JPH028390A - Lead dioxide electrode and production thereof - Google Patents

Lead dioxide electrode and production thereof

Info

Publication number
JPH028390A
JPH028390A JP63156255A JP15625588A JPH028390A JP H028390 A JPH028390 A JP H028390A JP 63156255 A JP63156255 A JP 63156255A JP 15625588 A JP15625588 A JP 15625588A JP H028390 A JPH028390 A JP H028390A
Authority
JP
Japan
Prior art keywords
intermediate layer
lead dioxide
layer
metal
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63156255A
Other languages
Japanese (ja)
Inventor
Toshiro Igarashi
五十嵐 寿郎
Yoshiyuki Makita
蒔田 善之
Hiromi Kubo
久保 博海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kamioka Mining and Smelting Co Ltd
Original Assignee
Kamioka Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kamioka Mining and Smelting Co Ltd filed Critical Kamioka Mining and Smelting Co Ltd
Priority to JP63156255A priority Critical patent/JPH028390A/en
Publication of JPH028390A publication Critical patent/JPH028390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To obtain a PbO2 electrode having superior physical strength and exfoliation resistance by successively forming an electrically conductive and corrosion resistant underlayer, an intermediate layer of a specified corrosion resistant component which is less active than PbO2 and a PbO2 layer on the surface of a corrosion resistant metal substrate. CONSTITUTION:The surface of a substrate of an electrically conductive and corrosion resistant metal such as Ti, Ta or Nb is roughened and cleaned. An underlayer of a Pt family metal, the oxide thereof, MnO2 or SnO2 is formed on the surface of the substrate and an intermediate layer of a corrosion resistant component which is less active than PbO2, e.g., a metal selected among the groups IVA, IVB, VA, VB and VIB of the periodic table, the oxide, carbide, nitride or boride thereof, the oxide of Fe, Mn, Co or Al or a corrosion resistant org. material such as fluororesin is formed on the underlayer by baking, electrolysis, thermal spraying or other method. A PbO2 layer is then formed on the intermediate layer by electrolysis to produce a PbO2 electrode not causing cracking due to internal residual stress and having superior durability. This electrode is used as the anode in an electrolytic reaction or other process.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐久性に優れた二酸化鉛電極及びその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a lead dioxide electrode with excellent durability and a method for manufacturing the same.

(従来技術とその問題点) 一酸化鉛電極は、芒硝電解や有機物電解等の酸素発生や
陽極酸化等を行う電解の陽極として主として使用されて
いる。従来の二酸化鉛電極の製法は、チタン等の基体上
に直接、あるいは白金族金属やその酸化物から成る下地
層を形成した基体上に、電解により二酸化鉛を被覆する
方法であるが、該電解法により被覆された二酸化鉛には
内部応力が残留して物理的強度に欠けて、クランキング
が生じたりして前記基体との付着性が悪(なる等の欠点
を有している。電解法により内部応力が残留するのは、
電解中に不可避的電着応力が存在するために、電極基体
が完全に平面状に保持されず僅かに歪んだ状態で保持さ
れることが多く、前記基体上に二酸化鉛層を形成した後
に電解装置から取り外すと前記歪みが解消されて前記基
体自体は平面状に戻るが、その反面該基体上に緻密に被
覆された二酸化鉛層自体に歪を生じ、該二酸化鉛層中に
内部応力が残留してしまうからである。
(Prior art and its problems) A lead monoxide electrode is mainly used as an anode in electrolysis such as mirabilite electrolysis and organic matter electrolysis, which performs oxygen generation and anodic oxidation. The conventional manufacturing method for lead dioxide electrodes is to coat lead dioxide by electrolysis either directly on a substrate such as titanium or on a substrate formed with a base layer made of a platinum group metal or its oxide. Lead dioxide coated by this method has disadvantages such as residual internal stress, lack of physical strength, cranking, and poor adhesion to the substrate.Electrolytic method The internal stress remains due to
Due to the unavoidable electrodeposition stress during electrolysis, the electrode substrate is often not held perfectly flat but is held in a slightly distorted state. When removed from the device, the distortion is resolved and the substrate itself returns to its planar shape, but on the other hand, the lead dioxide layer itself that is densely coated on the substrate is strained, and internal stress remains in the lead dioxide layer. This is because you end up doing it.

該欠点を解消するために、例えば耐食性基体上に白金や
酸化パラジウムの下地層を被覆し、該下地層上にα−二
酸化鉛より成る中間層を1次いで該中間層上にβ−二酸
化鉛より成る被覆層を形成した電極が提案され、画工酸
化鉛層は実質的に電解法により形成されている(特開昭
63−57791号公報、特開昭63−57792号公
報)。該公報によると、中間層であるα−二酸化鉛を電
解法により形成すると、該α−二酸化鉛は内部歪は殆ど
ないが導電性が悪く、一方β−二酸化鉛を電解法により
形成すると、該β−二酸化鉛は導電性は良いが内部歪が
大きくなる。前記公報に記載された発明は上記のように
構成することにより画工酸化鉛層の欠点を相補的に解消
することを目的とするものである。
In order to eliminate this drawback, for example, a corrosion-resistant substrate is coated with a base layer of platinum or palladium oxide, and an intermediate layer of α-lead dioxide is coated on the base layer, and then a base layer of β-lead dioxide is coated on the base layer. An electrode having a coating layer formed thereon has been proposed, and the lead oxide layer is substantially formed by an electrolytic method (Japanese Unexamined Patent Publications Nos. 63-57791 and 63-57792). According to this publication, when α-lead dioxide, which is the intermediate layer, is formed by electrolytic method, the α-lead dioxide has almost no internal strain but has poor conductivity, whereas when β-lead dioxide is formed by electrolytic method, Although β-lead dioxide has good conductivity, it has a large internal strain. The purpose of the invention described in the above-mentioned publication is to compensate for the drawbacks of the lead oxide layer by constructing it as described above.

しかしながら同様の活性を有する層を複数層形成すると
、内方の触媒層においてガス発生を伴う電解反応が生じ
、該発生ガスにより外方の触媒層のmす離等に起因する
寿命の低減等の欠点が生じ易い。
However, when multiple layers with the same activity are formed, an electrolytic reaction accompanied by gas generation occurs in the inner catalyst layer, and the generated gas causes problems such as shortened lifespan due to distance between the outer catalyst layers, etc. Defects are likely to occur.

更に前記公報に記載された電極では2種の二酸化鉛は実
質的に電解法により形成され、画工酸化鉛層には前記し
た電解法による被覆の欠点が残存している。
Furthermore, in the electrode described in the above-mentioned publication, the two types of lead dioxide are substantially formed by an electrolytic method, and the drawbacks of coating by the electrolytic method described above remain in the lead oxide layer.

(発明の目的) 本発明は、上記欠点を解消し、電解法を一部使用しなが
ら内部応力の残留を最小限に抑制して物理的強度を向上
させるとともに、表面被覆層の剥離を防止した二酸化鉛
電極及びその製造方法を提供することを目的とする。
(Objective of the Invention) The present invention eliminates the above-mentioned drawbacks, minimizes residual internal stress while partially using an electrolytic method, improves physical strength, and prevents peeling of the surface coating layer. The object of the present invention is to provide a lead dioxide electrode and a method for manufacturing the same.

(問題点を解決するための手段) 本発明は、第1に、耐食性金属基体と、該金属基体上に
形成された耐食性及び導電性を有する物質から成る下地
層と、該下地層上に形成された酸化鉛より不活性な耐食
性物質から成る中間層、及び該中間層上に形成された二
酸化鉛被覆層とを含んで成る二酸化鉛電極であり、第2
に、耐食性金属基体上に、耐食性及び導電性を有する物
質から成る下地層を形成し、該下地層上に二酸化鉛より
不活性な耐食性物質から成る中間層を形成し、更に該中
間層上に二酸化鉛被覆層を形成することを含んで成る二
酸化鉛電極の製造方法である。
(Means for Solving the Problems) The present invention firstly provides a corrosion-resistant metal substrate, a base layer formed on the metal base and made of a material having corrosion resistance and conductivity, and a base layer formed on the base layer. A lead dioxide electrode comprising: an intermediate layer made of a corrosion-resistant material that is more inert than lead oxide, and a lead dioxide coating layer formed on the intermediate layer;
A base layer made of a corrosion-resistant and electrically conductive substance is formed on a corrosion-resistant metal substrate, an intermediate layer made of a corrosion-resistant substance that is more inactive than lead dioxide is formed on the base layer, and an intermediate layer is further formed on the intermediate layer. A method of manufacturing a lead dioxide electrode comprising forming a lead dioxide coating layer.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる二酸化鉛被覆電極及びその製造方法は、
耐食性金属基体上に下地層を形成し、該下地層上に電解
法により二酸化鉛被覆層を形成して成る二酸化鉛電極の
、前記下地層と前記二酸化鉛被覆層間に、二酸化鉛より
電気化学的活性の低い物質から成る中間層を形成し、該
中間層上に形成される二酸化鉛被覆層の残留内部応力を
吸収して耐久性の低減をなくすとともに、該中間層によ
り電解液を遮蔽して該電解液が、比較的電気化学的活性
度の大きい下地層と接触してガスが発生することを実質
的に防止し、該発生ガスにより前記二酸化鉛被覆層にク
ランキングが発生し該被覆層が剥離することを防止する
ことを特徴とする。本発明に係わる二酸化鉛電極は、酸
素発生を伴う電極反応の電極つまり硫酸浴電解、水電解
、有機物電解等の陽極として好適に使用されるが、これ
らに限定されるものではなく、他の電解用の電極として
使用することができる。
The lead dioxide coated electrode and the manufacturing method thereof according to the present invention include:
A lead dioxide electrode is formed by forming a base layer on a corrosion-resistant metal substrate, and forming a lead dioxide coating layer on the base layer by an electrolytic method, between the base layer and the lead dioxide coating layer. Forming an intermediate layer made of a material with low activity, absorbing residual internal stress of the lead dioxide coating layer formed on the intermediate layer to eliminate reduction in durability, and shielding the electrolyte by the intermediate layer. This substantially prevents the electrolytic solution from coming into contact with a base layer having relatively high electrochemical activity and generating gas, and the generated gas causes cranking of the lead dioxide coating layer, thereby reducing the amount of the coating layer. It is characterized by preventing peeling. The lead dioxide electrode according to the present invention is suitably used as an electrode for electrode reactions involving oxygen generation, that is, as an anode for sulfuric acid bath electrolysis, water electrolysis, organic matter electrolysis, etc., but is not limited to these, and is used for other electrolysis. It can be used as an electrode for

本発明で使用する前記耐食性金属基体は、チタン、タン
タル、ニオブ、ジルコニウム等の所謂弁金属をはじめと
する導電性金属性とし、板状、棒状、ラス状等各種形状
のものを制限なく使用することができる。該金属基体は
、後述する下地層等の付着性を向上させかつ該金属基体
の表面の不純物を除去するため前処理を施すことが好ま
しく、該前処理としてはサンドやグリッドを使用するブ
ラスト処理による表面の粗面化処理とトリクロロエチレ
ンに浸漬する脱脂処理等がある。
The corrosion-resistant metal substrate used in the present invention is a conductive metal such as so-called valve metal such as titanium, tantalum, niobium, zirconium, etc., and various shapes such as plate, rod, lath, etc. can be used without limitation. be able to. The metal substrate is preferably pretreated to improve the adhesion of the underlayer, etc., which will be described later, and to remove impurities on the surface of the metal substrate, and the pretreatment includes blasting using sand or grid. There are surface roughening treatments and degreasing treatments such as immersion in trichlorethylene.

次いで該耐食性金属基体上に、白金、パラジウム、イリ
ジウム、ルテニウム等の白金族金属やその酸化物又は二
酸化マンガンあるいは二酸化鉛等から成る下地層を形成
する。該二酸化マンガンや二酸化鉛から成る下地層は安
価であるため特に望ましい。該下地層の形成方法は特に
限定されないが、白金族金属の場合には、前記金属基体
を陰極として電解メツキしたりあるいは他の無電解メツ
キ法によることができ、又白金族金属酸化物や二酸化マ
ンガンや二酸化鉛の場合には対応金属の化合物の溶液を
塗布し焼付ける熱分解法等によればよい。白金族金属や
白金族金属酸化物の場合には溶射法を使用することがで
きるが、溶射法を二酸化マンガンや二酸化鉛に適用する
と溶射温度で一酸化マンガン等の結晶変態が起こるため
適切ではない。この下地層は、前記金属基体と中間層間
の導電性を維持させるために必須な成分であり、該下地
層が存在しないと中間層もしくは二酸化鉛被覆層と前記
金属基体との接合面で絶縁性酸化被膜が生成しやすくな
り徐々に導電性が低下し、電位が上昇するという悪影響
が生ずる。
Next, a base layer made of a platinum group metal such as platinum, palladium, iridium, or ruthenium, an oxide thereof, manganese dioxide, lead dioxide, or the like is formed on the corrosion-resistant metal substrate. An underlayer made of manganese dioxide or lead dioxide is particularly desirable because it is inexpensive. The method for forming the underlayer is not particularly limited, but in the case of platinum group metals, electrolytic plating may be performed using the metal substrate as a cathode, or other electroless plating methods may be used. In the case of manganese or lead dioxide, a thermal decomposition method may be used in which a solution of a compound of the corresponding metal is applied and baked. Thermal spraying can be used for platinum group metals and platinum group metal oxides, but it is not appropriate to apply the thermal spraying method to manganese dioxide or lead dioxide because crystal transformation of manganese monoxide, etc. occurs at the thermal spraying temperature. . This base layer is an essential component for maintaining conductivity between the metal base and the intermediate layer, and if the base layer does not exist, there will be no insulation at the joint surface between the intermediate layer or lead dioxide coating layer and the metal base. An oxide film is likely to be formed, the conductivity gradually decreases, and the potential increases, which is an adverse effect.

次いで該下地層が形成された金属基体上に、中間層を形
成する。該中間層は、周期律表第IVA、第IVB、第
VA、第VB又は第VIBの8族から選ばれた金属又は
金属の酸化物、炭化物、窒化物又は硼化物もしくは鉄、
マンガン、コバルト、アルミニウムの各酸化物又は耐食
性有機化合物の少なくとも1種を含有するものであり、
電気化学的活性が二酸化鉛のそれよりも大きくなく、十
分な耐食性を持つものであればいずれの物質も使用する
ことができる。一般に上記金属酸化物は耐食性があり、
酸素過電圧も大きいので好適であるが、同様にこれらの
金属の炭化物、窒化物又は硼化物も使用できる。又弗素
樹脂やポリエチレン等の耐食性ある有機化合物も好適に
用いられる。該中間層は、電解液がビンボールを有する
ことの多い二酸化鉛被覆層を通して前記過電圧の低い下
地層に接触して該下地層が電極触媒として機能してガス
が発生し、該発生ガスにより二酸化鉛被覆層にタラソキ
ング等が生ずることを防止する機能を有するものであり
、非多孔性の層であることが望ましいが、多孔性であっ
ても該中間層が存在するだけで上記した下地層でのガス
発生をかなり防止できる。
Next, an intermediate layer is formed on the metal substrate on which the underlayer is formed. The intermediate layer is a metal or an oxide, carbide, nitride, or boride of a metal selected from Group 8 of Periodic Table IVA, IVB, VA, VB, or VIB, or iron;
Contains at least one of manganese, cobalt, aluminum oxides or corrosion-resistant organic compounds,
Any material can be used as long as it has an electrochemical activity not greater than that of lead dioxide and has sufficient corrosion resistance. Generally, the above metal oxides have corrosion resistance;
Although oxygen overvoltage is also high, it is suitable, but carbides, nitrides, or borides of these metals can also be used. Corrosion-resistant organic compounds such as fluororesin and polyethylene are also preferably used. In the intermediate layer, the electrolyte contacts the base layer with low overvoltage through the lead dioxide coating layer, which often has a bottle ball, and the base layer functions as an electrode catalyst to generate gas, and the generated gas causes lead dioxide to increase. It has the function of preventing thalassoking, etc. from occurring in the coating layer, and is preferably a non-porous layer, but even if it is porous, the mere presence of the intermediate layer will prevent the above-mentioned base layer from forming. gas generation can be significantly prevented.

該中間層は下地層への電解液の接触を防止することのほ
かに、後述する二酸化鉛被覆層のクツションの役割を果
たし、該被覆層中に残留する内部応力を吸収して電極全
体の耐久性の向上に寄与する。
In addition to preventing the electrolyte from contacting the underlying layer, the intermediate layer also acts as a cushion for the lead dioxide coating layer, which will be described later, and absorbs the internal stress remaining in the coating layer, thereby increasing the durability of the entire electrode. Contributes to improving sexual performance.

該中間層の形成方法は特に限定されないが、焼付は法や
溶射法によることが好ましい。該焼付は法は、主として
前記中間層を形成する成分と結合剤の混合物、あるいは
中間層成分を含む結合剤を単独で前記下地層上に被覆し
、加熱して前記結合剤の全部又は一部を除去して前記下
地層上に中間層成分焼付ける方法である。本焼付は法に
おける前記結合剤は、常温では単独で前記下地層に付着
しない前記中間層成分を該下地層に付着させる機能を有
する比較的粘着性の高い物質であり、例えば酸化珪素と
酸化ナトリウムとの混合物である水ガラスを水で希釈し
たもの、あるいは有機高分子物質を溶剤に溶解したもの
等がある。なお結合剤には焼付けによりその一部のみが
除去される物質があり、残留する物質が中間層成分とし
て使用できる物質であれば前述の通り前記結合剤を単独
で使用してもよい。該焼付は法は、例えば希釈した前記
水ガラスと中間層成分である二酸化鉛粉末の混合スラリ
ーを前記下地層上に塗布後加熱焼成し、次に温水中に浸
漬して固着した水ガラス中の酸化ナトリウム分を溶出さ
せて酸化珪素のみを残し、前記下地層上に二酸化鉛と酸
化珪素から成る中間層を形成する方法である。また結合
剤として有機化合物を使用する場合には、焼付けにより
該物質が水と二酸化炭素等に分解され除去されるのが−
船釣であるが、セラミックス系又は有機物系のいずれの
結合剤を使用するにしても、焼付は後に残留成分が残る
場合には、該残留成分が中間層の形成目的に合致した性
質を持つものでなければならない。
Although the method for forming the intermediate layer is not particularly limited, it is preferable that the baking method or thermal spraying method be used. The baking method mainly involves coating the base layer with a mixture of the components forming the intermediate layer and a binder, or a binder containing the components of the intermediate layer alone, and heating it to remove all or part of the binder. This is a method of removing the intermediate layer component and baking the intermediate layer component on the base layer. The binder in the main baking method is a relatively sticky substance that has the function of attaching to the base layer the intermediate layer components that do not adhere to the base layer by themselves at room temperature, such as silicon oxide and sodium oxide. Examples include water glass diluted with water, which is a mixture of organic substances, and organic polymer substances dissolved in a solvent. Note that some binders are only partially removed by baking, and as long as the remaining substance can be used as an intermediate layer component, the binder may be used alone as described above. The baking method includes, for example, applying a mixed slurry of diluted water glass and lead dioxide powder, which is an intermediate layer component, onto the base layer, heating and baking it, and then immersing it in warm water to harden the water glass. This is a method in which the sodium oxide component is eluted, leaving only silicon oxide, and an intermediate layer consisting of lead dioxide and silicon oxide is formed on the base layer. In addition, when an organic compound is used as a binder, the substance is decomposed into water, carbon dioxide, etc. and removed by baking.
Regarding boat fishing, regardless of whether a ceramic-based or organic-based binder is used, if a residual component remains after baking, the residual component must have properties that match the purpose of forming the intermediate layer. Must.

該焼付は時の加熱温度の上限は、下地層が白金族金属や
その酸化物である場合は特に制限されないが、二酸化マ
ンガンを下地層とする場合に高温で焼付けを行うと二酸
化マンガンの結晶変態によると思われる劣化が生じ寿命
の短縮に繋がるため、焼付けは約550℃までの温度で
行うことが好ましい。
The upper limit of the heating temperature during baking is not particularly limited when the base layer is a platinum group metal or its oxide, but when baking at a high temperature when the base layer is manganese dioxide, crystal transformation of the manganese dioxide may occur. Baking is preferably carried out at a temperature of up to about 550° C., since this may lead to deterioration that may be caused by this, leading to a shortened service life.

一方前記溶射法は、中間層成分の単独粉末又は混合粉末
例えば酸化鉛、酸化チタン及び酸化錫の混合粉末を通常
の溶射法により前記下地層上に溶射する。
On the other hand, in the thermal spraying method, a single powder or a mixed powder of intermediate layer components, such as a mixed powder of lead oxide, titanium oxide, and tin oxide, is thermally sprayed onto the base layer by a normal thermal spraying method.

該中間層成分その厚みを厚くすると電気抵抗が増大して
電解電圧が上昇するため通常の電解反応に使用する場合
はなるべく該中間層の厚みを薄くして電解電圧の上昇を
抑制することが好ましい。
When the thickness of the intermediate layer component is increased, the electrical resistance increases and the electrolytic voltage increases. Therefore, when used in normal electrolytic reactions, it is preferable to reduce the thickness of the intermediate layer as much as possible to suppress the increase in the electrolytic voltage. .

一方特定の電解反応例えば有機電解反応では一定の電解
電圧に達しなければ反応が起こらないことがある。従っ
てこのような電解反応に本電極を使用する場合には、該
中間層の厚みを調節して所望の電圧値を得ることができ
る。該電圧値の調節は酸化鉛被覆層の厚みの調節により
行うこともできるが、該二酸化鉛被覆層は導電性が高く
厚みを厚くしてしもあまり電解電圧に影響しないため調
節が困難であり、電圧調節は前記中間層の厚みの調節に
よることが望ましい。
On the other hand, in certain electrolytic reactions, such as organic electrolytic reactions, the reaction may not occur unless a certain electrolytic voltage is reached. Therefore, when this electrode is used for such an electrolytic reaction, a desired voltage value can be obtained by adjusting the thickness of the intermediate layer. The voltage value can be adjusted by adjusting the thickness of the lead oxide coating layer, but this is difficult because the lead dioxide coating layer has high conductivity and even if the thickness is increased, it does not affect the electrolytic voltage much. Preferably, the voltage is adjusted by adjusting the thickness of the intermediate layer.

次いで該中間層上に適宜の方法好ましくは通常の電解法
により二酸化鉛被覆層を形成する。該電解法により該二
酸化鉛被覆層を形成する場合は、例えば前記下地層を形
成した金属基体及びチタン板等をそれぞれ陽極及び陰極
とし硝酸鉛を電解液として、液温50〜90℃、電流密
度0.5〜5 A / dm”で行うことが好ましい。
Next, a lead dioxide coating layer is formed on the intermediate layer by an appropriate method, preferably a conventional electrolytic method. When forming the lead dioxide coating layer by the electrolytic method, for example, the metal substrate and the titanium plate on which the underlayer is formed are used as an anode and a cathode, respectively, and lead nitrate is used as an electrolyte at a liquid temperature of 50 to 90°C and a current density. It is preferable to carry out at 0.5 to 5 A/dm".

なお二酸化鉛の結晶形にはαとβがあるが、本電解法で
形成される二酸化鉛被覆層の結晶形は電解反応が酸性条
件下であればβ型にアルカリ性条件であればα型になる
There are two crystal forms of lead dioxide, α and β, and the crystal form of the lead dioxide coating layer formed by this electrolytic method is β type if the electrolytic reaction is carried out under acidic conditions, and α type if the electrolytic reaction is under alkaline conditions. Become.

該電解法により生成する二酸化鉛被覆層は、電解法の欠
点である内部応力の残留による歪が残り電解法の使用自
体好ましいことではないが、他の方法により二酸化鉛被
覆層を形成すると、前記中間層と該二酸化鉛被覆層間の
接触抵抗が大きくなり過ぎ電解電圧の上昇に繋がるため
、本発明では電解法を使用することが好ましい。
The lead dioxide coating layer produced by this electrolytic method has distortion due to residual internal stress, which is a drawback of the electrolytic method, and the use of the electrolytic method itself is not preferable. However, if the lead dioxide coating layer is formed by other methods, Since the contact resistance between the intermediate layer and the lead dioxide coating layer becomes too large, leading to an increase in electrolytic voltage, it is preferable to use an electrolytic method in the present invention.

このように形成された電極は、良好な耐久性を有し、特
に酸素発生型電解の電極として有用である。
The electrode formed in this manner has good durability and is particularly useful as an electrode for oxygen-generating electrolysis.

(実施例) 以下本発明の実施例を記載するが、該実施例は本発明を
限定するものではない。
(Examples) Examples of the present invention will be described below, but these examples do not limit the present invention.

実扇班↓ 縦50mm、横150鶴、厚さ1fiのチタン製エキス
バンドメタル基体表面を、サンドブラスト処理して粗面
化した後、該基体をトリクロロエチレン中に浸漬し基体
表面の脱脂を行った。該基体表面に約50 g / j
!(7) IrCl4水溶液を刷毛で塗布し、100℃
で乾燥した後、600℃で10分間加熱処理を行った。
The surface of a titanium expanded metal substrate measuring 50 mm in length, 150 mm in width, and 1 fi in thickness was roughened by sandblasting, and then the substrate was immersed in trichlorethylene to degrease the surface of the substrate. Approximately 50 g/j on the substrate surface
! (7) Apply IrCl4 aqueous solution with a brush and heat at 100°C.
After drying, heat treatment was performed at 600° C. for 10 minutes.

このようにして形成された下地層のIre2担持量は前
記基体の見掛は上の表面積当たり2〜3g/Mであった
The amount of Ire2 supported in the underlayer thus formed was 2 to 3 g/M per apparent surface area of the substrate.

次に、30%に希釈された3号水ガラス液を前記下地層
上に塗布した後100 ℃で乾燥し、600 ’Cで1
0分間加熱処理した。この塗布−乾燥−加熱処理を2回
繰り返した後、温水に浸漬して水ガラス中の酸化ナトリ
ウムを除去して中間層を形成した。
Next, a No. 3 water glass solution diluted to 30% was applied onto the base layer, dried at 100°C, and dried at 600°C for 1 hour.
Heat treatment was performed for 0 minutes. After repeating this coating-drying-heating process twice, it was immersed in warm water to remove the sodium oxide in the water glass to form an intermediate layer.

このように形成された中間層の厚みは10〜20μmで
あった。次に該中間層の表面に通常の電解法により二酸
化鉛の被覆層を電析させた。電解条件は、陰極としてチ
タン板を、電解液として濃度500 g/7!の硝酸鉛
水溶液をそれぞれ使用し、液温を75〜80℃、電流密
度を2A/dm2、電解時間を4時間とした。これによ
り形成された二酸化鉛被覆層の厚みは約400μmであ
った。
The thickness of the intermediate layer thus formed was 10 to 20 μm. Next, a lead dioxide coating layer was electrodeposited on the surface of the intermediate layer by a conventional electrolytic method. The electrolysis conditions were a titanium plate as the cathode and a concentration of 500 g/7 as the electrolyte. A lead nitrate aqueous solution was used, the liquid temperature was 75 to 80°C, the current density was 2 A/dm2, and the electrolysis time was 4 hours. The thickness of the lead dioxide coating layer thus formed was approximately 400 μm.

実施例2 和光純薬株式会社製二酸化鉛粉末と、結合剤である30
%に希釈された3号水ガラス液を重量比で1=2の割合
で混合したスラリーを、実施例1と同じ方法で作製した
エキスバンドメタルの下地層表面に塗布し、100℃で
乾燥後、400℃で10分間加熱処理して中間層を形成
した。該中間層の厚みは10〜20μmであった。次い
で該中間層上に実施例1と同様の電解法により、二酸化
鉛被覆層を形成し、二酸化鉛電極とした。
Example 2 Lead dioxide powder manufactured by Wako Pure Chemical Industries, Ltd. and 30 as a binder
A slurry prepared by mixing No. 3 water glass solution diluted to 1% by weight in a weight ratio of 1 = 2 was applied to the surface of the base layer of Exband Metal prepared in the same manner as in Example 1, and after drying at 100°C. , and was heat-treated at 400° C. for 10 minutes to form an intermediate layer. The thickness of the intermediate layer was 10 to 20 μm. Next, a lead dioxide coating layer was formed on the intermediate layer by the same electrolytic method as in Example 1 to obtain a lead dioxide electrode.

実施例3 実施例1と同じ方法で作製したエキスバンドメタルの下
地層表面に、二酸化鉛、二酸化錫、二酸化チタン及び金
属チタンの各粉末をそれぞれ8:1 :0.1  :o
、3の重量比で混合した混合粉末を、日本ユテソク株式
会社製TERODYN  5YST E M3000型
ガス溶射装置を使用して溶射し、厚み約10〜20μm
の中間層を得た。次いで該中間層上に実施例1と同条件
の電解法により二酸化鉛被覆層を形成し、二酸化鉛電極
とした。
Example 3 Powders of lead dioxide, tin dioxide, titanium dioxide, and titanium metal were added to the surface of the base layer of expanded metal prepared in the same manner as in Example 1 at a ratio of 8:1:0.1:o.
, 3 in a weight ratio was thermally sprayed using a TERODYN 5YST E M3000 type gas spraying equipment manufactured by Nippon Utesoku Co., Ltd. to a thickness of about 10 to 20 μm.
The middle layer was obtained. Next, a lead dioxide coating layer was formed on the intermediate layer by an electrolytic method under the same conditions as in Example 1, to obtain a lead dioxide electrode.

災践桝棗 実施例3の混合粉末に換えて、中間層形成用粉末として
酸化珪素粉末を使用したこと以外は実施例3と同様にし
て二酸化鉛電極を作製した。
A lead dioxide electrode was produced in the same manner as in Example 3, except that silicon oxide powder was used as the intermediate layer forming powder instead of the mixed powder in Example 3.

実施例5 実施例1と同様な方法で作製したエキスバンドメタルの
下地層の表面に、日本曹達株式会社製有機高分子化合物
であるテトラ−n−ブトキシチタンTi (0−n−C
4H7)を適量塗布し乾燥後500℃で10分間加熱焼
成した。これにより厚み約10〜20μmの二酸化チタ
ン中間層を得た。次いで該中間層上に実施例1と同じ条
件の電解法により二酸化鉛表面を形成し、二酸化鉛電極
とした。
Example 5 Tetra-n-butoxytitanium Ti (0-n-C
4H7) was applied in an appropriate amount, dried, and then baked at 500° C. for 10 minutes. This resulted in a titanium dioxide intermediate layer having a thickness of about 10 to 20 μm. Next, a lead dioxide surface was formed on the intermediate layer by an electrolytic method under the same conditions as in Example 1, thereby forming a lead dioxide electrode.

実施例6 実施例1と同様な方法で作製したエキスバンドメタルの
下地層の表面に、硝酸マンガン500 g /βを含む
溶液を塗布し、350℃で20分間の加熱処理により2
0〜30μmの厚みを有する二酸化マンガン中間層を形
成した。次いで該中間層上に実施例1と同じ条件で電解
により二酸化鉛被覆層を形成し、二酸化鉛電極とした。
Example 6 A solution containing 500 g/β of manganese nitrate was applied to the surface of the base layer of expanded metal prepared in the same manner as in Example 1, and heat treated at 350°C for 20 minutes to give a
A manganese dioxide intermediate layer having a thickness of 0 to 30 μm was formed. Next, a lead dioxide coating layer was formed on the intermediate layer by electrolysis under the same conditions as in Example 1 to obtain a lead dioxide electrode.

実施例7 実施例1と同様な方法で形成された下地層を有するエキ
スバンドメタルを陽極として、硫酸マンガン50g/j
!及び遊離硫#40g/j!を含む電解液を使用し、電
流密度50A/−で電解を行い、前記エキスバンドメタ
ル下地層被覆層に厚み約20μmの二酸化マンガン中間
層を形成した。このときの電解液温度は80℃以上に保
ち、陰極はグラファイト板を使用した。次に該中間層上
に実施例1と同じ電解条件により二酸化鉛被覆層を形成
し、二酸化鉛電極とした。
Example 7 Manganese sulfate 50g/j using an expanded metal having a base layer formed in the same manner as in Example 1 as an anode.
! and free sulfur #40g/j! Electrolysis was carried out at a current density of 50 A/- using an electrolytic solution containing the following: to form a manganese dioxide intermediate layer with a thickness of about 20 μm on the expanded metal base layer coating layer. The temperature of the electrolyte at this time was maintained at 80° C. or higher, and a graphite plate was used as the cathode. Next, a lead dioxide coating layer was formed on the intermediate layer under the same electrolytic conditions as in Example 1 to form a lead dioxide electrode.

比較例1及び2 実施例1の二酸化鉛電極の中間層を除いた電極(比較例
1)及び、中間層及び下地層を除いた電極(比較例2)
を実施例1と同様の条件で作製した。
Comparative Examples 1 and 2 An electrode with the intermediate layer removed from the lead dioxide electrode of Example 1 (Comparative Example 1), and an electrode with the intermediate layer and base layer removed (Comparative Example 2)
was produced under the same conditions as in Example 1.

実施例1〜比較例2の計9枚の電極を各々陽極として、
遊離硫酸150g/j!を含む液温60℃の電解液を使
用し、10000 A / rlの高電流密度で加速耐
久電解テストを行ったところ第1表に示す結果が得られ
た。この表から分かるように、下地層及び中間層を有し
ない電極(比較例2)は1日を待たずして不動態化を来
し、又中間層を有しない電第   1   表 極(比較例1)はある程度の寿命を維持したが、酸化鉛
被覆層の僅かなピンホールを通って、酸素発生過電圧の
低い白金族下地層から生ずる酸素気泡により、前記二酸
化鉛被覆層に徐々に亀裂が生じ、ついに崩落し、不動態
化を来したものと推測され、一方各実施例の電極は、い
ずれも1000時間以上の十分な耐久性を有している。
A total of nine electrodes of Example 1 to Comparative Example 2 were each used as an anode,
Free sulfuric acid 150g/j! When an accelerated durability electrolysis test was conducted at a high current density of 10,000 A/rl using an electrolytic solution containing 60° C., the results shown in Table 1 were obtained. As can be seen from this table, the electrode without a base layer or intermediate layer (Comparative Example 2) becomes passivated within a day, and the electrode without an intermediate layer (Comparative Example 2) becomes passivated within a day. 1) maintained a certain lifespan, but the lead dioxide coating layer gradually cracked due to oxygen bubbles generated from the platinum group underlayer, which has a low oxygen generation overvoltage, through small pinholes in the lead oxide coating layer. It is presumed that the electrodes finally collapsed and became passivated.On the other hand, the electrodes of each example all had sufficient durability of 1000 hours or more.

(発明の効果) 本発明に係わる二酸化鉛電極及びその製造方法は、耐食
性金属基体上に下地層を介して電解法により二酸化鉛被
覆層を形成した電極の前記下地層と被覆層間に中間層を
形成したことを特徴としている。
(Effects of the Invention) The lead dioxide electrode and the manufacturing method thereof according to the present invention provide an electrode in which a lead dioxide coating layer is formed on a corrosion-resistant metal substrate by an electrolytic method via a base layer, and an intermediate layer is formed between the base layer and the coating layer. It is characterized by the fact that it was formed.

従って最外層の二酸化鉛被覆層の内側に存在する中間層
により、電解液が過電圧の低い下地層と接触して該下地
層でガスが発生することが防止され、該ガスにより二酸
化鉛被覆層にクランキングが生じて電極寿命が短縮され
ることを防止している。又電解法により形成された二酸
化鉛被覆層は被覆層が緻密で内部応力が残留してクラン
キング等が発生し易くなっているが、本発明に係わる二
酸化鉛電極では、前記中間層が該二酸化鉛被覆層のクツ
ションとしての役割を果たして前記残留内部応力を吸収
し、該内部応力によるクランキング等の発生を効果的に
防止している。
Therefore, the intermediate layer existing inside the outermost lead dioxide coating layer prevents the electrolyte from coming into contact with the base layer with low overvoltage and generating gas in the base layer, and the gas causes the lead dioxide coating layer to This prevents cranking from occurring and shortening the electrode life. In addition, the lead dioxide coating layer formed by the electrolytic method is dense and internal stress remains, making it easy for cranking to occur. However, in the lead dioxide electrode according to the present invention, the intermediate layer is The lead coating layer acts as a cushion to absorb the residual internal stress, effectively preventing the occurrence of cranking or the like due to the internal stress.

そのため本発明に係わる二酸化鉛電極は、従来の中間層
の存在しない二酸化鉛電極と比較して耐久性が飛躍的に
増大し、長期間に亘る安定した操業を可能にする。
Therefore, the lead dioxide electrode according to the present invention has dramatically increased durability compared to conventional lead dioxide electrodes without an intermediate layer, and enables stable operation over a long period of time.

Claims (7)

【特許請求の範囲】[Claims] (1)耐食性金属基体と、該金属基体上に形成された耐
食性及び導電性を有する物質から成る下地層と、該下地
層上に形成された二酸化鉛より不活性な耐食性物質から
成る中間層、及び該中間層上に形成された二酸化鉛被覆
層とを含んで成る二酸化鉛電極。
(1) a corrosion-resistant metal base, a base layer formed on the metal base and made of a material having corrosion resistance and conductivity, and an intermediate layer formed on the base layer and made of a corrosion-resistant substance that is more inert than lead dioxide; and a lead dioxide coating layer formed on the intermediate layer.
(2)中間層が、周期律表第IVA、第IVB、第VA、第
VB又は第VIBの各族から選ばれた金属又は金属の酸化
物、炭化物、窒化物又は硼化物もしくは鉄、マンガン、
コバルト、アルミニウムの各酸化物又は耐食性有機化合
物の少なくとも1種を含有するものである請求項1に記
載の二酸化鉛電極。
(2) The intermediate layer is a metal selected from Groups IVA, IVB, VA, VB, or VIB of the periodic table, or an oxide, carbide, nitride, or boride of a metal, or iron, manganese,
The lead dioxide electrode according to claim 1, which contains at least one of cobalt, aluminum oxides, or corrosion-resistant organic compounds.
(3)耐食性金属基体上に、耐食性及び導電性を有する
物質から成る下地層を形成し、該下地層上に二酸化鉛よ
り不活性な耐食性物質から成る中間層を形成し、更に該
中間層上に二酸化鉛被覆層を形成することを含んで成る
二酸化鉛電極の製造方法。
(3) Forming a base layer made of a corrosion-resistant and conductive substance on a corrosion-resistant metal substrate, forming an intermediate layer made of a corrosion-resistant substance that is more inactive than lead dioxide on the base layer, and further forming an intermediate layer on the intermediate layer. A method of manufacturing a lead dioxide electrode comprising forming a lead dioxide coating layer on the electrode.
(4)中間層成分を含有する結合剤、又は中間層成分と
結合剤の混合物を下地層上に被覆し、加熱処理して中間
層を形成する請求項3に記載の二酸化鉛電極の製造方法
(4) The method for producing a lead dioxide electrode according to claim 3, wherein the binder containing the intermediate layer component or a mixture of the intermediate layer component and the binder is coated on the base layer and heat-treated to form the intermediate layer. .
(5)中間層金属成分の熱分解可能な塩を含む溶液を下
地層上に塗布し、加熱処理して中間層を形成する請求項
3に記載の二酸化鉛電極の製造方法。
(5) The method for producing a lead dioxide electrode according to claim 3, wherein the intermediate layer is formed by applying a solution containing a thermally decomposable salt of the intermediate layer metal component onto the base layer and heat-treating the solution.
(6)中間層成分を溶射法により下地層上に付着させて
中間層を形成する請求項3に記載の二酸化鉛電極の製造
方法。
(6) The method for manufacturing a lead dioxide electrode according to claim 3, wherein the intermediate layer is formed by depositing the intermediate layer component on the base layer by thermal spraying.
(7)中間層金属成分のイオンを含む電解浴から電解に
より中間層を形成する請求項3に記載の二酸化鉛電極の
製造方法。
(7) The method for producing a lead dioxide electrode according to claim 3, wherein the intermediate layer is formed by electrolysis from an electrolytic bath containing ions of the intermediate layer metal component.
JP63156255A 1988-06-24 1988-06-24 Lead dioxide electrode and production thereof Pending JPH028390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63156255A JPH028390A (en) 1988-06-24 1988-06-24 Lead dioxide electrode and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63156255A JPH028390A (en) 1988-06-24 1988-06-24 Lead dioxide electrode and production thereof

Publications (1)

Publication Number Publication Date
JPH028390A true JPH028390A (en) 1990-01-11

Family

ID=15623794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63156255A Pending JPH028390A (en) 1988-06-24 1988-06-24 Lead dioxide electrode and production thereof

Country Status (1)

Country Link
JP (1) JPH028390A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403204A (en) * 1993-03-03 1995-04-04 Sumitomo Wiring Systems, Ltd. Joint connector
CN105112936A (en) * 2015-10-09 2015-12-02 河北工业大学 Preparation method of three-dimensional macroporous-structure PbO2 electrode with high catalysis activity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403204A (en) * 1993-03-03 1995-04-04 Sumitomo Wiring Systems, Ltd. Joint connector
CN105112936A (en) * 2015-10-09 2015-12-02 河北工业大学 Preparation method of three-dimensional macroporous-structure PbO2 electrode with high catalysis activity

Similar Documents

Publication Publication Date Title
JP4346070B2 (en) Electrode for hydrogen generation
JP4884333B2 (en) Electrode for electrolysis
US6251254B1 (en) Electrode for chromium plating
JP4554542B2 (en) Electrode for electrolysis
JP2008050675A (en) Electrode for electrolysis
JP2505563B2 (en) Electrode for electrolysis
JP7097042B2 (en) Electrode for chlorine generation
JP2505560B2 (en) Electrode for electrolysis
USRE28820E (en) Method of making an electrode having a coating containing a platinum metal oxide thereon
JPH0575840B2 (en)
US5665218A (en) Method of producing an oxygen generating electrode
JP2023095833A (en) Electrode for chlorine generation
KR890002700B1 (en) Low over-voltage electrodes for alkaline electrolytes
JPH028390A (en) Lead dioxide electrode and production thereof
JP2017115188A (en) Electrode for generating chlorine
FI56402C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN ANOD AVSEDD ATT ANVAENDAS I ELEKTROLYTISKA PROCESSER
JP3621148B2 (en) Electrode for electrolysis and method for producing the same
JPH0257159B2 (en)
JPH0499294A (en) Oxygen generating anode and its production
JP3868513B2 (en) Electrode for seawater electrolysis and method for producing the same
JP2722263B2 (en) Electrode for electrolysis and method for producing the same
JP3832645B2 (en) Electrode for electrolysis and method for producing the same
JPH02294494A (en) Anode for generating oxygen
JPH01312096A (en) Electrode for electrolysis and production thereof
JP2003231985A (en) Electrode for electrolysis, and manufacturing method therefor