JPH0283098A - Treatment of sludge - Google Patents

Treatment of sludge

Info

Publication number
JPH0283098A
JPH0283098A JP63233641A JP23364188A JPH0283098A JP H0283098 A JPH0283098 A JP H0283098A JP 63233641 A JP63233641 A JP 63233641A JP 23364188 A JP23364188 A JP 23364188A JP H0283098 A JPH0283098 A JP H0283098A
Authority
JP
Japan
Prior art keywords
sludge
treatment
anaerobic
anaerobic digestion
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63233641A
Other languages
Japanese (ja)
Other versions
JPH0470080B2 (en
Inventor
Shinichiro Sato
紳一郎 佐藤
Toshihito Kondo
敏仁 近藤
Noboru Nonoyama
野々山 登
Sadao Kamiyama
貞夫 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Yakult Honsha Co Ltd
Original Assignee
Fujita Corp
Yakult Honsha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp, Yakult Honsha Co Ltd filed Critical Fujita Corp
Priority to JP63233641A priority Critical patent/JPH0283098A/en
Publication of JPH0283098A publication Critical patent/JPH0283098A/en
Publication of JPH0470080B2 publication Critical patent/JPH0470080B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To achieve the decomposition of an org. substance within a short time with high efficiency and to markedly reduce a sludge amount by further subject sludge treated with alkali to wet mill treatment and subsequently applying anaerobic digestion treatment to said sludge. CONSTITUTION:Alkali such as caustic soda is added to org. sludge such as sewage sludge until the pH of said sludge is 9-11 to solubilize bacterial cells in the sludge. Further, said sludge is subjected to wet mill treatment using a medium stirring type mill to crush the residual bacterial cells and anaerobic treatment is applied to the sludge after treatment so that the number of stagnation days is 2-5. Furthermore, aerobic digestion treatment due to a basophilic fine algae such as Spirulina is applied to the liquid phase part separated from the sludge after anaerobic digestion treatment. By this method, the treatment capacity of a digester can be enhanced to a large extent or the digester can be markedly miniaturized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水汚泥、農水産廃棄物等の有機性汚泥の処
理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for treating organic sludge such as sewage sludge and agricultural and fishery waste.

〔従来の技術〕[Conventional technology]

下水処理場における都市下水の標準的な微生物処理にお
いては、下水はまず曝気槽で好気的微生物処理され、そ
の後、沈殿槽に送られる。沈殿槽から排出される上澄み
は二次的な処理工程に送られ、一方、沈殿した大量の汚
泥すなわち余剰汚泥は、a組径、焼却されたり廃棄され
たりすることもあるが、脱水、焼却が困難な性状である
ばかりか、廃棄処分には病原性微生物を撒散らして環境
を悪化させるという問題もあるので、処分する簡になる
べくその量を減らす処理を施す必要がある。そのための
処理方法の代表的なものは、嫌気性消化処理であって、
嫌気性微生物の代謝を利用して有機物を有機酸、メタン
ガス、炭酸ガス等に分解する。
In standard microbial treatment of municipal sewage in sewage treatment plants, sewage is first subjected to aerobic microbial treatment in an aeration tank and then sent to a settling tank. The supernatant discharged from the settling tank is sent to a secondary treatment process, while the large amount of settled sludge, or surplus sludge, may be incinerated or disposed of, but it cannot be dewatered or incinerated. Not only is it difficult to dispose of it, but there is also the problem of dispersing pathogenic microorganisms and deteriorating the environment, so it is necessary to reduce the amount as much as possible to make it easier to dispose of. A typical treatment method for this purpose is anaerobic digestion treatment,
Decomposes organic matter into organic acids, methane gas, carbon dioxide gas, etc. using the metabolism of anaerobic microorganisms.

しかしながら、余剰汚泥は微生物の塊のようなものであ
ってきわめて分解しにくいから、その嫌気性消化に要す
る日数は、中温消化(温度35〜37°C)の場合で2
0〜30日と長い。しかも、それだけの日数を費やして
も有機物の分解率は40〜50%程度にとどまり、した
がって排出液は依然として高濃度の有機物を含有し、そ
の後の水処理の大きな負担となっている。
However, excess sludge is like a mass of microorganisms and is extremely difficult to decompose, so the number of days required for anaerobic digestion is 2.
It is long, from 0 to 30 days. Moreover, even if such a number of days are spent, the decomposition rate of organic matter remains at about 40 to 50%, and therefore the effluent still contains a high concentration of organic matter, which becomes a heavy burden for subsequent water treatment.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように、従来の汚泥処理法は能率が悪く、そのた
め大型の嫌気性消化槽を必要とし、固形物の減量効果も
満足できるものではなかった。また、排出される水は有
機物濃度が高く、到底そのまま放流できるものではない
し、さらに処理するとしても大きな負担となるものであ
った。
As mentioned above, conventional sludge treatment methods are inefficient, require large anaerobic digestion tanks, and have unsatisfactory solids reduction effects. In addition, the discharged water has a high concentration of organic matter, so it cannot be discharged as is, and even if it were to be further treated, it would be a heavy burden.

そこで本発明は、従来の汚泥処理法における上述の問題
点を解決し、より短時日でより高率の減量と有機物の分
解を達成できる汚泥処理法を提供しようとするものであ
る。
Therefore, the present invention aims to solve the above-mentioned problems in conventional sludge treatment methods and to provide a sludge treatment method that can achieve a higher rate of weight loss and decomposition of organic matter in a shorter period of time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明が提供する汚泥処理法は、有機性汚泥にそのpH
が9〜11になるまでアルカリを添加して汚泥中の微生
物菌体の可溶化を生じさせ、さらに湿式ミル処理により
残存微生物菌体等を破砕し、処理後の汚泥に滞留日数2
〜5日の嫌気性消化処理を施し、該嫌気性消化処理後の
汚泥から分離された水を好アルカリ性微細藻類により好
気性消化処理することを特徴とする。
In the sludge treatment method provided by the present invention, organic sludge is
The microbial cells in the sludge are solubilized by adding alkali until the value reaches 9 to 11, and the remaining microbial cells are crushed by wet milling, and the remaining number of days in the sludge after treatment is 2.
The method is characterized in that an anaerobic digestion treatment is performed for ~5 days, and the water separated from the sludge after the anaerobic digestion treatment is subjected to an aerobic digestion treatment using alkaliphilic microalgae.

以下、本発明の汚泥処理法ついて更に詳しく説明する。The sludge treatment method of the present invention will be explained in more detail below.

汚泥のアルカリ処理は、力性ソーダ、炭酸ソーダ等のア
ルカリを汚泥pHが9〜11になるまで加え、温度約2
0〜30°Cで0.5〜1時間時間区持することにより
行う。これにより、汚泥中の微生物の細胞壁が破壊され
、蛋白質、糖などの細胞内成分が溶出するいわゆる可溶
化が起こる。pH11以上の強アルカリ性にすることは
、可溶化促進には有効でも、後の嫌気性消化工程におい
てそのような強アルカリ性の汚泥中で増殖するメタン菌
の十分量を消化槽内に蓄積させることが困難になるので
、好ましくない。
For alkaline treatment of sludge, add alkali such as sodium hydroxide or soda carbonate until the pH of the sludge reaches 9 to 11, and heat the sludge at a temperature of about 2.
This is carried out by holding at 0 to 30°C for 0.5 to 1 hour. This destroys the cell walls of microorganisms in the sludge and causes so-called solubilization, in which intracellular components such as proteins and sugars are eluted. Although making the pH strongly alkaline to 11 or more is effective in promoting solubilization, it may not allow a sufficient amount of methane bacteria that grow in such strongly alkaline sludge to accumulate in the digestion tank during the subsequent anaerobic digestion process. This is not desirable as it will be difficult.

アルカリ処理した汚泥をさらに湿式ミル処理する。The alkali-treated sludge is further subjected to wet mill treatment.

この湿式ミル処理は、水中に懸濁している固形物に主と
して剪断摩擦力を作用させることにより固形物の微細化
を行う処理であって、具体的には、回転円筒式ミノ呟振
動ボールミル、遠心式ボールミル、媒体攪拌式ミル、コ
ロイドミル等を用いて高度の摩砕を行うものである。湿
式ミル処理の中でも、媒体攪拌式ミルは処理効果の点で
最もすぐれているので、特に好ましい。
This wet milling process is a process in which the solids suspended in water are pulverized by mainly applying shearing frictional force to the solids. A high degree of grinding is performed using a type ball mill, a media stirring type mill, a colloid mill, etc. Among the wet milling methods, the media agitation mill is particularly preferred because it has the best processing effect.

この媒体攪拌式ミルは、円筒状容器に挿入した攪拌用デ
ィスクを高速で回転させることによって容器内のビスを
激しく攪拌し、ビーズ間に剪断摩擦力を生じさせて摩砕
を行うものであって、用途に応じて大小様々なビーズが
使われるが、汚泥可溶化に好ましいビーズは、粒径がO
,OS〜1mmのものである。その場合、攪拌用ディス
クの回転数は1000〜3000rp+n(周速10〜
30 m/5ee)程度、被処理汚泥の滞留時間は通常
の汚泥を処理する場合で5〜60分程度が適当である。
This media stirring type mill rotates a stirring disk inserted into a cylindrical container at high speed to violently stir the screws in the container, creating a shearing friction force between the beads and grinding them. Beads of various sizes are used depending on the purpose, but the beads preferred for solubilizing sludge have a particle size of O.
, OS ~ 1 mm. In that case, the rotation speed of the stirring disk is 1000 to 3000 rpm+n (peripheral speed 10 to
30 m/5ee), and the residence time of the sludge to be treated is approximately 5 to 60 minutes when ordinary sludge is treated.

アルカリ処理によって可溶化しなかった微生物細胞や繊
維質の有機物も、この湿式ミル処理によって可溶化し、
あるいは嫌気性消化を受は易い形態に破砕されする。湿
式ミル処理だけでも可溶化や破砕は可能であるが、アル
カリ処理によって膨潤し一部可溶化した汚泥構成成分に
対しては、湿式ミル処理の効果は一層顕著に且つ短時間
に現れる。
Microbial cells and fibrous organic matter that were not solubilized by alkaline treatment are also solubilized by this wet mill treatment.
Alternatively, it is crushed into a form that is more amenable to anaerobic digestion. Although solubilization and crushing can be achieved by wet milling alone, the effects of wet milling are more pronounced and appear in a shorter time on sludge constituents that have swelled and been partially solubilized by alkali treatment.

湿式ミル処理を施した後の汚泥の嫌気性消化処理は、単
一の嫌気性消化槽において、次のようにして行う。
Anaerobic digestion of sludge after wet milling is carried out in a single anaerobic digestion tank as follows.

汚泥は、アルカリ処理を受けていることにより強いアル
カリ性であるが、必要に応じてさらにアルカリを加えて
、pH9〜11の状態で嫌気性消化槽に供給する。
The sludge is strongly alkaline due to the alkali treatment, but if necessary, alkali is further added to the sludge and the sludge is supplied to the anaerobic digestion tank at a pH of 9 to 11.

あるいは、消化槽に継続的にアルカリを注入して、槽内
を上記9Hに保つ。通常、下水汚泥中のメタン菌の増殖
に好適なpHは8未満の弱アルカリ性とされており、特
に酸生成菌とメタン菌とを共存させる単一槽消化の場合
のpHは、従来、調整する場合も無調整の場合も7前後
であるから、本発明の消化法において9Hは従来よりも
かなり高い値に設定される。本発明の消化法においては
、9Hがこのように高い値であることにより、第一に汚
泥成分の可溶化がさらに進み、嫌気性微生物による消化
を受は易い状態になる。第二に、。
Alternatively, alkali is continuously injected into the digestion tank to maintain the inside of the tank at the above 9H. Normally, the pH suitable for the growth of methane bacteria in sewage sludge is considered to be weakly alkaline, less than 8. In particular, in the case of single-tank digestion in which acid-producing bacteria and methane bacteria coexist, the pH has traditionally been adjusted. Since it is around 7 in both cases and without adjustment, 9H is set to a much higher value in the digestion method of the present invention than in the past. In the digestion method of the present invention, due to such a high value of 9H, firstly, the solubilization of the sludge components further progresses, making the sludge components more susceptible to digestion by anaerobic microorganisms. Secondly,.

病原性微生物が全く検出されないまでに死滅する。The pathogenic microorganisms die before they can be detected at all.

上述のようにpHが高い状態の汚泥中で旺盛に増殖する
好アルカリ性メタン菌は、通常の下水汚泥や従来の嫌気
性消化槽からの消化汚泥の中には少ないが、嫌気性消化
槽の運転開始に当たり槽内palを9〜11に維持して
行う馴養期間を設けることにより、槽内嫌気性菌菌叢の
大部分を占めるものとすることができる。
As mentioned above, alkaliphilic methane bacteria, which proliferate vigorously in sludge with a high pH, are rare in normal sewage sludge and digested sludge from conventional anaerobic digestion tanks, but when operating an anaerobic digestion tank, By providing an acclimatization period in which the tank PAL is maintained at 9 to 11 at the start, the anaerobic bacterial flora in the tank can occupy most of the flora.

馴養により好アルカリ性嫌気性菌群が準備されたならば
、消化槽に被処理汚泥を供給して正常運転としての嫌気
性消化を開始する。この処理において、槽内温度は特に
限定されるものではないが、30〜40°Cが適当であ
り、また滞留日数は2〜5日とする。滞留日数がこれよ
り長ずざると、槽内メタン菌のうち好アルカリ性メタン
菌の占める割合が低下し、消化率の低下を招く。
Once the alkaliphilic anaerobic bacteria group is prepared by acclimatization, the sludge to be treated is supplied to the digestion tank and anaerobic digestion is started as normal operation. In this treatment, the temperature inside the tank is not particularly limited, but 30 to 40°C is appropriate, and the residence time is 2 to 5 days. If the retention period is longer than this, the proportion of alkaliphilic methane bacteria among the methane bacteria in the tank will decrease, leading to a decrease in digestibility.

嫌気性消化槽から排出された汚泥は、固液を分離した後
、そのまま適宜処分することもできるが、本発明の処理
法においては、液相部分についてさらに好アルカリ性微
細藻類による好気的消化処理を行う。処理には、滞留日
数として4〜10日を要する。この処理は、アルカリ処
理および湿式ミル処理により可溶化した有機物のうち嫌
気性微生物によっては分解されなかったものを上記藻類
の栄養源として利用させることにより、排水中の有機物
含有量を減少させるもので、用いる藻類としては、スピ
ルリナ、アナベナなど、後で分離し易い大型微細藻類が
適当である。この処理で特に好アルカリ性藻類を用いる
理由は、強いアルカリ性で行われた嫌気性消化槽からの
排水を中和することなしに処理でき、また雑菌増殖の恐
れが少なく、培養管理が容易だからである。
The sludge discharged from the anaerobic digestion tank can be appropriately disposed of as it is after separating the solid and liquid, but in the treatment method of the present invention, the liquid phase portion is further subjected to aerobic digestion treatment using alkaliphilic microalgae. I do. The treatment requires a residence time of 4 to 10 days. This treatment reduces the organic matter content in wastewater by allowing the organic matter solubilized by alkali treatment and wet milling that is not decomposed by anaerobic microorganisms to be used as a nutrient source for the algae. Suitable algae to be used include macroscopic microalgae that can be easily separated later, such as Spirulina and Anabaena. The reason why alkaliphilic algae is particularly used in this treatment is that it can treat wastewater from an anaerobic digestion tank that has been subjected to strong alkalinity without neutralizing it, there is little fear of bacterial growth, and culture management is easy. .

以上、余剰汚泥を処理する場合について本発明を説明し
たが、本発明の処理法は、下水処理場において発生する
他の汚泥の処理にも好適であることは勿論、製あんなど
農水産加工工場からの廃棄物、家畜糞尿、畜体処理廃棄
物、魚腸骨などの廃棄処理する場合にも適用可能である
The present invention has been described above for the case of treating surplus sludge, but the treatment method of the present invention is of course suitable for treating other sludge generated in sewage treatment plants, as well as in agricultural and fishery processing plants such as mills. It can also be applied to the disposal of waste from animals, livestock manure, livestock processing waste, fish iliac bones, etc.

〔実施例〕〔Example〕

都市下水処理場より採取した余剰汚泥および混合汚泥(
余剰汚泥と初沈汚泥とのl:l混合物)について、本発
明による処理とその比較実験を行なった。汚泥の組成お
よび実験条件は次のとおりである。
Excess sludge and mixed sludge collected from urban sewage treatment plants (
A treatment according to the present invention and a comparative experiment were conducted on a 1:1 mixture of excess sludge and initial settling sludge. The composition of the sludge and the experimental conditions are as follows.

汚泥組成: TS(%)     VS(%) 余剰汚泥   4.0     3.0混合汚泥   
3.8     3.1アル力リ処理条件: 25%力性ソーダ溶液を汚泥pHが10になるまで添加
し、常温で30分間撹拌する。
Sludge composition: TS (%) VS (%) Surplus sludge 4.0 3.0 mixed sludge
3.8 3.1 Alkaline treatment conditions: Add 25% aqueous soda solution until the sludge pH reaches 10, and stir at room temperature for 30 minutes.

湿式ミル処理条件: 使用装置:媒体撹拌式ミル・パールミル(アシザヮ株式
会社、型式PMISTS、ビーズ径0.2mm。
Wet mill processing conditions: Equipment used: Media agitation mill/pearl mill (Ashizawa Co., Ltd., model PMISTS, bead diameter 0.2 mm).

ディスク回転数1300止1周速度6 m/see滞留
時間:5分 嫌気性消化条件: 5Q容ファーメンタ−を使用、300rpmで連続撹拌
し、かつPHコントローラでpHを10に維持する。
Disc rotation speed: 1300, per-circumference speed: 6 m/see Residence time: 5 minutes Anaerobic digestion conditions: Use a 5Q capacity fermenter, continuously stir at 300 rpm, and maintain pH at 10 with a pH controller.

消化温度=37°C 滞留日数:2日 実験開始時の馴養:下水処理場から採取した中温消化汚
泥を最初の種汚泥に用いて次のように実施最初の2週間
:滞留日数10日 次の2週間:滞留日数5日 最後の2週間:滞留日数2日 好アルカリ性藻類による処理: 使用藻類:スピルリナ(Spirulina sp、)
滞留日数:4日 培養槽:容量25Q1液深5 cm、 pH10500
Wフラツドランプで液面を照度l。
Digestion temperature = 37°C Residence days: 2 days Acclimatization at the start of the experiment: Medium-temperature digested sludge collected from a sewage treatment plant was used as the initial seed sludge and carried out as follows: First 2 weeks: Retention days: 10 days 2 weeks: Retention days: 5 days Last 2 weeks: Retention days: 2 days Treatment with alkaliphilic algae: Algae used: Spirulina sp.
Residence time: 4 days Culture tank: Capacity 25Q1 Liquid depth 5 cm, pH 10500
Illuminate the liquid level with a W flat lamp.

Klnxに照明 比較のため、アルカリ処理および湿式ミル処理を全く行
わずに同じ嫌気性消化および好アルカリ性藻類による消
化処理を行なった実験(比較例1)および湿式ミル処理
のみを行いアルカリ処理を行わないほかは上記と同様に
した実験(比較例2)を行なった。
For lighting comparison, Klnx was subjected to the same anaerobic digestion and alkaliphilic algae digestion without any alkali treatment or wet mill treatment (Comparative Example 1), and an experiment with only wet mill treatment and no alkali treatment. An experiment (Comparative Example 2) was conducted in the same manner as described above.

嫌気性消化槽の馴養終了後1o日間、嫌気性消化槽にお
ける消化率(VS除去率)、ガス発生量、ガスのメタン
含有率および揮発性有機酸量を測定し、さらに、藻類に
よる消化処理における消化率、揮発性有機酸量および窒
素含曾(遠心分離上澄液)の測定を行なった。
For 10 days after the acclimatization of the anaerobic digester, the digestibility (VS removal rate), amount of gas generated, methane content of gas, and amount of volatile organic acids in the anaerobic digester were measured. Digestibility, volatile organic acid content, and nitrogen content (centrifugation supernatant) were measured.

測定値の平均値を表1および表2に示す。The average values of the measured values are shown in Tables 1 and 2.

表1 汚泥二余剰汚泥 比較例1 比較例2  実施例 嫌気性消化 消化槽内pH9,8 消化率(%)      14 ガス発生量(A/VS−M) 113 ガス中のメタン(%)43 揮発性有機酸(mg#)  830 窒素含!(%)4.0 好アルカリ性藻類による消化処理 消化率(%)25 揮発性有機酸(mg/D  l 2 窒素含i(%)     o、og 9.9   10.1 4B30  1100 3.9    3.9 0.08   0.07 表2 汚泥:混合汚泥 比較例1 比較例2 実施例 嫌気性消化 消化槽内pH9,910,1 消化率(%)      18   34ガス発生量(
Q/VS−kg) 120  290ガス中のメタン(
%)5258 揮発性有機酸(mg/Q)  750 4700窒素含
量(%)     4.1   3.8好アルカリ性藻
類による消化処理 消化率(%)32 揮発性有機酸(mg#I)  l。
Table 1 Comparative example 1 of sludge and surplus sludge Comparative example 2 Example Anaerobic digestion Digestion tank pH 9.8 Digestibility (%) 14 Gas generation amount (A/VS-M) 113 Methane in gas (%) 43 Volatilization Organic acid (mg#) 830 Contains nitrogen! (%) 4.0 Digestion rate of alkaliphilic algae (%) 25 Volatile organic acids (mg/D l 2 Nitrogen content i (%) o, og 9.9 10.1 4B30 1100 3.9 3. 9 0.08 0.07 Table 2 Sludge: Mixed sludge Comparative Example 1 Comparative Example 2 Example Anaerobic Digestion Digestion tank pH 9,910,1 Digestion efficiency (%) 18 34 Gas generation amount (
Q/VS-kg) 120 290 Methane in gas (
%) 5258 Volatile organic acids (mg/Q) 750 4700 Nitrogen content (%) 4.1 3.8 Digestion treatment with alkaliphilic algae Digestion rate (%) 32 Volatile organic acids (mg #I) l.

窒素含量(%)     0.04 〔発明の効果〕 本発明の汚泥処理法によれば、上述のように極めて短時
間で従来の最高の水準と同等またはそれ以上の高い消化
率を嫌気性消化工程において達成し、汚泥量を顕著に減
少させることができるとともに、排出水の水質も良好に
することができる。したがって、従来と比べて消化槽の
単位体積当たりの処理能力の大幅な向上、0.08 1 Olo 3.6 0.09 あるいは消化槽の著しい小型化が可能になるとともに、
消化汚泥発生量が減少してその後処理が容易になるとい
う、顕著な効果が奏される。また、強いアルカリ性で処
理されていることにより、嫌気性消化槽から排出される
消化汚泥は病原性微生物を含まないだけでなく、その中
に残っている嫌気性微生物が強いアルカリ性で増殖した
ものであって自然界に放出されると大部分死滅してしま
うものであるため、消化汚泥を廃棄したとき環境を汚染
する恐れが少ないという利点がある。
Nitrogen content (%) 0.04 [Effects of the invention] According to the sludge treatment method of the present invention, as mentioned above, a high digestibility equal to or higher than the highest level of conventional methods can be achieved in an extremely short time using the anaerobic digestion process. The amount of sludge can be significantly reduced, and the quality of the discharged water can also be improved. Therefore, it is possible to significantly improve the throughput per unit volume of the digester, or to significantly reduce the size of the digester, compared to the conventional method.
The remarkable effect is that the amount of digested sludge generated is reduced and subsequent treatment becomes easier. In addition, because the sludge is treated with strong alkalinity, the digested sludge discharged from the anaerobic digestion tank not only does not contain pathogenic microorganisms, but also contains the remaining anaerobic microorganisms that have grown in the strong alkalinity. Since most of the digested sludge will die if it is released into the natural world, it has the advantage that there is little risk of contaminating the environment when it is disposed of.

Claims (1)

【特許請求の範囲】[Claims] 有機性汚泥にそのpHが9〜11になるまでアルカリを
添加して汚泥中の微生物菌体の可溶化を生じさせ、さら
に湿式ミル処理により残存微生物菌体等を破砕し、処理
後の汚泥に滞留日数2〜5日の嫌気性消化処理を施し、
該嫌気性消化処理後の汚泥から分離された水を好アルカ
リ性微細藻類により好気性消化処理することを特徴とす
る汚泥の処理方法。
Alkali is added to the organic sludge until the pH becomes 9 to 11 to solubilize the microorganisms in the sludge, and the remaining microorganisms are crushed by wet milling, and the treated sludge is Perform anaerobic digestion treatment for 2 to 5 days of residence,
A method for treating sludge, characterized in that water separated from the sludge after the anaerobic digestion treatment is subjected to aerobic digestion treatment using alkaliphilic microalgae.
JP63233641A 1988-09-20 1988-09-20 Treatment of sludge Granted JPH0283098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63233641A JPH0283098A (en) 1988-09-20 1988-09-20 Treatment of sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63233641A JPH0283098A (en) 1988-09-20 1988-09-20 Treatment of sludge

Publications (2)

Publication Number Publication Date
JPH0283098A true JPH0283098A (en) 1990-03-23
JPH0470080B2 JPH0470080B2 (en) 1992-11-09

Family

ID=16958226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233641A Granted JPH0283098A (en) 1988-09-20 1988-09-20 Treatment of sludge

Country Status (1)

Country Link
JP (1) JPH0283098A (en)

Also Published As

Publication number Publication date
JPH0470080B2 (en) 1992-11-09

Similar Documents

Publication Publication Date Title
JPS5864200A (en) Anaerobic digestion of cellulose-containing waste matter
JP3360076B2 (en) Organic wastewater treatment method
JP3732089B2 (en) Method for preparing microbial cultures for wastewater treatment
JP3400292B2 (en) Waste treatment method
JPH0470079B2 (en)
US4246100A (en) Composition and method for the treatment of sewage
JP3643287B2 (en) Food waste disposal method
JP2003103292A (en) Combined treatment method of wastewater and waste derived from organism
JPH0283098A (en) Treatment of sludge
KR101375934B1 (en) Organic fertilizer composition using organic sludge like food waste or livestock waste or marine waste and manufacturing method the same
JPH02211297A (en) Treatment of sludge
JPH0470078B2 (en)
JP2006231228A (en) Treatment method of sweet potato shochu lees waste water
JP3735222B2 (en) Excess sludge treatment method
KR100391137B1 (en) Bacteria group of bacillus spp in the aerobic reacting device and method for treating nihgtsoil, stackbreeding waste water, leachate and industrial organic wastewater
JP4018952B2 (en) Jellyfish processing method
CN112028424A (en) Waste treatment process
JPH0299200A (en) Anaerobic sludge digestion
JPS63224798A (en) Anaerobic digestion process
GB1589551A (en) Activated sludge process for waste water purification
JP2019214039A (en) Biomass treatment method, wastewater treatment method, and wastewater treatment facility
JPH0438478B2 (en)
JP4207314B2 (en) Method for solubilizing organic waste
JP2005193122A (en) Anaerobic hydrogen fermentation treatment system
Butterfield The oxidation of sewage by bacteria in pure culture