JPH0284527A - Treatment of carbon fiber - Google Patents

Treatment of carbon fiber

Info

Publication number
JPH0284527A
JPH0284527A JP4343289A JP4343289A JPH0284527A JP H0284527 A JPH0284527 A JP H0284527A JP 4343289 A JP4343289 A JP 4343289A JP 4343289 A JP4343289 A JP 4343289A JP H0284527 A JPH0284527 A JP H0284527A
Authority
JP
Japan
Prior art keywords
treatment
carbon fibers
fiber
acid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4343289A
Other languages
Japanese (ja)
Inventor
Masaru Tanaka
勝 田中
Noriaki Takada
高田 則明
Toru Hiramatsu
徹 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP4343289A priority Critical patent/JPH0284527A/en
Publication of JPH0284527A publication Critical patent/JPH0284527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

PURPOSE:To improve tensile strength of composite and adhesiveness of the fiber with matrix resin by strongly electrolyzing carbon fiber at anode in an electrolytic solution of acid or salt of said acid and inactivating the surface of said fiber, then dipping in an alkaline aqueous solution. CONSTITUTION:A carbon fiber (preferably obtained by heating acrylonitrile- based fiber in oxidative atmosphere and then heating at high-temperature in inert atmosphere) is strongly electrolyzed at anode in an electrolytic solution composed of acid and/or salt of said acid [preferably nitric acid (salt)] and the surface of said fiber is subjected to inactivating treatment (preferably heated at 650-850 deg.C in inert gas such as nitrogen), then dipped in alkaline aqueous solution (e.g., ammonia water) or preferably subjected to surface treatment of electrolysis at anode to afford a carbon fiber suitable for reinforcement, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭素繊維の処理方法、特にコンポジットの引張
強度を著しく改良し、しかもマトリックス樹脂との接着
性に優れた補強用炭素繊維を与える炭素繊維の処理方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for processing carbon fibers, and in particular, a method for processing carbon fibers that significantly improves the tensile strength of composites and provides reinforcing carbon fibers that have excellent adhesion to matrix resins. This invention relates to a method for treating fibers.

[従来の技術] 従来、炭素繊維とマトリックス樹脂との接着性を改良す
るために、炭素繊維を陽極として電Ml化処理する方法
は公知である(例えば、特公昭4726999号公報、
特公昭47−40119号公報、特開昭54−1386
25号公報、特開昭56−128362号公報、特公昭
56−17468号公報、特開昭59−116469号
公報など)が、これらの方法は、いずれも炭素繊維の表
面に官能基を生成させ、マトリックス樹脂に対する接着
性を向上させるものであっても、炭素繊維自体あるいは
該炭素繊維を補強繊維とするコンポジットの引張強度を
改良、向上させるものではなく、電解処理条件を強化す
ると、かえって炭素繊維の強度が低下することが知られ
ていた。
[Prior Art] Conventionally, in order to improve the adhesion between carbon fibers and matrix resin, a method of conducting electrolytic Ml treatment using carbon fibers as anodes has been known (for example, Japanese Patent Publication No. 4726999,
Japanese Patent Publication No. 47-40119, Japanese Patent Publication No. 54-1386
25, JP-A No. 56-128362, JP-A-56-17468, JP-A-59-116469, etc.), but all of these methods do not produce functional groups on the surface of carbon fibers. Even if it improves the adhesion to the matrix resin, it does not improve or increase the tensile strength of the carbon fiber itself or the composite using the carbon fiber as a reinforcing fiber.If the electrolytic treatment conditions are strengthened, the carbon fiber will become stronger. It was known that the strength of

また、炭素繊維あるいは該炭素繊維を補強繊維とするコ
ンポジットの引張強度を改良する方法として、炭素繊維
を硫酸、硝酸、燐酸などの濃厚な無機酸中に長時間浸漬
して炭素繊維表面を酸化除去(エツチング)し、次いで
不活性雰囲気中で加熱して、該化学的酸化処理によって
繊維の表面に生成した官能基を除去する(以下、不活性
化という)方法が知られている(例えば、特公昭52−
37596号公報、特開昭54−59497号公報、特
開昭58−214527号公報)が、高温、高濃度の無
機酸水溶液中で長時間の処理を行なうために、炭素繊維
の生産性が低下して工業的には実施可能性の低いもので
あった。しかもその処理自体が苛酷であるため、かえっ
て処理された炭素繊維束の形態の乱れ、あるいは糸切れ
や毛羽が発生したり、また炭素繊維の表層部のみならず
内層部まで酸化されるため、不活性化処理によってもI
維の内層部まで充分に官能基を調整することが困難であ
り、必ずしも該炭素繊維そのもの、あるいは該炭素繊維
を補強繊維とするコンポジットの引張強度向上には奇与
しなかった。ざらに、該処理により得られた炭素繊維を
補強繊維とするコンポジット強度がマトリックス樹脂の
種類により異なり、実用樹脂での強度が充分に発現しな
いという問題があった。
In addition, as a method to improve the tensile strength of carbon fibers or composites using carbon fibers as reinforcing fibers, carbon fibers are immersed in concentrated inorganic acids such as sulfuric acid, nitric acid, or phosphoric acid for a long time to remove oxidation from the carbon fiber surface. (etching) and then heating in an inert atmosphere to remove the functional groups generated on the surface of the fiber by the chemical oxidation treatment (hereinafter referred to as inactivation). Kosho 52-
37596, JP-A-54-59497, and JP-A-58-214527), the productivity of carbon fibers decreased due to long-term treatment in a high-temperature, high-concentration inorganic acid aqueous solution. Therefore, the possibility of implementing it industrially was low. Moreover, since the treatment itself is harsh, the shape of the treated carbon fiber bundle may become disordered, thread breakage or fluff may occur, and not only the surface layer of the carbon fiber but also the inner layer may be oxidized, resulting in poor quality. Even with activation treatment, I
It is difficult to sufficiently adjust the functional groups to the inner layer of the fibers, and this does not necessarily improve the tensile strength of the carbon fibers themselves or of composites using the carbon fibers as reinforcing fibers. Generally speaking, the strength of a composite made of carbon fibers obtained by this treatment as reinforcing fibers varies depending on the type of matrix resin, and there is a problem that the strength of a practical resin is not sufficiently developed.

そこで、上記問題を解決すべく、本発明者らは特定の電
解液中で炭素繊維を陽極として、電気化学的に酸化処理
し、次いで該炭素繊維表面を不活性化処理することによ
り、炭素繊維自体および該炭素1維を補強繊維とするコ
ンポジットの引張強度を大幅に向上できる技術を提案(
特開昭61−12967号公報、特開昭61−1291
6号公報など)してきた。
Therefore, in order to solve the above problem, the present inventors electrochemically oxidize carbon fibers using carbon fibers as anodes in a specific electrolytic solution, and then inactivate the surface of the carbon fibers. We proposed a technology that can significantly improve the tensile strength of itself and of composites that use carbon fibers as reinforcing fibers (
JP-A-61-12967, JP-A-61-1291
Publication No. 6, etc.).

しかしながら、上記の提案においても高いコンポジット
引張強度を発現させるためには、不活性化雰囲気中で加
熱処理を行なうことが必須であるため、コンポジットの
引張強度は向上するが、マトリックス樹脂との接着性が
必ずしも充分でなく、擬似等方材料として、コンポジッ
トを用いる場合等の横方向特性が特に要求される用途に
は性能的に充分でなかった。
However, even in the above proposal, in order to develop high composite tensile strength, it is essential to perform heat treatment in an inert atmosphere. is not necessarily sufficient, and the performance is not sufficient for applications where lateral properties are particularly required, such as when using a composite as a quasi-isotropic material.

[発明が解決しようとする課題] 本発明の課題は上記従来技術の問題点を解消し、コンポ
ジットの引張強度を著しく改良し、しかもマトリックス
樹脂との接着性に優れた補強用炭素繊維を与える炭素繊
維の処理方法を提供することにある。
[Problems to be Solved by the Invention] The problems of the present invention are to solve the above-mentioned problems of the prior art, to significantly improve the tensile strength of composites, and to provide carbon fibers for reinforcing with excellent adhesiveness to matrix resins. The object of the present invention is to provide a method for processing fibers.

[課題を解決するための手段] 本発明の上記課題は、 (1)炭素繊維に酸及び/またはその塩の電解液中で該
炭素繊維を陽極として強電解処理を施し、次いで該炭素
繊維表面を不活性化処理した後、アルカリ性の水溶液中
で浸漬処理を行なうことを特徴とする炭素繊維の処理方
法。
[Means for Solving the Problems] The above-mentioned problems of the present invention are as follows: (1) Strong electrolytic treatment is performed on carbon fibers in an electrolytic solution of acid and/or its salt, using the carbon fibers as anodes, and then the surface of the carbon fibers is 1. A method for treating carbon fibers, which comprises inactivating carbon fibers and then immersing them in an alkaline aqueous solution.

(2)特許請求の範囲第(1)項において、アルカリ性
水溶液中の浸漬処理が、アルカリ性電解液中の炭素繊維
を陽極とした電解表面処理である炭素繊維の処理方法。
(2) A method for treating carbon fibers according to claim (1), wherein the immersion treatment in an alkaline aqueous solution is an electrolytic surface treatment using the carbon fibers in an alkaline electrolyte as an anode.

によって解決することができる。It can be solved by

以下、本発明の構成を具体的に説明する。Hereinafter, the configuration of the present invention will be specifically explained.

本発明の処理に使用される炭素繊維は特に限定されるも
のではなく、各種の炭素繊維を使用することができるが
、好ましくはアクリロニトリル系繊維をプリカー勺−と
し、酸化性雰囲気中で加熱、酸化処理し、不活性雰囲気
中でより高温下に加熱して炭化することによって1qら
れる炭素繊維あるいは黒鉛化繊維かよい。
The carbon fibers used in the treatment of the present invention are not particularly limited, and various carbon fibers can be used. Preferably, acrylonitrile fibers are used as precursors, and heated and oxidized in an oxidizing atmosphere. Carbon fibers or graphitized fibers that are treated and carbonized by heating at higher temperatures in an inert atmosphere or graphitized fibers may be used.

しかしながら、炭素ali雑にサイジング剤か付着して
いると、酸あるいはそれらの塩の水溶液中での電解処理
の際にサイジング剤が悪影響を及ぼして引張強度が低下
することがあるので、サイジング剤の付着していない炭
素繊維が好ましい。むろん、サイジング剤が付着した炭
素繊維を有機溶媒中に浸漬するなどの手段によりサイジ
ング剤を除去すればよい。
However, if the sizing agent is attached to the carbon alium, the sizing agent may have an adverse effect during electrolytic treatment in an aqueous solution of acids or their salts, reducing the tensile strength. Unattached carbon fibers are preferred. Of course, the sizing agent may be removed by immersing the carbon fiber to which the sizing agent is attached in an organic solvent.

本発明における強電解処理の条件は特に限定されるもの
ではないが、高い強度を得るためには、下記のような条
件が好ましい。すなわち、用いる電解液は、硝酸、硫酸
、塩酸等の無機酸、およびギ酸、シュウ酸、酒石酸等の
有機酸、あるいはそれらのアンモニウム塩、カルシウム
塩、アルミニウム塩等の塩から選ばれた少なくとも一種
または二種の酸、あるいは塩を必須成分とする水溶液を
用いるのが好ましいが、ざらに好ましくは硝酸あるいは
硝酸塩の水溶液がよい。
The conditions for the strong electrolytic treatment in the present invention are not particularly limited, but in order to obtain high strength, the following conditions are preferable. That is, the electrolytic solution used is at least one selected from inorganic acids such as nitric acid, sulfuric acid, and hydrochloric acid, organic acids such as formic acid, oxalic acid, and tartaric acid, or salts thereof such as ammonium salts, calcium salts, and aluminum salts. It is preferable to use an aqueous solution containing two kinds of acids or salts as essential components, and an aqueous solution of nitric acid or a nitrate is most preferred.

上記電解液の温度は、室温でも若干の強度向上効果は得
られるが、大きな強度向上効果を得るためには、40’
C以上に保つことが好ましい。電解液の上限温度は特に
限定されるものではなく、水溶液の沸点以下で用いるこ
とができるが、プロセス性、安全性等から40〜100
℃の範囲か好ましい。
Although a slight strength improvement effect can be obtained even at room temperature, in order to obtain a large strength improvement effect, the temperature of the electrolyte solution must be 40'
It is preferable to maintain the temperature above C. The upper limit temperature of the electrolytic solution is not particularly limited, and it can be used below the boiling point of the aqueous solution, but from the viewpoint of processability, safety, etc.
℃ range is preferred.

また上記電解液の濃度は、電解処理の際に濃度が低過ぎ
て液抵抗が大きくなり、操作電圧が大幅に上昇するよう
な濃度よりも高い濃度であれば特に限定されるものでは
なく、その温度における溶解度までの範囲で用いること
ができる。例えば電解質として硝酸、硝酸アンモニウム
あるいはギ酸を用いた場合には、何れの場合も約0.1
%以上の濃度範囲で強度向上効果が得られるが、安全性
、装置材料およびコスト等から0.1〜70%の範囲が
好ましい。
In addition, the concentration of the electrolyte is not particularly limited as long as it is higher than the concentration that would be too low during electrolytic treatment, resulting in high liquid resistance and a significant increase in operating voltage. It can be used within a temperature range up to its solubility. For example, when nitric acid, ammonium nitrate, or formic acid is used as the electrolyte, approximately 0.1
% or more, the strength improvement effect can be obtained, but from the viewpoint of safety, equipment materials, cost, etc., the range of 0.1 to 70% is preferable.

上記の温度、濃度に保たれた、酸あるいはそれらの塩の
電解液中に炭素繊維を連続的に走行させ、該炭素繊維を
陽極として炭素繊維1g当たり、好ましくは50〜10
00クーロン、より好ましくは100〜800クーロン
の電流を流して強電解処理を行なう。電気量が50クー
ロン以下では目的とする表面酸化エツチングによる炭素
繊維表面に存在する欠陥除去効果が不充分になるし、ま
た1000クーロンを超えると処理が強すぎて、かえっ
て強度が低下することがある。
Carbon fibers are continuously run in an electrolytic solution of acids or their salts maintained at the above temperature and concentration, and the carbon fibers are used as anodes, preferably 50 to 10% per gram of carbon fibers.
The strong electrolytic treatment is carried out by passing a current of 0.00 coulombs, more preferably 100 to 800 coulombs. If the amount of electricity is less than 50 coulombs, the desired effect of removing defects on the carbon fiber surface by surface oxidation etching will be insufficient, and if it exceeds 1000 coulombs, the treatment will be too strong and the strength may actually decrease. .

また、電解処理の電流密度は、特に限定されるものでは
ないが、電解1浬液中の炭素繊維の表面積1尻当たり、
好ましくは1.5A以上、より好ましくは3A以上で処
理するのがよい。
In addition, the current density of the electrolytic treatment is not particularly limited, but per surface area of carbon fiber in the electrolytic solution,
It is preferable to process at 1.5A or more, more preferably 3A or more.

次に、上記のごとく強電解処理された炭素繊維は、引続
いて不活性化処理、即ち、窒素、ヘリウム、アルゴン等
の不活性気体、あるいは水素、硫化水素、ヨウ化水素、
アンモニア等の還元性気体、またはこれらと不活性ガス
との混合気体中で繊維表面に生じた官能基を除去する必
要がある。
Next, the carbon fibers subjected to the strong electrolytic treatment as described above are subsequently subjected to an inert treatment, that is, inert gas such as nitrogen, helium, argon, etc., or hydrogen, hydrogen sulfide, hydrogen iodide, etc.
It is necessary to remove the functional groups formed on the fiber surface in a reducing gas such as ammonia, or a mixture of these and an inert gas.

すなわち、前記電!処理によって形成された繊維表面の
官能基がそのまま残存すると、得られた繊維を補強繊維
とするコンポジットは、その引張強度が低く、実質的に
その実用性能を失うことになる。従って、本発明におい
ては電解処理後の炭素繊維に対して前記不活性処理を施
すことが必要であるが、その際の処理温度としては約4
00〜900 ’Cが好ましく、約650〜850’C
がより好ましい。処理温度が400’Cより低いと、強
電解処理によって繊維表面に生じた官能基を十分に除去
し難く、一方、900’Cより高いと、かえって炭素繊
維自体を損傷し、強度が低下する傾向があるので好まし
くない。
In other words, the said Den! If the functional groups on the fiber surface formed by the treatment remain as they are, a composite using the resulting fibers as reinforcing fibers will have low tensile strength and will substantially lose its practical performance. Therefore, in the present invention, it is necessary to perform the above-mentioned inert treatment on the carbon fibers after electrolytic treatment, but the treatment temperature at that time is approximately 4.
00-900'C is preferred, about 650-850'C
is more preferable. If the treatment temperature is lower than 400'C, it will be difficult to sufficiently remove the functional groups generated on the fiber surface by strong electrolytic treatment, while if it is higher than 900'C, the carbon fiber itself will be damaged and its strength will tend to decrease. I don't like it because there is.

次に上記のごとく強電解処理し、次いで不活性化処理さ
れた炭素繊維は、引続いてアルカリ性の水溶液中で浸漬
処理を行なう。
Next, the carbon fibers that have been subjected to the strong electrolytic treatment as described above and then to the inactivation treatment are subsequently subjected to an immersion treatment in an alkaline aqueous solution.

用いる水溶液はアンモニア水、炭酸アンモニウム、重炭
酸アンモニウム、テトラエチルアンモニュームヒドロオ
キシド等のアンモニウム塩、水酸化ナトリウム、水酸化
カリウム、水酸化バリウム等の水酸化物、炭酸ナトリウ
ム、炭酸水素ナトリウム等の無機塩類から選ばれた単独
、もしくは二種以上の混合物が好ましい。
The aqueous solution used is ammonia water, ammonium salts such as ammonium carbonate, ammonium bicarbonate, and tetraethylammonium hydroxide, hydroxides such as sodium hydroxide, potassium hydroxide, and barium hydroxide, and inorganic salts such as sodium carbonate and sodium hydrogen carbonate. A single type or a mixture of two or more selected from the following is preferable.

本発明方法は、アルカリ性水溶液中での浸漬処理を行な
うことによって、炭素繊維表面の不活性な酸化残存物や
分解付着物を充分に除去することができ、マトリックス
樹脂との接着性が改善できる。さらにそのアルカリ性の
水溶液中で炭素繊維を陽極どして電解表面処理を行なう
と、上記洗浄と並行して炭素繊維の表面に酸素含有官能
基を導入することができるため、マトリックス樹脂との
接着性を一層改善することができる。上記以外の水溶液
、たとえば硫酸、硝酸、塩酸等の酸性水溶液中で浸漬処
理を行なっても本発明の効果か得られない。この原因に
ついては明確ではないが、マトリックス樹脂との接着性
に影響する炭素繊維表面の不活性な酸化残存物や分解付
着物を充分に洗浄除去することができないため、マトリ
ックス樹脂との接着性は改善されないと考えられる。
In the method of the present invention, inert oxidation residues and decomposition deposits on the surface of carbon fibers can be sufficiently removed by immersion treatment in an alkaline aqueous solution, and the adhesion with the matrix resin can be improved. Furthermore, when carbon fibers are anodized in the alkaline aqueous solution and subjected to electrolytic surface treatment, oxygen-containing functional groups can be introduced to the surface of the carbon fibers in parallel with the above-mentioned cleaning, which improves the adhesion with the matrix resin. can be further improved. Even if the immersion treatment is performed in an aqueous solution other than the above, for example, an acidic aqueous solution such as sulfuric acid, nitric acid, or hydrochloric acid, the effects of the present invention cannot be obtained. The cause of this is not clear, but inert oxidation residues and decomposition deposits on the carbon fiber surface that affect the adhesion with the matrix resin cannot be sufficiently washed away, so the adhesion with the matrix resin is reduced. It is thought that there will be no improvement.

上記アルカリ性水溶液の温度は室温で用いるか、必要に
応じて加温してもよい。濃度は、その温度における溶解
度までの範囲で用いることができるが、電解表面処理の
際には濃度が低過ぎて液抵抗が大きくなり操作電圧が大
幅に上昇するような濃度より、高い濃度であれば特に限
定されるものではない。安全性、コスト等を考慮すれば
0.01%〜10%の濃度範囲か好ましい。
The alkaline aqueous solution may be used at room temperature, or may be heated if necessary. Concentrations can range up to the solubility at that temperature, but for electrolytic surface treatment, concentrations higher than those that are too low will increase the liquid resistance and significantly increase the operating voltage. However, it is not particularly limited. Considering safety, cost, etc., a concentration range of 0.01% to 10% is preferable.

上記の濃度に保たれたアルカリ性水溶液中に炭素繊維を
連続的に走行させて浸漬処理を行なうか、その際の浸漬
処理時間は、好ましくは1秒〜20分、より好ましくは
5秒〜5分である。このとき、洗浄効果を上げるため、
水溶液を循環または撹拌したり、不活性ガスを用いてバ
ブリングすることもできる。
The carbon fibers are immersed by running continuously in an alkaline aqueous solution maintained at the above concentration, and the immersion treatment time is preferably 1 second to 20 minutes, more preferably 5 seconds to 5 minutes. It is. At this time, to improve the cleaning effect,
It is also possible to circulate or stir the aqueous solution, or to bubble it using an inert gas.

また上記濃度に保たれたアルカリ性水溶液中に炭素繊維
を連続的に走行させ、その際、炭素繊維を陽極として電
解表面処理を行なうと一層効果的でおり、処理時間が著
しく短縮される。
Further, it is more effective to run the carbon fibers continuously in an alkaline aqueous solution maintained at the above concentration, and perform electrolytic surface treatment using the carbon fibers as anodes, and the treatment time can be significantly shortened.

その際の電′#I−処理条件として、例えば、電気量は
好ましくは炭素繊維17当たり0.1〜50クーロン、
より好ましくは0.5〜30クーロンである。電気量が
50クーロンを超えると繊維が損傷して強度が低下する
傾向があり、強電解処理/不活性化処理で達成した高強
度を維持することが困難になる。
At that time, as the electric treatment conditions, for example, the amount of electricity is preferably 0.1 to 50 coulombs per 17 carbon fibers,
More preferably it is 0.5 to 30 coulombs. When the amount of electricity exceeds 50 coulombs, the fibers tend to be damaged and their strength decreases, making it difficult to maintain the high strength achieved by strong electrolytic treatment/inactivation treatment.

し実施例コ 以下、実施例により本発明をさらに具体的に説明する。Example Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお本例中、炭素繊維の強度特性を評価するストランド
物性、および炭素繊維のマトリックス樹脂との接着性評
価の尺度としてコンポジットの層間剪断強度(ILSS
)は次の方法に従って測定した。
In this example, the interlaminar shear strength (ILSS) of the composite was used as a measure of the strand physical properties to evaluate the strength characteristics of the carbon fibers, and the adhesion of the carbon fibers to the matrix resin.
) was measured according to the following method.

(1)ストランド物性 J l5−R−7601に規定されている樹脂含浸スト
ランド試験法に準じて測定した。
(1) Strand physical properties Measured according to the resin-impregnated strand test method specified in J15-R-7601.

なお樹脂処方は次のA法およびB法の2水準を用いた。Note that the following two resin formulations, method A and method B, were used.

樹脂処方A:″ベークライト”ERL−4221/三フ
ツ化ホウ素モノエチルアミン(BF3MEAL/アセト
ン=100/3/4部をよく混合し、この混合液を炭素
繊維に含浸し、得られた樹脂含浸ストランドを130°
Cで30分間加熱し、硬化させた。
Resin formulation A: "Bakelite" ERL-4221/Boron trifluoride monoethylamine (BF3MEAL/Acetone = 100/3/4 parts) was mixed well, carbon fiber was impregnated with this mixed solution, and the resulting resin-impregnated strand was 130°
C. for 30 minutes to cure.

樹脂処方B:“エピコート” 828/N、N、N、N
−テトラグリシジルアミノジフェニルメタンし住友化学
工業(株)製] ” E LM” 434/”エピクロ
ン” 152/4,4°−ジアミノジフェニルスルホン
/BF3・MEA=35/35/30/3210.5部
の55%メチルエチルケトン)d液を該炭素繊維に含浸
し、得られた含浸ストランドを60°Cの真空乾燥型中
で約6時間脱泡した後、180’Cで約2時間加熱して
硬化させた。
Resin formulation B: “Epicoat” 828/N, N, N, N
-Tetraglycidylaminodiphenylmethane manufactured by Sumitomo Chemical Co., Ltd.] "E LM"434/"Epiclone" 152/4,4°-diaminodiphenylsulfone/BF3・MEA=35/35/30/3210.5 parts of 55 % methyl ethyl ketone) d liquid into the carbon fibers, and the resulting impregnated strand was defoamed in a vacuum drying mold at 60°C for about 6 hours, and then heated at 180°C for about 2 hours to cure.

(2)@間剪断強度 (コンポジッj−試験片の作製) 先ず円周約2.7mの鋼製ドラムに炭素繊維と組合せる
樹脂をシリコン塗15ペーパー上にコーティングした樹
脂フィルムを巻き、次に該樹脂フィルム上にクリールか
ら引き出した炭素繊維をトラバースを介して巻き取り、
配列して、さらにその繊維の上から前記樹脂フィルムを
再度かぶせて後、加圧ロールで回転加圧して樹脂を繊維
内に含浸じしめ、巾300m、長さ2.7mの一方面プ
リプレグを作製する。
(2) @Shear strength (preparation of composite J-test specimens) First, a resin film coated with silicone-coated 15 paper with a resin to be combined with carbon fibers was wrapped around a steel drum with a circumference of about 2.7 m, and then Winding the carbon fiber pulled out from the creel onto the resin film via a traverse,
After arranging the fibers, the resin film was again placed on top of the fibers, and the resin was impregnated into the fibers by rotating and pressurizing them with a pressure roll to produce a one-sided prepreg with a width of 300 m and a length of 2.7 m. do.

このとき、繊維間への樹脂含浸を良くするためにドラム
は50〜60’Cにhl熱し、またプリプレグの繊維目
付はドラムの回転数とトラバースの送り速度を調整する
ことによって、繊維目付的2009/m、樹脂量約35
重量%のプリプレグを作製した。
At this time, the drum is heated to 50 to 60'C to improve the resin impregnation between the fibers, and the fiber weight of the prepreg is adjusted to the desired fiber weight by adjusting the rotation speed of the drum and the traverse feed speed. /m, resin amount approx. 35
A prepreg of % by weight was produced.

このように作製したプリプレグを裁断、積層し、オート
クレイプを用いて180’C16に’j / cm下で
2時間加熱硬化して、層間剪断強度(ILSS)測定用
として肉厚約2順の硬化板を作製した。
The prepared prepregs were cut and laminated, and cured by heating at 180'C16'j/cm for 2 hours using an autoclave to measure the interlaminar shear strength (ILSS). A board was made.

(ILSSの測定) 試験片は巾12.7M、艮ざ28順とし、測定は通常の
3点曲げ試験治具を用いて支持スパンを試験片肉厚の4
倍に設定し、呂律製オートグラフを用いて負荷速度2.
5順/minで測定した。
(ILSS measurement) The test piece has a width of 12.7M and a width of 28, and the measurement is carried out using a normal 3-point bending test jig, with the support span being 4 times the thickness of the test piece.
Load speed 2.
Measurement was performed at a rate of 5 times/min.

なお、樹脂としては下記組成のものを用いた。The resin used had the following composition.

ELH434[住友化学 ■]:35部EP 828 
[ペトロケミカルズ ■]=35部エピクロン152[
大日本インキ ■]:30部44°ジフェニルジアミノ
スルフ4ン し住友化学 ■]:32部 3フツ化ホウ素モノエチルアミン 二〇、5部実施例1 アクリロニトリル(AN)99.5モル%、イタコンf
llO,5モル%からなる固有粘度[η]か1゜80の
AN共重合体のジメチルスルホキシド(D)130ン溶
液にアンモニアを吹込み、該共重合体のカルボキシル末
端基水素をアンモニュウム基で置換してポリマを変性し
、この変性ポリマの濃度か20重量%であるDMSO溶
液を作製した。
ELH434 [Sumitomo Chemical ■]: 35 parts EP 828
[Petrochemicals ■] = 35 parts Epicron 152 [
Dainippon Ink ■]: 30 parts 44° diphenyl diamino sulfate Sumitomo Chemical ■]: 32 parts trifluoroboronomonoethylamine 20.5 parts Example 1 Acrylonitrile (AN) 99.5 mol%, Itacon f
Ammonia was blown into a dimethyl sulfoxide (D) 130 solution of an AN copolymer with an intrinsic viscosity [η] of 1°80 consisting of 5 mol% of 11O, and the hydrogens of the carboxyl terminal groups of the copolymer were replaced with ammonium groups. A DMSO solution having a concentration of 20% by weight of the modified polymer was prepared.

この溶液を十分に濾過した後、孔径0.15m、孔数4
500ホールの紡糸口金を通して一旦空気中に吐出し、
約3Mの空間を走行させた後、約30℃30%のDMS
O水溶液に導入して吐出繊維糸条を凝固せしめた。得ら
れた凝固繊維糸条を水洗し、濡水中で4倍に延伸して水
膨潤繊維糸条を1qた。この水膨潤繊維糸条をポリエチ
レングリコール(PEG )変性ポリジメチルシロキサ
ン(PEG変性量50重量%)の0.8%水1d液と7
ミノ変性ポリジメチルシロキサン(アミン変性量1重量
%)85部とノニオン系界面活性剤15部からなる0゜
8%水分散液の混合油剤浴中に浸漬した後、表面温度1
30℃〜160’Cの加熱ロール上で乾燥、緻密化した
。乾燥、緻密化した繊維糸条を加熱スチーム中で3倍に
延伸し、単糸繊度が0.7デニール(d)、トータルデ
ニール3150(、D)のアクリル系繊維糸条を得た。
After thoroughly filtering this solution, the pore size was 0.15 m and the number of pores was 4.
Once discharged into the air through a 500-hole spinneret,
After running in a space of about 3M, DMS at about 30℃ 30%
The discharged fiber yarn was coagulated by introducing it into an O aqueous solution. The obtained coagulated fiber thread was washed with water and stretched 4 times in wet water to obtain 1 q of water-swollen fiber thread. This water-swollen fiber thread was mixed with 1 d solution of polyethylene glycol (PEG) modified polydimethylsiloxane (PEG modification amount: 50% by weight) in 0.8% water.
After being immersed in a mixed oil bath of a 0°8% aqueous dispersion consisting of 85 parts of mino-modified polydimethylsiloxane (amine modification amount: 1% by weight) and 15 parts of a nonionic surfactant, the surface temperature was 1%.
It was dried and densified on a heated roll at 30°C to 160'C. The dried and densified fiber yarn was drawn three times in heated steam to obtain an acrylic fiber yarn with a single filament fineness of 0.7 denier (d) and a total denier of 3150 (D).

このトータルデニールが3150Dのアクリル系繊維糸
条を、リング状ノズルを用いて、圧力0゜7 K9 /
 Ciのエアー開繊処理を施し、240〜260′Cの
空気中で延伸倍率1.05の下に加熱し水分率が4.5
%の酸化繊維糸条を作製した。
This acrylic fiber yarn with a total denier of 3150D was processed using a ring-shaped nozzle at a pressure of 0°7 K9/
Ci was air-opened and heated in air at 240 to 260'C with a draw ratio of 1.05 until the moisture content was 4.5.
% oxidized fiber yarn was prepared.

次いで、この酸化繊維糸条を最高温度が140°Cの窒
素雰囲気中で300〜700 ’Cの温度域における昇
温速度を約250’C/分、1000〜1200℃の温
度域における昇温速度を約400’C/分に設定して炭
素化し、炭素繊維糸条を得た。
Next, this oxidized fiber yarn was heated in a nitrogen atmosphere with a maximum temperature of 140°C at a heating rate of about 250°C/min in a temperature range of 300 to 700°C, and a heating rate of about 250°C/min in a temperature range of 1000 to 1200°C. Carbonization was performed by setting the temperature at about 400'C/min to obtain a carbon fiber yarn.

得られた炭素繊維糸条の樹脂含浸ストランド強度は51
0KH/mm2(樹脂処方A>、500ffg/fMI
2(樹脂処方8)であった。
The resin-impregnated strand strength of the obtained carbon fiber yarn was 51
0KH/mm2 (resin formulation A>, 500ffg/fMI
2 (resin formulation 8).

かくして得られた原料炭素繊維を強電前処理として温度
80’C,Iff度30%の硝酸水溶液を満たした電解
処理槽中、糸速1.0TrL/分で連続的に走行させる
とともに、該処理槽の直前に配置した金属製カイトロー
ラーを介して該炭素taMに陽電圧を印加し、処理液中
に配置した白金製の陰4へとの間に炭素繊維1g当りの
電気量で200クーロンになるように電流を流した。
The raw carbon fiber thus obtained was subjected to strong electric pretreatment by running it continuously at a yarn speed of 1.0 TrL/min in an electrolytic treatment tank filled with a nitric acid aqueous solution at a temperature of 80'C and an Iff degree of 30%, and the treatment tank A positive voltage is applied to the carbon taM via a metal kite roller placed just before the taM, and the amount of electricity becomes 200 coulombs per gram of carbon fiber between it and the platinum shade 4 placed in the treatment solution. A current was passed through it.

次に、強電前処理を施した炭素繊維を充分に水洗して、
約200’Cの加熱空気中で乾燥し、さらに700℃の
窒素雰囲気中で約1分間加熱処理して不活性化処理を行
なった。続いて、上記強電前処理と不活性化処理を施し
た該炭素繊維を、濃度0.4%の水酸化す1〜リウム水
溶液中で約1分間浸漬処理し、イオン交換水中で水洗後
、約200°Cの加熱空気中で乾燥した。得られた炭素
繊維の強度特性、層間剪断強度について製造条件も含め
て第1表にまとめた。
Next, the carbon fiber that has been subjected to strong electric pretreatment is thoroughly washed with water.
It was dried in heated air at about 200° C., and then heat-treated for about 1 minute in a nitrogen atmosphere at 700° C. for inactivation. Subsequently, the carbon fibers subjected to the above-mentioned strong electric pretreatment and inactivation treatment were immersed for about 1 minute in an aqueous solution of mono-lithium hydroxide with a concentration of 0.4%, washed in ion-exchanged water, It was dried in heated air at 200°C. The strength characteristics and interlaminar shear strength of the obtained carbon fibers are summarized in Table 1, including the manufacturing conditions.

比較例1 実施例1で得られた原料炭素繊維を実施例1と同一の強
電前処理と不活性化処理を行なったが、アルカリ水溶液
中で浸漬洗浄処理を行なわなかった場合の炭素繊維の物
性を第1表に示した。
Comparative Example 1 The raw carbon fiber obtained in Example 1 was subjected to the same strong electric pretreatment and inactivation treatment as in Example 1, but the physical properties of the carbon fiber were not immersed in an alkaline aqueous solution. are shown in Table 1.

実施例2〜4.比較例2〜4 実施例って得られた原料炭素繊維を浸漬処理の水溶液を
表1に示すとおり変更して処理した。このとき1強電解
処理条件と不活性化条件などはすべて実施例1と同一条
件とした。得られた炭素繊維の物性について第1表にま
とめた。
Examples 2-4. Comparative Examples 2 to 4 The raw carbon fibers obtained in the examples were treated by changing the aqueous solution used in the dipping treatment as shown in Table 1. At this time, the strong electrolytic treatment conditions and inactivation conditions were all the same as in Example 1. Table 1 summarizes the physical properties of the obtained carbon fibers.

実施例5〜8.比較例5〜7 実施例って1qられた原料炭素繊維を、強電前処理条件
と不活性化処理条件などはすべて実施例1と同一条件と
した。その後の浸漬処理の際、アルカリ水溶液中に置か
れた対極と、炭素繊維間に電流を通じ、炭素繊維を陽極
として電解表面処理を行なった。アルカリ水溶液を変更
して、得られた炭素繊維の物性を第2表に示した。
Examples 5-8. Comparative Examples 5 to 7 The raw material carbon fibers prepared in Examples were subjected to the same conditions as in Example 1, including strong electric pretreatment conditions and inactivation treatment conditions. During the subsequent immersion treatment, an electric current was passed between the carbon fibers and a counter electrode placed in an alkaline aqueous solution, and electrolytic surface treatment was performed using the carbon fibers as anodes. Table 2 shows the physical properties of the carbon fibers obtained by changing the aqueous alkali solution.

実施例9,10 実施例1で得られた1京料炭素繊維を実施例]と同一の
強電前処理と不活性化処理を行ない、アルカリ水溶液中
で浸漬処理時の電解表面処理電気dを第2表に示すとお
り変更して処理した。この時の炭素繊維物性を第2表に
示した。
Examples 9 and 10 The 1,000-year-old carbon fiber obtained in Example 1 was subjected to the same strong electric pretreatment and inactivation treatment as in Example], and the electrolytic surface treatment electric d during immersion treatment in an alkaline aqueous solution was Processing was performed with the changes shown in Table 2. The carbon fiber physical properties at this time are shown in Table 2.

[発明の効果] 以上詳述したように、本発明の特徴は酸及び/またはそ
の塩の水溶液中で強電解処理を行ない、次いで不活性化
処理を施した後、アルカリ性の水溶液中での浸漬処理あ
るいは電解表面処理を行なうことにある。これに従うな
らば、炭素繊維自体の強度が著しく向上し、その結果、
該炭素繊維を補強繊維とするコンポジットは従来になく
高強度が弁用するだけでなく、炭素繊維とマトリックス
樹脂との接着性が大幅に改善でき、またコンポジットの
横方向特性も向上させることができる。
[Effects of the Invention] As detailed above, the present invention is characterized by performing strong electrolytic treatment in an aqueous solution of an acid and/or its salt, followed by inactivation treatment, and then immersion in an alkaline aqueous solution. treatment or electrolytic surface treatment. If this is followed, the strength of the carbon fiber itself will be significantly improved, and as a result,
Composites using carbon fibers as reinforcing fibers not only have higher strength than ever before, but also can significantly improve the adhesion between carbon fibers and matrix resin, and can also improve the lateral properties of the composite. .

Claims (2)

【特許請求の範囲】[Claims] (1)炭素繊維に酸及び/またはその塩の電解液中で該
炭素繊維を陽極として強電解処理を施し、次いで該炭素
繊維表面を不活性化処理した後、アルカリ性の水溶液中
で浸漬処理を行なうことを特徴とする炭素繊維の処理方
法。
(1) Carbon fibers are subjected to strong electrolytic treatment in an electrolytic solution of acid and/or its salt, using the carbon fibers as anodes, and then the surfaces of the carbon fibers are inactivated, and then immersed in an alkaline aqueous solution. A method for processing carbon fiber, characterized by:
(2)特許請求の範囲第(1)項において、アルカリ性
水溶液中の浸漬処理が、アルカリ性電解液中の炭素繊維
を陽極とした電解表面処理である炭素繊維の処理方法。
(2) A method for treating carbon fibers according to claim (1), wherein the immersion treatment in an alkaline aqueous solution is an electrolytic surface treatment using the carbon fibers in an alkaline electrolyte as an anode.
JP4343289A 1988-02-29 1989-02-23 Treatment of carbon fiber Pending JPH0284527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4343289A JPH0284527A (en) 1988-02-29 1989-02-23 Treatment of carbon fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4814888 1988-02-29
JP63-48148 1988-02-29
JP4343289A JPH0284527A (en) 1988-02-29 1989-02-23 Treatment of carbon fiber

Publications (1)

Publication Number Publication Date
JPH0284527A true JPH0284527A (en) 1990-03-26

Family

ID=26383194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4343289A Pending JPH0284527A (en) 1988-02-29 1989-02-23 Treatment of carbon fiber

Country Status (1)

Country Link
JP (1) JPH0284527A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319440B1 (en) * 1990-09-18 2001-11-20 Mitsubishi Denki Kabushiki Kaisha Deodorant material
KR100317617B1 (en) * 1999-05-13 2001-12-22 김충섭 Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins
JP2005163197A (en) * 2003-11-28 2005-06-23 Mitsubishi Rayon Co Ltd Method for producing metal-coated carbon fiber
CN103046310A (en) * 2012-12-03 2013-04-17 天津工业大学 Technology for repairing defect of carbon fiber surface structure
CN110396732A (en) * 2019-08-23 2019-11-01 大同新成新材料股份有限公司 A kind of processing technology of modified carbon fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948598A (en) * 1972-05-08 1974-05-10
JPS61124674A (en) * 1984-11-22 1986-06-12 三菱レイヨン株式会社 Surface treatment of carbon fiber
JPS62276075A (en) * 1986-02-07 1987-11-30 三菱レイヨン株式会社 Carbon fiber and its production
JPS636162A (en) * 1986-05-30 1988-01-12 アモコ コ−ポレ−シヨン Multi-electrolyte shearing treatment of carbon fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948598A (en) * 1972-05-08 1974-05-10
JPS61124674A (en) * 1984-11-22 1986-06-12 三菱レイヨン株式会社 Surface treatment of carbon fiber
JPS62276075A (en) * 1986-02-07 1987-11-30 三菱レイヨン株式会社 Carbon fiber and its production
JPS636162A (en) * 1986-05-30 1988-01-12 アモコ コ−ポレ−シヨン Multi-electrolyte shearing treatment of carbon fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319440B1 (en) * 1990-09-18 2001-11-20 Mitsubishi Denki Kabushiki Kaisha Deodorant material
KR100317617B1 (en) * 1999-05-13 2001-12-22 김충섭 Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins
JP2005163197A (en) * 2003-11-28 2005-06-23 Mitsubishi Rayon Co Ltd Method for producing metal-coated carbon fiber
CN103046310A (en) * 2012-12-03 2013-04-17 天津工业大学 Technology for repairing defect of carbon fiber surface structure
CN110396732A (en) * 2019-08-23 2019-11-01 大同新成新材料股份有限公司 A kind of processing technology of modified carbon fiber

Similar Documents

Publication Publication Date Title
JP3003521B2 (en) Carbon fiber and method for producing the same
JP4023226B2 (en) Carbon fiber bundle processing method
JPH0284527A (en) Treatment of carbon fiber
JPS6385167A (en) Surface modified carbon fiber and its production
JP3755255B2 (en) Carbon fiber and method for producing the same
JP4953410B2 (en) Carbon fiber and method for producing the same
JPS62149964A (en) Production of ultrahigh strength carbon fiber
JP7338176B2 (en) Carbon fiber reinforced vinyl ester resin composition and method for producing the same
JPH054463B2 (en)
JPS62149967A (en) Treatment of carbon fiber
JPH0376869A (en) Method for treating surface of carbon fiber in vapor phase
JPS62141171A (en) Method for strength enhancing treatment of carbon fiber
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JPH11124744A (en) Production of carbon fiber precursor fiber and carbon fiber
JPS61282470A (en) Treatment of carbon fiber
JPS62149968A (en) Treatment of carbon fiber
JPS6112967A (en) Treatment of carbon fiber
JPS62149970A (en) Treatment of carbon fiber
JPH0415288B2 (en)
JPS62149969A (en) Treatment of carbon fiber
JP2016037689A (en) Method for producing carbon fiber
JPH0737685B2 (en) Carbon fiber with ultra high strength composite properties
JPS62141172A (en) Treatment of carbon fiber
JP3697793B2 (en) Precursor for carbon fiber, method for producing the same, and method for producing carbon fiber
JPS6112916A (en) Super high-strength carbon fiber and its production