JPH02852Y2 - - Google Patents

Info

Publication number
JPH02852Y2
JPH02852Y2 JP20013286U JP20013286U JPH02852Y2 JP H02852 Y2 JPH02852 Y2 JP H02852Y2 JP 20013286 U JP20013286 U JP 20013286U JP 20013286 U JP20013286 U JP 20013286U JP H02852 Y2 JPH02852 Y2 JP H02852Y2
Authority
JP
Japan
Prior art keywords
conductive
wiring member
insulating
particles
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20013286U
Other languages
Japanese (ja)
Other versions
JPS63108164U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20013286U priority Critical patent/JPH02852Y2/ja
Publication of JPS63108164U publication Critical patent/JPS63108164U/ja
Application granted granted Critical
Publication of JPH02852Y2 publication Critical patent/JPH02852Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Non-Insulated Conductors (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は異方導電性配線部材、とくには電子機
器などに利用される、耐酸化性、耐硫化性にすぐ
れた異方導電性配線部材に関するものである。
[Detailed description of the invention] (Field of industrial application) The present invention is an anisotropically conductive wiring member, especially an anisotropically conductive wiring member with excellent oxidation resistance and sulfidation resistance, which is used in electronic devices. It is related to.

(従来技術とその問題点) 従来の可撓性配線部材は通常導電性や加工性な
どの点から第6図に示すような絶縁性可撓性フイ
ルムa上に絶縁性接着剤層bを介して銅などの金
属導電材cをエツチングなどの手段により設けた
ものが用いられているが、銅は耐酸化性、耐硫化
性に劣るため、貴金属でメツキしたり、カーボン
インクなどでコートし、化学的に安定な層dにす
る必要がある。貴金属のメツキではコストが問題
になり、インクのコーテイングでは回路が小さく
なると位置合わせが難しく隣接する導体間でリー
クしやすくなる。また金属導電材cへの化学的に
安定な層dの形成により接着剤層b上の凹凸が一
層大きくなるため、この配線部材の接続に際し、
凹凸間に形成される空隙に結露などによる水分が
たまり、絶縁不良を起こすという欠点があつた。
(Prior art and its problems) Conventional flexible wiring members are usually made by using an insulating adhesive layer b on an insulating flexible film a as shown in Fig. 6 from the viewpoint of conductivity and workability. However, since copper has poor oxidation resistance and sulfidation resistance, it is plated with a precious metal or coated with carbon ink, etc. It is necessary to make the layer d chemically stable. Precious metal plating poses a cost issue, while ink coatings make alignment difficult and prone to leaks between adjacent conductors as circuits become smaller. In addition, the formation of the chemically stable layer d on the metal conductive material c makes the unevenness on the adhesive layer b even larger, so when connecting this wiring member,
The drawback was that moisture due to condensation or the like accumulates in the gaps formed between the uneven surfaces, causing insulation failure.

(問題点を解決するための手段) 本考案は、耐酸化性、耐硫化性にすぐれた異方
導電性配線部材を提供するもので、この配線部材
を、絶縁性可撓性フイルムの片面に絶縁性粘着剤
または接着剤層(以下単に接着剤層とする)を介
して導電線を互いに間隔を保つて平行パターン状
に配設してなる可撓性異方導電性配線板上に、導
電性粒子を分散配合してなる絶縁層を設け、その
導電性粒子の少なくとも一部がその一端を前記導
電線に接するとともに、他端を外部に露出して配
設したことを要旨とするものである。
(Means for solving the problem) The present invention provides an anisotropic conductive wiring member with excellent oxidation resistance and sulfidation resistance, and this wiring member is coated on one side of an insulating flexible film. Conductive wires are placed on a flexible anisotropically conductive wiring board, which is formed by arranging conductive wires in a parallel pattern at intervals through an insulating adhesive or an adhesive layer (hereinafter simply referred to as the adhesive layer). An insulating layer made of conductive particles dispersed therein is provided, and at least a portion of the conductive particles are disposed with one end in contact with the conductive wire and the other end exposed to the outside. be.

これをまず第1〜第4図に示した実施例により
説明すると、図において1は絶縁性可撓性フイル
ム、2はその片面に設けられた絶縁性接着剤層、
3はこの表面に互いに間隔を保つて、すなわち絶
縁性を保持した状態で、平行パターン状に配設さ
れた導電線である。この導電線3は、第1図およ
び第2図に示すようにその全体が接着剤層2の上
面に位置するように設けてもよいし、また第3図
および第4図に示すようにその一側、または全部
を接着剤層2の内部に埋没し、他側を上方に露出
させるか、または後述する導電性粒子5に接する
ように設けても良い。4は導電性粒子5を分散配
合してなる絶縁層で、導電線3上からその間隙を
埋めて接着剤層2の全面を被覆して設けられてい
る。この導電性粒子5は、その少なくとも一部の
ものが、その一端を導電線3に電気的に接し、他
端を外部に露出させて配設されている。なお、第
5図は本考案になる異方導電性配線部材6の接続
部材9との接続状態を示すもので、7はその基
板、8は接続端子である。
This will be explained first with reference to the embodiments shown in FIGS. 1 to 4. In the figures, 1 is an insulating flexible film, 2 is an insulating adhesive layer provided on one side of the film,
Reference numeral 3 designates conductive wires arranged in a parallel pattern on this surface while maintaining a distance from each other, that is, maintaining insulation properties. The conductive wire 3 may be provided so that the entirety thereof is located on the upper surface of the adhesive layer 2 as shown in FIGS. One side or the entirety may be buried inside the adhesive layer 2, and the other side may be exposed upward, or may be provided so as to be in contact with the conductive particles 5, which will be described later. Reference numeral 4 denotes an insulating layer formed by dispersing and blending conductive particles 5, which is provided over the conductive wires 3, filling the gaps therebetween and covering the entire surface of the adhesive layer 2. At least a portion of the conductive particles 5 are disposed such that one end thereof is in electrical contact with the conductive wire 3 and the other end is exposed to the outside. Incidentally, FIG. 5 shows the connection state of the anisotropically conductive wiring member 6 according to the present invention with the connecting member 9, where 7 is the substrate thereof and 8 is the connecting terminal.

上記構造の本考案になる配線部材に用いられる
絶縁性可撓性フイルムとしては、ポリイミド、ポ
リエステル、アラミド繊維含有ポリエステル、ガ
ラス繊維含有エポキシ、エチレン−酢酸ビニル共
重合体、ポリメチルメタクリレートなどの合成樹
脂フイルムやクロロプレン、ニトリルゴム、シリ
コーンなどの合成ゴムフイルムが採用される。こ
れらのフイルムの厚みは、合成樹脂の場合には基
板上の凹凸に対する馴染み易さ、しわの発生具
合、可撓性などを考慮して5μm〜5mm、好ましく
は10〜100μm、ゴムの場合には引き裂き強度、馴
染み易さなどから5μm〜5mm、好ましくは100〜
500μmである。
The insulating flexible film used in the wiring member of the present invention having the above structure is made of synthetic resins such as polyimide, polyester, polyester containing aramid fibers, epoxy containing glass fibers, ethylene-vinyl acetate copolymer, and polymethyl methacrylate. Films and synthetic rubber films such as chloroprene, nitrile rubber, and silicone are used. In the case of synthetic resin, the thickness of these films is 5 μm to 5 mm, preferably 10 to 100 μm, in the case of rubber, taking into account ease of adaptation to irregularities on the substrate, degree of wrinkle generation, flexibility, etc. 5 μm to 5 mm, preferably 100 to 5 mm in terms of tear strength and ease of familiarization
It is 500μm.

絶縁性接着剤層の形成に用いられる材料には、
エチレン−酢酸ビニル共重合体、エチレン−アク
リル共重合体、アイオモノマー(エチレン−アク
リル酸共重合体の誘導体)、フエノキシ樹脂、中
〜高分子量ポリアミド、ポリエステル樹脂などの
樹脂成分に粘着付与剤と粘度調整剤を添加してな
るホツトメルト接着剤、およびクロロプレン系、
ニトリルゴム系、ポリ酢酸ビニル系、塩化ビニル
系、アミノ樹脂系、尿素系、メラミン樹脂系、フ
エノール樹脂系、ノボラツク樹脂系、レゾルシノ
ールホルムアルデヒド樹脂系、キシレン樹脂系、
エポキシ系、ポリイソシアネート系、不飽和シリ
コーン系、ポリエステル系などの熱可塑性または
熱硬化性の各種粘着剤または接着剤が挙げられ
る。これらの厚みは樹脂の場合で5〜50μm、ゴ
ムの場合で5〜100μmが好ましい。
The materials used to form the insulating adhesive layer include:
Tackifier and viscosity are added to resin components such as ethylene-vinyl acetate copolymer, ethylene-acrylic copolymer, iomonomer (derivative of ethylene-acrylic acid copolymer), phenoxy resin, medium to high molecular weight polyamide, and polyester resin. Hot melt adhesives with added modifiers, and chloroprene-based adhesives,
Nitrile rubber type, polyvinyl acetate type, vinyl chloride type, amino resin type, urea type, melamine resin type, phenolic resin type, novolac resin type, resorcinol formaldehyde resin type, xylene resin type,
Examples include various thermoplastic or thermosetting pressure-sensitive adhesives or adhesives such as epoxy, polyisocyanate, unsaturated silicone, and polyester adhesives. The thickness of these materials is preferably 5 to 50 μm in the case of resin, and 5 to 100 μm in the case of rubber.

導電線には銅、ステンレス鋼、リン青銅、ベリ
リウム銅、ニツケル、アルミニウムなどの金属板
をエツチング加工したものや、これらの素材から
なる金属線が使用される。これらの断面形状は
丸、三角、四角、台形などの任意のものが採用さ
れ、その径は0.1μm〜1mm、好ましくは0.1〜
200μmである。
The conductive wires are etched metal plates made of copper, stainless steel, phosphor bronze, beryllium copper, nickel, aluminum, or the like, or metal wires made of these materials. These cross-sectional shapes can be any shape such as round, triangular, square, or trapezoidal, and their diameter is 0.1 μm to 1 mm, preferably 0.1 to 1 mm.
It is 200μm.

導電線は前述したように複数本を、互いに間隔
を保つて平行パターン状に配列するが、その配線
ピツチは1〜1000μm、通常は30〜400μmが望ま
しい。
As described above, a plurality of conductive wires are arranged in a parallel pattern at intervals, and the wiring pitch is preferably 1 to 1000 .mu.m, usually 30 to 400 .mu.m.

一方、導電性粒子の材料としては、タングステ
ンカーバイト、酸化スズ、窒化チタンなどの金属
酸化物、金属窒化物、あるいは金属炭化物や、金
メツキもしくはカーボンコートされたガラスビー
ズ、カーボンを混合した導電性ゴム片、カーボン
バルーンなどの、耐酸化性、耐硫化性に富んだも
のが挙げられるが、これらの内では金属酸化物、
金属窒化物、あるいは金属炭化物が好ましく、と
りわけタングステンカーバイトが望ましい。これ
らの粒子の形状は針状、球状、不定形などの任意
であるが、その大きさは、隣接する導電線との絶
縁性を保持するために、導電線の間隔、すなわち
前述した1〜1000μmの1/3以下、通常は0.3〜
200μmの範囲で、平均粒径に対して±5μm以内の
バラツキのものを、導電線の間隔に応じて適宜採
用するのが望ましい。
On the other hand, conductive particle materials include metal oxides such as tungsten carbide, tin oxide, and titanium nitride, metal nitrides, or metal carbides, gold-plated or carbon-coated glass beads, and conductive particles mixed with carbon. Examples include rubber pieces, carbon balloons, etc., which are highly resistant to oxidation and sulfidation, but among these, metal oxides,
Metal nitrides or metal carbides are preferred, and tungsten carbide is particularly preferred. The shape of these particles can be arbitrary, such as acicular, spherical, or irregular, but their size is determined by the distance between the conductive wires, i.e., 1 to 1000 μm as described above, in order to maintain insulation from adjacent conductive wires. 1/3 or less, usually 0.3~
It is preferable to use a particle size within the range of 200 μm with a variation within ±5 μm of the average particle size depending on the spacing between the conductive wires.

これらの導電性粒子を分散配合し絶縁層を形成
するための材料としては絶縁性を有する合成樹脂
または合成ゴムが用いられ、これには1)前述し
た接着剤層を形成するものと同一または異種の熱
可塑性または熱硬化性の各種粘着剤または接着
剤、および2)エチレン−酢酸ビニル共重合体
系、エチレン−アクリル共重合体系、アイオモノ
マー(エチレン−アクリル酸共重合体の誘導体)
系、フエノキシ樹脂系、ポリアミド樹脂系、クロ
ロプレン系、ニトリルゴム系、ポリ酢酸ビニル
系、塩化ビニル系、アミノ樹脂系、尿素系、メラ
ミン樹脂系、フエノール樹脂系、ノボラツク樹脂
系、レゾルシノールホルムアルデヒド樹脂系、キ
シレン樹脂系、エポキシ系、ポリイソシアネート
系、不飽和シリコーン系、ポリエステル系などの
非粘着性または非接着性の、熱可塑性または熱硬
化性を有するものが挙げられ、これらの内ではゴ
ム状弾性を有するものが好ましい。また、この絶
縁層はその導電線上における厚みとして、これに
接する絶縁層中の導電性粒子が外部に露出するよ
うに、使用される粒子の大きさの20〜95%の範囲
であることが好ましく、一般には前述の接着剤層
におけるのと同様、樹脂の場合で5〜50μm、ゴ
ムの場合で5〜100μmが適当である。
As a material for dispersing and blending these conductive particles to form an insulating layer, a synthetic resin or synthetic rubber having insulating properties is used. 2) ethylene-vinyl acetate copolymer system, ethylene-acrylic copolymer system, iomonomer (derivative of ethylene-acrylic acid copolymer)
system, phenoxy resin system, polyamide resin system, chloroprene system, nitrile rubber system, polyvinyl acetate system, vinyl chloride system, amino resin system, urea system, melamine resin system, phenolic resin system, novolac resin system, resorcinol formaldehyde resin system, Non-adhesive or non-adhesive thermoplastic or thermosetting materials such as xylene resin, epoxy, polyisocyanate, unsaturated silicone, and polyester are listed. It is preferable to have one. Further, the thickness of this insulating layer on the conductive wire is preferably in the range of 20 to 95% of the size of the particles used so that the conductive particles in the insulating layer in contact with it are exposed to the outside. In general, as in the case of the adhesive layer described above, a suitable thickness is 5 to 50 μm for resin and 5 to 100 μm for rubber.

本考案になる配線部材の製作に当つては、まず
上記の絶縁性可撓性フイルム上に絶縁性接着剤層
を形成するが、これはフイルム上に接着剤層をラ
ミネートする方法、接着剤を印刷またはコーテイ
ングするなど従来公知の方法によつて達成するこ
とができる。なお、この場合において、すでにフ
イルム上に接着剤層がラミネートされている市販
のものを採用してもよい。これを可撓性異方導電
性配線板にするには、この接着剤層上に導電線を
配設し、プレス硬化することにより行なうことが
できるが、導電線として金属線を用いる場合はこ
の積層されたフイルムをドラムに巻き付け、これ
を回転させながら金属線の繰り出し位置を軸方向
へ少しずつずらしつゝコイル状に巻きとつて固定
し、所定の長さに切断した後、ドラムから取り外
すという方法が採用される。なお、この配線板の
形成には接着剤層に導電線を配設した市販の積層
シートに、絶縁性可撓性フイルムをラミネートす
る方法を用いてもよい。
In manufacturing the wiring member of the present invention, an insulating adhesive layer is first formed on the above-mentioned insulating flexible film. This can be achieved by conventionally known methods such as printing or coating. In this case, a commercially available film in which an adhesive layer is already laminated may be used. In order to make this into a flexible anisotropic conductive wiring board, conductive wires can be placed on this adhesive layer and press hardened. However, when using metal wires as the conductive wires, The laminated film is wound around a drum, and while the film is rotated, the position of the metal wire being fed out is shifted little by little in the axial direction.The film is wound into a coil and fixed, and after being cut to a predetermined length, it is removed from the drum. method is adopted. Note that this wiring board may be formed by laminating an insulating flexible film onto a commercially available laminated sheet in which conductive wires are provided on an adhesive layer.

つぎに、この可撓性異方導電性配線板に絶縁層
を形成すると、本考案の異方導電性配線部材が得
られるが、それには、1)導電性粒子を絶縁層材
料と、トルエン、灯油、セロアセ、イソホロンな
どの溶剤とともに、ミキサーやライカイ機、ニー
ダーなどを用いて混合し、得られたインクを可撓
性印刷配線板上に印刷もしくはコーターにより塗
布した後、これを加圧状態下で乾燥機へ導入する
か、熱プレスで硬化する方法、2)絶縁層材料と
して粘着剤または接着剤を使用して、これをあら
かじめ可撓性異方導電性配線板上に印刷もしくは
コーターにより塗布した後、導電性粒子を1〜8
個/mm2、好ましくは2〜3個/mm2の割合で散布
し、ついで熱圧することにより導電性粒子を絶縁
層材料に押し入れて固定する方法などがあり、い
ずれの場合も、この硬化にともなう絶縁層材料の
収縮により、導電性粒子の少なくとも一部が、導
電線上において、その一端を外部に露出した状態
となる。
Next, by forming an insulating layer on this flexible anisotropically conductive wiring board, the anisotropically conductive wiring member of the present invention is obtained. The resulting ink is mixed with a solvent such as kerosene, celloacetate, or isophorone using a mixer, Raikai machine, kneader, etc., and the resulting ink is printed or applied with a coater on a flexible printed wiring board, and then it is applied under pressure. 2) Use an adhesive or adhesive as the insulating layer material and apply it on the flexible anisotropic conductive wiring board by printing or using a coater in advance. After that, 1 to 8 conductive particles
There is a method of spraying conductive particles at a rate of 2 to 3 particles/mm 2 , preferably 2 to 3 particles/mm 2 , and then pressing them under heat to force and fix the conductive particles into the insulating layer material. Due to the accompanying contraction of the insulating layer material, at least a portion of the conductive particles will be in a state where one end thereof is exposed to the outside on the conductive wire.

このようにして得られた本考案になる異方導電
性配線部材は、第5図に示すような接続部材9と
接続して一般の用に供されるが、この際の基板7
および接続端子8との接合は、接着剤により行な
う方法、絶縁層材料が熱可塑性樹脂の場合は熱圧
一体化することにより、また熱硬化性樹脂の場合
は配線部材を未硬化または半硬化の状態にとどめ
ておいてこの接続とともに熱圧一体化する方法が
採用される。
The anisotropically conductive wiring member according to the present invention thus obtained is connected to a connecting member 9 as shown in FIG. 5 for general use.
The connecting terminals 8 and 8 can be bonded by adhesive, or if the insulating layer material is a thermoplastic resin, by heat-pressure integration, or if the insulating layer material is a thermosetting resin, the wiring member is uncured or semi-cured. A method is adopted in which this connection is left in the same state and integrated with heat and pressure.

つぎに、本考案の具体的態様を実施例により説
明する。
Next, specific aspects of the present invention will be explained using examples.

実施例 1 厚み25μmのポリイミドフイルムと、それぞれ
厚み35μmのエポキシ系接着剤層と銅箔とから構
成される可撓性積層板を用い、その銅箔を導電線
の幅および間隔としてそれぞれ0.1mmにエツチン
グ加工し、可撓性異方導電性配線板を得た。
Example 1 A flexible laminate consisting of a polyimide film with a thickness of 25 μm, an epoxy adhesive layer with a thickness of 35 μm, and a copper foil was used, and the width and spacing of the conductive wires were 0.1 mm each. Etching was performed to obtain a flexible anisotropically conductive wiring board.

つぎに、粒径25μmのタングステンカーバイト
粉40重量部、シリコーンゴムKE151KU(信越化
学工業社製)100重量部、灯油200重量部、加硫剤
C−2(信越化学工業社製)2重量部を混合して
インクを作り、これを上記の配線板上に導電線上
で厚さが20μmになるようにスクリーン印刷し、
圧力をかけながら加硫硬化した。樹脂の加硫収縮
によつてタングステンカーバイトの各粒子の一部
がシート面から相対的に突出し、本考案による異
方導電性配線部材が得られた。
Next, 40 parts by weight of tungsten carbide powder with a particle size of 25 μm, 100 parts by weight of silicone rubber KE151KU (manufactured by Shin-Etsu Chemical Co., Ltd.), 200 parts by weight of kerosene, and 2 parts by weight of vulcanizing agent C-2 (manufactured by Shin-Etsu Chemical Co., Ltd.) Mix this to make an ink, and screen print this onto the conductive wire on the above wiring board to a thickness of 20 μm.
It was vulcanized and hardened while applying pressure. Due to vulcanization shrinkage of the resin, a portion of each tungsten carbide particle relatively protruded from the sheet surface, and an anisotropically conductive wiring member according to the present invention was obtained.

つぎに、この配線部材を導電線の配向方向と直
角な方向に切断して20mm幅のものとし、これを第
5図に示されるような、基板上に平行端子群が
0.6mm幅、1.2mmピツチで配列された、一対の接続
部材間に置き、常温で50Kg/cm2で1分間押圧して
接続した。これについて抵抗を測定したところ、
0.3〜2Ωであり、これより平行端子群間の絶縁
性は充分に保たれていることが判つた。
Next, this wiring member is cut in a direction perpendicular to the orientation direction of the conductive wires to make a 20 mm wide piece, and a group of parallel terminals are arranged on the board as shown in Figure 5.
It was placed between a pair of connecting members arranged with a width of 0.6 mm and a pitch of 1.2 mm, and connected by pressing at 50 kg/cm 2 for 1 minute at room temperature. When I measured the resistance of this, I found that
It was 0.3 to 2Ω, and it was found that the insulation between the parallel terminal groups was sufficiently maintained.

実施例 2 厚さ75μmのポリエステルシート上に、シリコ
ーンゴムKE151KU(信越化学工業社製)100重量
部と加硫剤C−2(信越化学工業社製)2重量部
とを混練したものを、厚さが0.1mmになるように
トツピングし、得られた積層シートを回転ドラム
に巻き付けて固定した。このドラムを回転させな
がら、直径40μmの銅線を軸方向へ0.1mm/回転の
割合で移動しつゝボビンより繰り出し、積層シー
ト上に巻き付けて0.1mmピツチのコイルを作つた。
これを軸方向に平行な2本の線上で切断し、ドラ
ムから取り外して可撓性異方導電性配線板を得
た。
Example 2 A mixture of 100 parts by weight of silicone rubber KE151KU (manufactured by Shin-Etsu Chemical Co., Ltd.) and 2 parts by weight of vulcanizing agent C-2 (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed on a polyester sheet with a thickness of 75 μm. The laminated sheet was topped with a length of 0.1 mm, and the resulting laminated sheet was wound around a rotating drum and fixed. While this drum was rotating, a copper wire with a diameter of 40 μm was moved in the axial direction at a rate of 0.1 mm/rotation and was fed out from the bobbin and wound onto the laminated sheet to form a coil with a pitch of 0.1 mm.
This was cut along two lines parallel to the axial direction and removed from the drum to obtain a flexible anisotropically conductive wiring board.

これとは別に粒径15μmのタングステンカーバ
イト粉40重量部、シリコーンゴムKE151KU(信
越化学工業社製)100重量部、灯油200重量部、加
硫剤C−2(信越化学工業社製)2重量部を混合
してインクを作り、これを上記の配線板上に導電
線上で厚さが10μmになるようにスクリーン印刷
し、熱圧硬化したところ、シリコーンゴムの加熱
収縮によつてタングステンカーバイトの粒子の一
部がシート面から相対的に突出し、本考案による
異方導電性配線部材が得られた。
In addition, 40 parts by weight of tungsten carbide powder with a particle size of 15 μm, 100 parts by weight of silicone rubber KE151KU (manufactured by Shin-Etsu Chemical Co., Ltd.), 200 parts by weight of kerosene, and 2 parts by weight of vulcanizing agent C-2 (manufactured by Shin-Etsu Chemical Co., Ltd.) When the ink was screen printed on the above wiring board to a thickness of 10 μm on a conductive wire and cured by heat and pressure, the silicone rubber was heated and contracted to form an ink of tungsten carbide. A part of the particles relatively protruded from the sheet surface, and an anisotropically conductive wiring member according to the present invention was obtained.

これを前例と同様にして接続による抵抗を測定
したところ、0.5〜1Ωであつた。
When the resistance of the connection was measured in the same manner as in the previous example, it was 0.5 to 1Ω.

(考案の効果) 本考案による異方導電性配線部材は、 導電体が絶縁層で被覆されているので、耐酸
化性、耐硫化性が良い。
(Effects of the invention) The anisotropic conductive wiring member according to the invention has good oxidation resistance and sulfidation resistance because the conductor is covered with an insulating layer.

導電線をメツキする必要がないのでコストが
安い。
Cost is low because there is no need to plate conductive wires.

導電性粒子が絶縁層面よりも突出しているの
で接触安定性がよい。
Since the conductive particles protrude beyond the surface of the insulating layer, contact stability is good.

導電線間の空隙を絶縁層が埋め、かつ接続部
材に対し弾性圧着するので、導電線と接続部材
との隙間に水分が侵入するおそれがない。
Since the insulating layer fills the gap between the conductive wires and is elastically crimped to the connecting member, there is no risk of moisture entering the gap between the conductive wire and the connecting member.

導電線が可撓性フイルムと絶縁層とにはさみ
込まれているので、導電線のピール、リークが
ない。
Since the conductive wire is sandwiched between the flexible film and the insulating layer, there is no peeling or leakage of the conductive wire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はいずれも本考案の異なる態様
の実施例における断面説明図、第5図a,bはそ
れぞれ本考案にかかわる異方導電性配線部材の接
続部材への接続状態を説明する斜視図、および底
面図、第6図は従来例における断面説明図であ
る。 主要な符号の説明、1……絶縁性可撓性フイル
ム、2……絶縁性接着剤層、3……導電線、4…
…絶縁層、5……導電性粒子。
Figures 1 to 4 are cross-sectional explanatory views of different embodiments of the present invention, and Figures 5a and 5b each illustrate the state of connection of the anisotropically conductive wiring member to the connection member according to the present invention. A perspective view, a bottom view, and a cross-sectional view of the conventional example are shown in FIG. Explanation of main symbols, 1... Insulating flexible film, 2... Insulating adhesive layer, 3... Conductive wire, 4...
...Insulating layer, 5...Electroconductive particles.

Claims (1)

【実用新案登録請求の範囲】 1 絶縁性可撓性フイルムの片面に絶縁性粘着剤
または接着剤層を介して導電線を互いに間隔を
保つて平行パターン状に配設してなる可撓性異
方導電性配線板上に、導電性粒子を分散配合し
てなる絶縁層を設け、その導電性粒子の少なく
とも一部がその一端を前記導電線に接するとと
もに、他端を外部に露出して配設したことを特
徴とする異方導電性配線部材。 2 導電性粒子が、金属炭化物、金属酸化物、あ
るいは金属窒化物からなる実用新案登録請求の
範囲第1項記載の異方導電性配線部材。 3 導電性粒子が、導電線の間隔の1/3以下の径
を有するものからなる実用新案登録請求の範囲
第1項記載の異方導電性配線部材。 4 絶縁層が、ゴム状弾性体からなる実用新案登
録請求の範囲第1項記載の異方導電性配線部
材。
[Claims for Utility Model Registration] 1. A flexible film in which conductive wires are arranged in a parallel pattern at intervals on one side of an insulating flexible film via an insulating adhesive or an adhesive layer. An insulating layer formed by dispersing conductive particles is provided on a conductive wiring board, and at least a part of the conductive particles is arranged with one end in contact with the conductive wire and the other end exposed to the outside. An anisotropically conductive wiring member characterized by: 2. The anisotropically conductive wiring member according to claim 1, wherein the conductive particles are made of metal carbide, metal oxide, or metal nitride. 3. The anisotropically conductive wiring member according to claim 1, wherein the conductive particles have a diameter that is 1/3 or less of the distance between the conductive wires. 4. The anisotropically conductive wiring member according to claim 1, wherein the insulating layer is made of a rubber-like elastic material.
JP20013286U 1986-12-29 1986-12-29 Expired JPH02852Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20013286U JPH02852Y2 (en) 1986-12-29 1986-12-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20013286U JPH02852Y2 (en) 1986-12-29 1986-12-29

Publications (2)

Publication Number Publication Date
JPS63108164U JPS63108164U (en) 1988-07-12
JPH02852Y2 true JPH02852Y2 (en) 1990-01-10

Family

ID=31162361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20013286U Expired JPH02852Y2 (en) 1986-12-29 1986-12-29

Country Status (1)

Country Link
JP (1) JPH02852Y2 (en)

Also Published As

Publication number Publication date
JPS63108164U (en) 1988-07-12

Similar Documents

Publication Publication Date Title
US5240761A (en) Electrically conductive adhesive tape
US4568592A (en) Anisotropically electroconductive film adhesive
US5087494A (en) Electrically conductive adhesive tape
JP5196703B2 (en) Adhesive film
EP0170703A1 (en) Film-shaped connector and method of manufacturing the same
JP5476168B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JP3472987B2 (en) Manufacturing method of connecting member and manufacturing apparatus therefor
JPH02852Y2 (en)
JPH06333965A (en) Anisotropic conductive adhesive sheet
JP2836337B2 (en) Anisotropic conductive resin film adhesive
JP3783785B2 (en) Method for manufacturing anisotropic conductive resin film adhesive and method for connecting between fine circuits
JPH10106726A (en) Manufacture of sheet-like heater element
JPH0226346B2 (en)
JP2003208931A (en) Connecting member
JPS6348150B2 (en)
JPH09147928A (en) Connecting member
JPH11121073A (en) Connecting member and its manufacture
JP3608213B2 (en) Manufacturing method of anisotropic conductive sheet
JPH087957A (en) Connecting method of circuit board and connecting structure body, and adhesive film using for it
JPH08148210A (en) Connection member
JPS6215777A (en) Film-like connector and manufacture thereof
JP4155470B2 (en) Electrode connection method using connecting members
CN220845978U (en) Conductive adhesive tape
JPH07220539A (en) Manufacture of anisotropic conductive sheet