compositions have been used to resin-seal semiconductor elements mounted on the ceramic stem surface, but the molded bodies obtained by resin-sealing can be used in different temperature environments and in different atmospheres. If the ceramic surface and the cured resin body are placed on the surface, cracks will occur at the interface between the ceramic surface and the cured resin body, and in more severe cases, a peeling phenomenon will occur. Possible ways to overcome these drawbacks include adding a large amount of filler or lowering the glass transition temperature of the cured resin, but if the semiconductor element is a light emitting diode, the former will reduce the light transmittance. This is not desirable as it may worsen the condition. Moreover, in the latter case, heat resistance deteriorates and the product tends to become cloudy even in a boiling test. In addition, in the case of light emitting diode molds, 1 to 20% by weight of ultrafine silica powder is added to a resin composition with high light transmittance to create a light diffusion effect. The adhesion between the silica powder and the silica powder was poor, and a cloudy phenomenon was observed in the boiling test. In addition, as a conventional method for improving resin compositions for semiconductor devices to prevent semiconductor devices other than light-emitting diodes, it is possible to add a large amount of filler to achieve low-line distension. There is also a limit to the amount of additive that can be added depending on the required properties.Furthermore, in the case of improving heat cycle characteristics, it is often not possible to meet the requirements by simply improving low linear expansion. The present invention is made to improve such drawbacks, and is characterized by adding 0.2 to 5 parts by weight of γ-mercaptopropyltrimethoxysilane to 100 parts by weight of an epoxy resin system containing an epoxy resin and a curing agent. , relates to an epoxy resin composition for semiconductor encapsulation for encapsulating a semiconductor element placed on a ceramic stem surface. The epoxy resin composition used in the present invention is generally liquid at room temperature for the above-mentioned ceramic stem potting, but it may have any other properties. Examples of the epoxy resin include known bisphenol epoxy resins, phenol novolak epoxy resins, and cyclo epoxy resins. For optical semiconductor device sealing applications, it is best to use acid anhydride curing agents from the viewpoint of transparency and heat discoloration resistance. Examples of these curing agents include tetrahydrophthalic anhydride, hexanhydride, Examples include hydrophthal, phthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and hemicic anhydride. Examples of the curing accelerator used in combination with the acid anhydride curing agent include imidazoles such as 2-methylimidazole and 1-benzyl-2-methylimidazole, tertiary amines such as benzyldimethylamine, tin octylate, Examples include carboxylic acid metal salts such as lead octylate. In addition to the above-mentioned acid anhydride-based curing agents, curing agents used for purposes other than encapsulating optical semiconductor devices include diaminodiphenylsulfone, 4,4'-methylene dianiline, m-phenylene diamine, and o-phenylene. Amine-based curing agents such as diamines can be mentioned. In the present invention, it is possible to incorporate known additives into the epoxy resin system if necessary. Examples of these include inorganic fillers such as silica, alumina, talc, clay, and glass fiber;
Examples include flame retardants such as antimony oxide halides and phosphides, mold release agents, and pigments. In order to actually seal a semiconductor element using the composition of the present invention, it may be carried out by a conventional method such as potting or transfer molding. In the present invention, the amount of γ-mercaptopropyltrimethoxysilane to be added to the epoxy resin system is 100%.
The reason for limiting it to 0.2 to 5 parts by weight is
Addition of 0.2 parts by weight or less has no effect;
This is because the heat resistance properties of the cured product obtained above are reduced. A semiconductor element sealed body obtained by sealing a semiconductor element placed on a ceramic stem surface with the epoxy resin composition of the present invention as described above has the following effects. (a) No cracks or peeling will occur at the interface between the ceramic stem surface and the cured resin body even if the semiconductor element encapsulation is placed in different temperature environments (b) Because of (a) above, when the resin composition of the present invention is used to seal a semiconductor element mounted on a ceramic stem surface, it is possible to seal the semiconductor element mounted on the ceramic stem surface without adding a large amount of filler to the sealing resin as in the conventional case. It is possible to obtain a semiconductor element sealed body that is excellent in thermal cycle tests. (C) When adding ultrafine silica powder to the molding resin of a semiconductor element molding to create a light diffusion effect, conventional moldings have poor boiling test properties and the cured resin becomes cloudy; The sealed body obtained from the composition of the present invention does not have such drawbacks. The present invention will be specifically explained below using examples. Parts in the examples are parts by weight. Example 1 Epoxy resin (Epicote 828 manufactured by Siel Corporation), curing agent (methylhexahydrophthalic anhydride), tin octylate, and silane coupling agent (γ-mercaptopropyltrimethoxysilane) were blended in the amounts shown in Table 1 below. A characteristic test (cold/hot cycle test) was performed on a sample obtained by potting the liquid resin on a ceramic stem and heating and curing it in a dryer at 120°C for 16 hours. The results are also listed in Table 1 below. Note that Table 1 also shows the case where no silane coupling agent was added.

【表】【table】

【表】 上記第1表の冷熱サイクルテスト結果において
分母は用いた試料の総数、分子は冷熱サイクルテ
ストの結果硬化樹脂とセラミツクステム面の境界
にクラツクが入つた試料数を示す。 実施例 2 下記第2表に記載の配合で実施例1の同様の要
領により樹脂組成物を作り、同様の要領で冷熱サ
イクル試験を行なつた。その果を第2表に記載す
る。
[Table] In the thermal cycle test results in Table 1 above, the denominator indicates the total number of samples used, and the numerator indicates the number of samples in which cracks were found at the boundary between the cured resin and the ceramic stem surface as a result of the thermal cycle test. Example 2 A resin composition was prepared in the same manner as in Example 1 using the formulations shown in Table 2 below, and a thermal cycle test was conducted in the same manner. The results are listed in Table 2.

【表】 実施例 3 下記第3表に記載の配合で実施例1と同様の要
領により樹脂組成物を作り、同様の要領で冷熱サ
イクル試験を行なつた。その結果を第3表に記載
する。
[Table] Example 3 A resin composition was prepared in the same manner as in Example 1 using the formulations shown in Table 3 below, and a thermal cycle test was conducted in the same manner. The results are listed in Table 3.

【表】 実施例 4 実施例1のNo.1〜No.5の配合中に各々粒径1〜
10μのシリカ微粉を7g加えて均一混合後、実施
例1と同様の条件で硬化させ、得られた硬化物を
48時間煮沸したところ、No.1組成の硬化物にはク
モリを生じたがNo.2〜No.5硬化物はクモリを生じ
なかつた。 実施例 5 下記第4表に記載の配合で実施例1と同様の要
領により樹脂組成物を作り、実施例1と同様の要
領でサンプル作成した。 得られたサンプルについてプレツシヤークツカ
ーサイクルテストを行なつたその結果を第4表に
記載する。
[Table] Example 4 In the formulation of No. 1 to No. 5 of Example 1, each particle size was 1 to 1.
After adding 7g of 10μ fine silica powder and mixing uniformly, it was cured under the same conditions as in Example 1, and the resulting cured product was
When boiled for 48 hours, the cured product of composition No. 1 developed cloudiness, but the cured products of No. 2 to No. 5 did not develop cloudiness. Example 5 A resin composition was prepared in the same manner as in Example 1 using the formulations shown in Table 4 below, and samples were prepared in the same manner as in Example 1. Table 4 shows the results of a pressure cycle test performed on the obtained sample.

【表】 第4表特性値に於て、分母は試料個数、分子は
特性試験の結果不良となつた試料数を示す。 良、不良の判断は特性試験の結果、セラミツク
ステムと硬化樹脂の境界に剥離が起つたものを不
良とした。
[Table] In the characteristic values in Table 4, the denominator indicates the number of samples, and the numerator indicates the number of samples that failed as a result of the characteristic test. Judgment as good or bad was made if peeling occurred at the boundary between the ceramic stem and the cured resin as a result of the characteristic test.

Claims (1)

【特許請求の範囲】[Claims] 1 エポキシ樹脂および硬化剤を含むエポキシ樹
脂系100重量部に、γ−メルカプトプロピルトリ
メトキシシラン0.2〜5重量部を添加することを
特徴とする、セラミツクステム面上に載置された
半導体素子を封止するための半導体封止用エポキ
シ樹脂組成物。
1. A method for sealing a semiconductor element placed on a ceramic stem surface, characterized by adding 0.2 to 5 parts by weight of γ-mercaptopropyltrimethoxysilane to 100 parts by weight of an epoxy resin system containing an epoxy resin and a curing agent. An epoxy resin composition for semiconductor encapsulation.
JP55134570A 1980-09-26 1980-09-26 Epoxy resin composition for sealing semiconductor Granted JPS5759366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55134570A JPS5759366A (en) 1980-09-26 1980-09-26 Epoxy resin composition for sealing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55134570A JPS5759366A (en) 1980-09-26 1980-09-26 Epoxy resin composition for sealing semiconductor

Publications (2)

Publication Number Publication Date
JPS5759366A JPS5759366A (en) 1982-04-09
JPH02855B2 true JPH02855B2 (en) 1990-01-09

Family

ID=15131424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55134570A Granted JPS5759366A (en) 1980-09-26 1980-09-26 Epoxy resin composition for sealing semiconductor

Country Status (1)

Country Link
JP (1) JPS5759366A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041771B1 (en) * 1995-08-11 2006-05-09 Kac Holdings, Inc. Encapsulant with fluxing properties and method of use in flip-chip surface mount reflow soldering
KR100430195B1 (en) * 1998-12-31 2004-09-18 제일모직주식회사 Epoxy Resin Composition for Sealing Semiconductor Devices with Excellent Crack Resistance
JP7329320B2 (en) * 2018-11-01 2023-08-18 株式会社ダイセル Curable epoxy resin composition
JP7329319B2 (en) * 2018-11-01 2023-08-18 株式会社ダイセル Curable epoxy resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2090013A5 (en) * 1970-04-21 1972-01-07 Licentia Gmbh

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2090013A5 (en) * 1970-04-21 1972-01-07 Licentia Gmbh

Also Published As

Publication number Publication date
JPS5759366A (en) 1982-04-09

Similar Documents

Publication Publication Date Title
JPH02855B2 (en)
JPH08157561A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JPS5981328A (en) Epoxy resin composition for semiconductor sealing
JP3581192B2 (en) Epoxy resin composition and resin-encapsulated semiconductor device
JP2000017149A (en) Liquid epoxy resin composition for sealing medium and its cured product
JPH0782343A (en) Epoxy resin composition for sealing semiconductor and semiconductor device sealed therewith
JP2001279064A (en) Epoxy resin composition for semiconductor sealing
JP3008981B2 (en) Epoxy resin composition
KR20190053057A (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
JP2675108B2 (en) Epoxy resin composition
JP3413923B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP3417283B2 (en) Epoxy resin composition for sealing and semiconductor device sealing method
JPS6241218A (en) Epoxy resin composition for sealing semiconductor
JP2823633B2 (en) Epoxy resin composition
JPH1112442A (en) Sealing resin composition and sealed semiconductor device
KR101805991B1 (en) Epoxy Resin Composition for Sealing Semiconductor
JP2004155841A (en) Sealing resin composition, and semiconductor sealing device
JPS6377922A (en) Epoxy resin composition for sealing semiconductor
JPH05214216A (en) Epoxy resin molding material for sealing
JPH03221518A (en) Sealing resin composition and sealed semiconductor device
JPS6289721A (en) Sealing resin composition
JPH10306141A (en) Semiconductor device and epoxy resin composition
JPH10279670A (en) Epoxy resin composition and semiconductor device sealed therewith
JPH04248830A (en) Sealing resin composition and sealed semiconductor device
JPS6126663A (en) Sealing molding material