JPH0283039A - Catalyst for nitrogen oxide removal - Google Patents

Catalyst for nitrogen oxide removal

Info

Publication number
JPH0283039A
JPH0283039A JP63233793A JP23379388A JPH0283039A JP H0283039 A JPH0283039 A JP H0283039A JP 63233793 A JP63233793 A JP 63233793A JP 23379388 A JP23379388 A JP 23379388A JP H0283039 A JPH0283039 A JP H0283039A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
component
titanium
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63233793A
Other languages
Japanese (ja)
Inventor
Motonobu Kobayashi
基伸 小林
Futoshi Kinoshita
木下 太
Mitsuharu Hagi
光晴 萩
Akira Inoue
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP63233793A priority Critical patent/JPH0283039A/en
Publication of JPH0283039A publication Critical patent/JPH0283039A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a catalyst having a high denitrifying activity at a high temperature and a long lifetime for Nox removal by dispersibly depositing the zeolite having a specified ratio of Al2O3 to SiO2, together with the oxide of W and Ce, on TiO2-SiO2. CONSTITUTION:The subject catalyst includes the oxide of W and/or Ce and Sn and the zeolite having the value of the ratio of Al2O3 to SiO2 not less than 8 in addition to the binary oxide of Ti and Si and/or the ternary oxide of Ti, Zr and Si in such proportions that the catalyst comprises the ternary oxide of 50-90wt.%, the oxide of W, etc., of 0.5-10wt.% and the zeolite of 5-50wt.% and that the binary and/or ternary oxide comprises Ti of 40-95wt.% and Si and/or Zr of 5-60wt.%. The catalyst prepared in this way has a high denitrifying activity at a temperature as high as 400 deg.C, capable of removing Nox for a long period of time with higher efficiency.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はボイラ、ガスタービン、ディーゼルエンジン及
び各種工業プロセスから排出される排ガス中に含まれる
窒素酸化物(以下、NOxという)の除去用触媒に関す
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a catalyst for removing nitrogen oxides (hereinafter referred to as NOx) contained in exhaust gas discharged from boilers, gas turbines, diesel engines, and various industrial processes. Regarding.

特に、本発明はNOxを含有する排ガスに還元剤として
アンモニアを加え、400℃以上の高温で効率よ<NO
xを無害な窒素と水に還元し、しかも耐久性の優れた触
媒に関する。
In particular, the present invention adds ammonia as a reducing agent to exhaust gas containing NOx, and improves efficiency at high temperatures of 400°C or higher.
This invention relates to a highly durable catalyst that reduces x to harmless nitrogen and water.

〈従来の技術〉 現在、排気ガス中のNOxを除去する方法としては、1
4濃度の酸素を含む排ガスでもNOxを選択的に除去で
き、また使用する還元剤も少量ですみ、経済的であるた
め、アンモニアを還元剤として用いる選択的接触還元法
が主流となっている。
<Prior art> Currently, there are 1 methods for removing NOx from exhaust gas.
Selective catalytic reduction methods that use ammonia as a reducing agent have become mainstream because NOx can be selectively removed even from exhaust gas containing 4 concentrations of oxygen, and a small amount of reducing agent is required, making it economical.

アンモニアを還元剤とする選択的接触還元法に用いられ
る触媒としてアルミナ、シリカ、ゼオライト及び酸化チ
タン等の担体にバナジウム、銅、タングステン、モリブ
デン、鉄等の酸化物を担持した触媒がこれまで数多く提
案されているが中でも、チタンを主成分とする触媒は排
ガス中のSOxの影響を受けずまた、排ガス中の802
からS03への酸化能力が低いことから現在では広く実
用化されている。一方、ガスタービン排ガスやディーゼ
ルエンジン排ガスのように、排ガス温度が500℃を越
えるものもあり、これ等の高温排ガス中のNOxを処理
するための触媒が特開昭55−167044号公報及び
特開昭57−127426号公報に既に開示されている
Many catalysts have been proposed for use in selective catalytic reduction methods using ammonia as a reducing agent, in which oxides such as vanadium, copper, tungsten, molybdenum, and iron are supported on carriers such as alumina, silica, zeolite, and titanium oxide. Among them, catalysts whose main component is titanium are not affected by SOx in exhaust gas, and
It is now widely put into practical use because of its low ability to oxidize from to S03. On the other hand, some exhaust gases, such as gas turbine exhaust gas and diesel engine exhaust gas, have exhaust gas temperatures exceeding 500°C, and catalysts for treating NOx in these high-temperature exhaust gases are disclosed in Japanese Patent Application Laid-Open No. 55-167044 and This has already been disclosed in Publication No. 127426/1983.

〈発明が解決しようとする問題点〉 しかし、上記公報に記載された触媒4よ高温においては
、アンモニアの酸化(または分解)反応がNOxの還元
と同時に起こるため脱硝活性が今一つ充分でなく、また
、耐熱性にも問題があり、実用触媒としては決して満足
できるものでないのが現状である。
<Problems to be solved by the invention> However, at higher temperatures than the catalyst 4 described in the above publication, the oxidation (or decomposition) reaction of ammonia occurs at the same time as the reduction of NOx, so the denitrification activity is not sufficient. However, there are also problems with heat resistance, and the current situation is that it is by no means satisfactory as a practical catalyst.

〈本発明の目的〉 本発明の目的は400℃以上の高温において、高い脱硝
活性を有し、かつ長期間に亘って効率良くNOxを除去
できる触媒を提供することにある。
<Object of the present invention> An object of the present invention is to provide a catalyst that has high denitrification activity at high temperatures of 400° C. or higher and can efficiently remove NOx over a long period of time.

く問題点を解決するための手段〉 本発明者等は上記目的を達成するために鋭意検討した結
果、本発明を完成させた。
Means for Solving the Problems> The present inventors have completed the present invention as a result of intensive studies to achieve the above object.

すなわち、本発明は排ガス中の窒素酸化物をアンモニア
と共に400〜700℃の温度で反応せしめて接触的に
還元する触媒としてチタン(Ti )およびケイ素(S
i )からなる二元系酸化物および/またはチタン(T
i)、ジルコニウム(Zr )およびケイ素(Si)か
らなる三元系酸化物を触媒A成分とし、タングステン(
W)、セリウム(Ce)、15よびスズ(Sn )より
なる群から選ばれた少くとも一種の元素の酸化物を触媒
B成分とし、さらに、酸化アルミニウム(Aj!203
 )に対する酸化ケイ素(Si 02 )の比が8以上
含有してなるゼオライトを触tsC成分としてなり、か
つ触媒A成分は50〜95重量%、触媒日成分は0.5
〜10重ω%および触媒C成分は5〜50重量%の範囲
であり、さらに触媒A成分の組成が原子百分率でチタン
(■1)40〜95重量%、ケイ素(Si )および/
またはジルコニウム(Zr)5〜60重醇%の範囲であ
ることを特徴とする窒素酸化物除去用触媒を提供するも
のである。 本発明者等はチタンおよびケイ素からなる
二元系複合酸化物(以下、Ti 02−8i 02と略
記する)ならびにチタン、ジルコニウムおよびケイ素か
らなる三元系複合酸化物(以下Ti 02−Zr 02
−8i 02と略記する)を主成分とする触媒を特開昭
52=122293号公報に提案している。また、チタ
ン、リンおよびケイ素からなる三元系複合酸化物(以下
、Ti 02−P205−8i 02と略記する)なら
びにチタン、リン、ジルコニウムおよびケイ素からなる
四元系複合酸化物(以下、Ti 02−P20s −Z
r 02−8i 02と略記する)を主成分とする触媒
も特開昭57−127426号公報に既に提案している
That is, the present invention uses titanium (Ti) and silicon (S) as a catalyst for catalytically reducing nitrogen oxides in exhaust gas by reacting them with ammonia at a temperature of 400 to 700°C.
i) and/or titanium (T
i), a ternary oxide consisting of zirconium (Zr) and silicon (Si) is used as the catalyst A component, and tungsten (
The catalyst B component is an oxide of at least one element selected from the group consisting of W), cerium (Ce), 15, and tin (Sn), and aluminum oxide (Aj!203
) contains a zeolite containing a ratio of silicon oxide (Si 02 ) to 8 or more as the tsC component, the catalyst A component is 50 to 95% by weight, and the catalyst component is 0.5% by weight.
~10 wt ω% and the catalyst C component is in the range of 5 to 50 wt%, and furthermore, the composition of the catalyst A component is 40 to 95 wt% of titanium (■1), silicon (Si) and /
Alternatively, the present invention provides a catalyst for removing nitrogen oxides, characterized in that the content of zirconium (Zr) is in the range of 5 to 60% by weight. The present inventors have developed a binary composite oxide consisting of titanium and silicon (hereinafter abbreviated as Ti 02-8i 02) and a ternary composite oxide consisting of titanium, zirconium and silicon (hereinafter referred to as Ti 02-Zr 02).
-8i 02) as a main component is proposed in Japanese Patent Application Laid-open No. 122293. In addition, a ternary composite oxide consisting of titanium, phosphorus, and silicon (hereinafter abbreviated as Ti 02-P205-8i 02) and a quaternary composite oxide consisting of titanium, phosphorus, zirconium, and silicon (hereinafter referred to as Ti 02 -P20s -Z
A catalyst containing r02-8i02 as a main component has already been proposed in JP-A-57-127426.

本発明者らは、上記触媒の高温度領域における脱硝活性
について改良を試みた結果、TiO28102、Ti 
02−Zr 02−8i 02にタングステン、セリウ
ム、スズ等の酸化物と共に、さらにA1203に対する
SiO2の比が8以上のゼオライトを分散担持させるこ
とにより驚くべきことに脱硝活性が大幅に向上し、特に
、400℃以上の高温における脱硝活性の向上が顕著で
あると同時に、耐熱性も大幅に改善されることを見い出
した。本発明触媒の高温活性向上の作用vIWJについ
て、現時点では定かではないが、以下の如く推察される
The present inventors attempted to improve the denitrification activity of the above catalyst in the high temperature range, and found that TiO28102, Ti
02-Zr 02-8i By dispersing and supporting 02 with oxides such as tungsten, cerium, tin, etc., and further with zeolite having a ratio of SiO2 to A1203 of 8 or more, the denitrification activity is surprisingly significantly improved. It has been found that the denitrification activity is significantly improved at high temperatures of 400° C. or higher, and at the same time, the heat resistance is also significantly improved. The effect of the high-temperature activity improvement vIWJ of the catalyst of the present invention is not clear at present, but it is speculated as follows.

触媒A成分子アルTi 02−3i 02 オJ:UT
i 02−Zr 02−8i 02は、固体酸として。
Catalyst A component molecular Al Ti 02-3i 02 OJ:UT
i 02-Zr 02-8i 02 as a solid acid.

知られ、構成するおのおのの単独の酸化物には、見られ
ない顕著な酸性を示し、また高比表面積を有する一方ゼ
オライドも比表面積が大きく、固体酸としての性質を示
すことは良く知られているが、本発明触媒の如<Ti 
02−8i 02およびTiO2−Zr 02−8i 
02にゼオライトを添加することにより、完成触媒の酸
性質が最適にコントロールされ、好ましい酸分布が得ら
れ、その結果、400℃以上、特に450℃以上の高温
で通常起こるとされているNHsのNOXへの酸化(ま
たはN2への分解)が極力抑制され、それ故、脱硝活性
が著るしく向上したものと考えられる。
It is well known that zeolides exhibit remarkable acidity that is not found in the individual oxides that they constitute, and that they also have a high specific surface area, while zeolides also have a large specific surface area and exhibit properties as solid acids. However, as with the catalyst of the present invention, <Ti
02-8i 02 and TiO2-Zr 02-8i
By adding zeolite to 02, the acidity of the finished catalyst can be optimally controlled and a favorable acid distribution can be obtained.As a result, NOX of NHs, which is said to normally occur at high temperatures of 400°C or higher, especially 450°C or higher, can be controlled. It is considered that the oxidation to N2 (or decomposition to N2) is suppressed as much as possible, and therefore the denitrification activity is significantly improved.

触媒A成分であるTi 02−8i 02またはTi 
02−Zr 02−8i 02の含有量が50重量%未
満では耐熱性が悪くなり、95重量%を越えると400
℃以上でNH3の酸化(または分解)が起こり、脱硝活
性が低下するため、本発明においては触媒A成分の全触
媒中に占める割合は50〜95重員%が好ましい結果を
与える。
Ti 02-8i 02 or Ti which is catalyst A component
02-Zr 02-8i If the content of 02 is less than 50% by weight, the heat resistance will deteriorate, and if it exceeds 95% by weight, the
Since oxidation (or decomposition) of NH3 occurs at temperatures above .degree. C. and the denitrification activity decreases, in the present invention, the ratio of the catalyst A component to the total catalyst is preferably 50 to 95% by weight.

触媒A成分の組成は原子百分率でチタンが40〜95%
ケイ素および/またはジルコニウムが5〜60%の範囲
が好ましく、比表面積は30TIt/(1以上、特に、
50nt/Q以上が好ましい。
The composition of catalyst A component is 40-95% titanium in atomic percentage.
The content of silicon and/or zirconium is preferably in the range of 5 to 60%, and the specific surface area is 30 TIt/(1 or more, especially
50 nt/Q or more is preferable.

触媒B成分は015重量%未満になると脱硝活性が低下
し、また10重置火を越えると、脱硝活性の向上もあま
り期待できず、触媒の原料費が高くなるために、0.5
〜10重量%が好ましい。
If the catalyst B component is less than 0.15% by weight, the denitrification activity will decrease, and if it exceeds 10 times, the denitrification activity cannot be expected to improve much, and the raw material cost of the catalyst will increase.
~10% by weight is preferred.

また、触Il!、C成分であるゼオライトは、S1ω/
Δ1203比が8未満は排ガス中のSOxとAl2O3
が反応してその構造を破壊するのみならず、脱硝性能も
低イタメ、Si 02 /Al2O3比は8以上が好ま
しい。
Also, touch! , the zeolite which is the C component is S1ω/
If the Δ1203 ratio is less than 8, SOx and Al2O3 in the exhaust gas
It is preferable that the Si 02 /Al2O3 ratio is 8 or more because not only does the structure of the Si 02 /Al2O3 ratio react, but the denitrification performance is also low.

ゼオライトとしては例えば、モルデナイト、フェリエラ
イト、ZSM−5等が挙げられる。ゼオライトの含有量
が5重量%未満では脱硝活性が低り、40重開気を越え
ると耐熱性が悪くなり、さらに、成型性も劣るため5〜
40重量%の範囲が好ましい結果を与える。
Examples of the zeolite include mordenite, ferrierite, and ZSM-5. If the zeolite content is less than 5% by weight, the denitrification activity will be low, and if it exceeds 40% by weight, the heat resistance will be poor, and the moldability will also be poor.
A range of 40% by weight gives preferred results.

本発明において用いられるTi 02−3i 02を調
製するには、まずチタン源として塩化チタン類、硫酸チ
タンなどの無機性チタン化合物および蓚酸チタン、テト
ライソプロピルチタネートなどの有機性チタン化合物な
どから選ぶことができ、またケイ素源としてはコロイド
状シリカ、水ガラス、四塩化ケイ素など無機性のケイ素
化合物およびテトラエチルシリケートなど有機ケイ素化
合物などから選ぶことができる。そしてこれら原料中に
は、微量の不純物、混入物のあるものがあるが、えられ
るTi 02−8i 02の物性に大きく影響を与える
ものでない限り問題とならない。
In order to prepare Ti 02-3i 02 used in the present invention, it is first necessary to select a titanium source from inorganic titanium compounds such as titanium chlorides and titanium sulfate, and organic titanium compounds such as titanium oxalate and tetraisopropyl titanate. The silicon source can be selected from inorganic silicon compounds such as colloidal silica, water glass, silicon tetrachloride, and organic silicon compounds such as tetraethyl silicate. Some of these raw materials contain trace amounts of impurities and contaminants, but this does not pose a problem as long as it does not significantly affect the physical properties of the Ti 02-8i 02 obtained.

好ましいTi 02−8i 02の調製法としては、以
下の方法が挙げられる。
A preferred method for preparing Ti 02-8i 02 includes the following method.

■ 四塩化チタンをシリカゾルと共に混合し、アンモニ
アを添加して沈澱を生成せしめ、この沈澱を洗滌、乾燥
後300〜650℃で焼成せしめる方法。
(2) A method in which titanium tetrachloride is mixed with silica sol, ammonia is added to form a precipitate, the precipitate is washed, dried, and then calcined at 300 to 650°C.

■ 四塩化チタンにケイ酸ナトリウム水溶液を添加し、
反応せしめて沈澱を生成させ、これを洗浄乾燥後300
〜650℃で焼成せしめる方法。
■ Add sodium silicate aqueous solution to titanium tetrachloride,
The reaction was carried out to form a precipitate, which was washed and dried for 300 min.
A method of firing at ~650°C.

■ 四塩化チタンの水−アルコール溶液にエチルシリケ
ート[(C21−1s 0)4Si ]を添加し加水分
解反応せしめ沈澱を形成させ、これを洗浄、乾燥後30
0〜650℃で焼成せしめる方法。
■ Add ethyl silicate [(C21-1s 0)4Si ] to a water-alcohol solution of titanium tetrachloride to cause a hydrolysis reaction to form a precipitate, which was washed and dried for 30 minutes.
A method of firing at 0 to 650°C.

■ 酸化塩化チタン(Ti OCj!2)とエチルシリ
ケートの水−アルコール溶液にアンモニアを加えて沈澱
を形成せしめ、これを洗浄乾燥後300〜650℃で焼
成せしめる方法。
(2) A method in which ammonia is added to a water-alcohol solution of titanium oxide chloride (Ti OCj!2) and ethyl silicate to form a precipitate, which is washed and dried and then calcined at 300 to 650°C.

以上の好ましい方法のうちでもとくに■の方法が好まし
く、この方法は具体的には以下のごと〈実施される。す
なわち、上記チタン源およびケイ素源の化合物をTi 
02とSiO2のモル比が所定量になるようにとり、酸
性の水溶液状態またはゾル状態でチタンおよびケイ素を
酸化物換算して1〜100(1/ j!の濃度とし10
〜100℃に保つ・。
Among the above preferred methods, method (2) is particularly preferred, and this method is specifically carried out as follows. That is, the titanium source and silicon source compounds are replaced with Ti.
The molar ratio of 02 and SiO2 is set to a predetermined amount, and the concentration of titanium and silicon in terms of oxides is 1 to 100 (1/j!) in an acidic aqueous solution or sol state.
Keep at ~100℃.

その中へ攪拌上中和剤としてアンモニア水を滴下し、1
0分間ないし3時間pH2〜10にてチタンおよびケイ
素よりなる共沈化合物を生成せしめ、濾別しよく洗浄し
たのち80〜140℃で1〜10時間乾燥し、450〜
700℃で1〜10時間焼成してT02−8i 02が
できる。
Aqueous ammonia was added dropwise as a neutralizing agent to the mixture while stirring, and 1
A coprecipitated compound consisting of titanium and silicon is formed at pH 2 to 10 for 0 minutes to 3 hours, separated by filtration and thoroughly washed, and then dried at 80 to 140°C for 1 to 10 hours.
T02-8i 02 is obtained by firing at 700° C. for 1 to 10 hours.

また、Ti 02−Zr 02−3i 02にライては
、Ti 02−3i 02と同様の方法で調製されるも
のであり、ジルコニウム源として、塩化ジルコニウム、
硫酸ジルコニウムなどの無機性ジルコニウム化合物およ
び蓚酸ジルコニウムなど有機性ジルコニウム化合物のな
かから選ぶことができる。
In addition, Ti 02-Zr 02-3i 02 is prepared in the same manner as Ti 02-3i 02, and zirconium chloride, zirconium chloride,
It can be selected from inorganic zirconium compounds such as zirconium sulfate and organic zirconium compounds such as zirconium oxalate.

すなわち、ジルコニウム化合物をチタン化合物と共に上
述の方法と同様に扱うことによりTi 02Zr 02
−8i 02は容易に調製しつるのである。そして、こ
のジルコニウムの存在囲は、TlO2+Zr 02 +
Si 02の合計量に対しzrO2に換算して30重量
%までの範囲内にあるのが好ましい。
That is, by treating a zirconium compound together with a titanium compound in the same manner as in the above method, Ti02Zr02
-8i 02 is easily prepared. And the existence range of this zirconium is TlO2+Zr 02 +
It is preferably within a range of up to 30% by weight in terms of zrO2 based on the total amount of Si02.

つぎにTi 02−8i 02 、およびTi 02−
Zr 02−8i 02と共に用いる他の触媒成分の出
発原料としては酸化物、水酸化物、アンモニウム塩、シ
lつ酸塩、ハロゲン化物などから適宜選ばれる。
Next, Ti 02-8i 02 and Ti 02-
Starting materials for other catalyst components used together with Zr 02-8i 02 are appropriately selected from oxides, hydroxides, ammonium salts, silicates, halides, and the like.

本発明触媒の調製法の一例を示せば、モノエタノールア
ミンを含む水溶液にパラタングステン酸アンモニウムを
溶解させてえられた溶液を加えて、タングステンを含む
溶液をえる。つぎにこのえられた水溶液に上述の方法で
得たTi 02−8i02の粉体とゼオライト粉体を成
型助剤とともに加え、混合、混練し、押し出し成型機で
ハニカム状に成型する。成型物を50〜120℃で乾燥
後400〜100℃、好ましくはSOO〜650℃で1
〜10時間、好ましくは2〜6時間空気流中で焼成して
触媒を得ることができる。また別法としてTiO2−5
iO2の粉体とゼオライト粉体を予めへ二カム状とし、
これにタングステンを含む水溶液を含浸させて担持させ
る方法も採用できる。また、ざらに担体を使用すること
も可能である。担体としては、例えばアルミナ、シリカ
、シリカアルミナ、ベントナイト、ケイソウ土、シリコ
ンカーバイド、チタニア、ジルコニア、マグネシア、コ
ープイライト、ムライト、軽石、無機繊維などを用いる
ことができ、例えば粒状のシリコンカーバイドにTi 
02−8i 02とゼオライト粉体および伯の触媒成分
をスラリー状としそれを含浸法により担持させる方法で
調製することができる。もちろん触媒調製法はこれらの
方法に限定されるものではない。
An example of the method for preparing the catalyst of the present invention is to obtain a solution containing tungsten by adding a solution obtained by dissolving ammonium paratungstate to an aqueous solution containing monoethanolamine. Next, the Ti 02-8i02 powder and zeolite powder obtained by the above method are added to the obtained aqueous solution together with a molding aid, mixed and kneaded, and molded into a honeycomb shape using an extrusion molding machine. After drying the molded product at 50-120°C, it is heated at 400-100°C, preferably SOO-650°C for 1
The catalyst can be obtained by calcination in a stream of air for ~10 hours, preferably 2-6 hours. Alternatively, TiO2-5
iO2 powder and zeolite powder are made into a two-cam shape in advance,
A method of impregnating this with an aqueous solution containing tungsten and supporting it can also be adopted. It is also possible to use a coarse carrier. Examples of carriers that can be used include alumina, silica, silica alumina, bentonite, diatomaceous earth, silicon carbide, titania, zirconia, magnesia, copillite, mullite, pumice, and inorganic fibers. For example, granular silicon carbide and Ti
02-8i It can be prepared by making a slurry of 02, zeolite powder, and the catalyst component described above, and supporting the slurry by an impregnation method. Of course, the catalyst preparation method is not limited to these methods.

触媒形状としては上記のハニカム状にとどまらず、円柱
状、円筒状、板状、リボン状、波板状、パイプ状、ドー
ナツ状、格子状、その他一体化成型されたもの等適宜選
択することができる。
The shape of the catalyst is not limited to the above-mentioned honeycomb shape, but can be appropriately selected such as columnar, cylindrical, plate, ribbon, corrugated sheet, pipe, donut, lattice, and other integrally molded shapes. can.

本発明の触媒が使用される処理の対象となる排ガスの組
成としては、通常SOx  O〜3000ppm 。
The composition of the exhaust gas to be treated using the catalyst of the present invention is usually SOx O to 3000 ppm.

酸素1〜20容j%、炭酸ガス1〜15容凹%、水蒸気
5〜15容量%、煤11 O,01〜30(+/Nゴお
よびNOx  (主にN O) 20〜11000pp
の程度に含有するものである。通常のボイラー排ガスは
この範囲に入るが、特にガス組成を限定しない。本発明
の触媒は、例えばSOxを含まない含N0XIガス、お
よびハロゲン化合物を含む含NOX排ガス等の特殊な排
ガスをも処理することができるからである。
Oxygen 1-20% by volume, carbon dioxide 1-15% by volume, water vapor 5-15% by volume, soot 11-30% (+/N) and NOx (mainly NO) 20-11000pp
It contains to the extent of. Normal boiler exhaust gas falls within this range, but the gas composition is not particularly limited. This is because the catalyst of the present invention can also treat special exhaust gases such as NOXI-containing gas that does not contain SOx and NOX-containing exhaust gas that contains halogen compounds.

また、処理条件としては排ガスの種類、性状によって異
なるが、まずアンモニア(NH3)の添加聞は、NOx
 1部に対して0.5〜3部が好ましい。例えばボイラ
ーの排ガス組成ではNOxのうちの大部分がNoである
ので、NoとNH3のモル比1:1の近辺が特に好まし
い。過剰のNH3は未反応分として排出されないよう留
意しなければならないからである。さらに、未反応分の
NH3を極力抑制する必要のある場合はNH3/NOx
のモル比を1以下で使用することが好ましい。次に、反
応温度は300〜700℃、特に400〜650℃が好
ましく、空間速度は、1000〜100000hr”、
特に3000〜30000Hr−1の範囲が好適である
。圧力は特に限定はないが0.01〜10kO/cjの
範囲が好ましい。
In addition, the processing conditions vary depending on the type and properties of the exhaust gas, but first, during the addition of ammonia (NH3), NOx
It is preferably 0.5 to 3 parts per part. For example, in the exhaust gas composition of a boiler, most of the NOx is No, so a molar ratio of No and NH3 of around 1:1 is particularly preferable. This is because care must be taken not to discharge excess NH3 as an unreacted component. Furthermore, if it is necessary to suppress unreacted NH3 as much as possible, NH3/NOx
It is preferable to use the molar ratio of 1 or less. Next, the reaction temperature is preferably 300 to 700°C, particularly 400 to 650°C, and the space velocity is 1000 to 100000 hr".
In particular, a range of 3000 to 30000 Hr-1 is suitable. The pressure is not particularly limited, but is preferably in the range of 0.01 to 10 kO/cj.

反応器の形式としては特に限定はないが、通常の固定床
、移動床、流動床等の反応器が適用できる。
The type of reactor is not particularly limited, but common fixed bed, moving bed, fluidized bed, and other reactors can be used.

以下に実施例および比較例を用いて本発明をさらに詳細
に説明するが、本発明はこれら実施例のみに限定される
ものではない。
The present invention will be explained in more detail below using Examples and Comparative Examples, but the present invention is not limited to these Examples.

実施例1 Ti 02−8i 02を以下に述べる方法で調製した
Example 1 Ti 02-8i 02 was prepared by the method described below.

水80Jlに四塩化チタン(Ti Cj!4) 11.
4kgを水冷攪拌下体々に滴下し、次にスノーテックス
−〇(8産化学(44)製シリカゾルSiO2として2
0〜21重世%含有)  4.5k(lを加えた。これ
を温度的30℃に保持しつつよく攪拌しながらアンモニ
ア水を徐々に滴下し、pHが7になるまで加え、さらに
そのまま放置して、2時間熟成した。
Titanium tetrachloride (Ti Cj!4) in 80 Jl of water 11.
4 kg was added dropwise to each body under water-cooling and stirring, and then 2
Added 4.5k (l) (containing 0 to 21%). While maintaining the temperature at 30°C and stirring well, ammonia water was gradually added dropwise until the pH reached 7, and then left as it was. and aged for 2 hours.

かくして得られたTi 02−8i 02ゲルを櫨過し
、水洗後120℃で10時間乾燥し、さらに水洗した後
600℃で3時間焼成した。得られた粉体の組成は酸化
物としてTi 02 /Si 02 =4 (モル比)
で、BET表面積は18G?7f/!IIであった。
The thus obtained Ti 02-8i 02 gel was filtered, washed with water, dried at 120°C for 10 hours, further washed with water, and then fired at 600°C for 3 hours. The composition of the obtained powder is Ti 02 /Si 02 = 4 (molar ratio) as an oxide.
So, the BET surface area is 18G? 7f/! It was II.

ここで得られた粉体を以後TS−1と呼ぶ。The powder obtained here is hereinafter referred to as TS-1.

モノエタノールアミン21ai!を水210Idと混合
し、これにパラタングステン酸アンモニウム58.3σ
を加え溶解させ、均一な溶液とする。さらにこの溶液を
上記の粉体(T 5−1) 6500と東洋ソーダ製H
型ゼオライトTSZ620HOA (Si 02 /A
1203= 10) 300aに加えニーダで適量の水
を添加しつつよく混合、混練した後、押し出し成型機で
直径4sφ、長さ5 trta Lのペレット状に成型
した。ついで60℃で乾燥し600℃で5時間空気流通
下で焼成した。得られた完成触媒中のTS−1、H型ゼ
オライトおよびWO3の含有量は、重量%でそれぞれ6
5%、30%、5%であった。
Monoethanolamine 21ai! was mixed with water 210Id, and ammonium paratungstate 58.3σ
Add and dissolve to make a homogeneous solution. Furthermore, this solution was mixed with the above powder (T 5-1) 6500 and Toyo Soda H
Type zeolite TSZ620HOA (Si 02 /A
1203=10) In addition to 300a, the mixture was thoroughly mixed and kneaded using a kneader while adding an appropriate amount of water, and then molded into pellets with a diameter of 4 sφ and a length of 5 trta L using an extrusion molding machine. It was then dried at 60°C and fired at 600°C for 5 hours under air circulation. The content of TS-1, H-type zeolite and WO3 in the obtained finished catalyst was 6% by weight, respectively.
They were 5%, 30%, and 5%.

実施例2 4塩化チタン11.41(g、酸塩化ジルコニウム[Z
r 0Cf2−8t−42071,2Kgおよびスノー
テックス−03,4Kgを用いた以外は実施例1に準じ
てTi 02−Zr 02−8i 02を調製した。得
られた粉体の組成は酸化物としてTi 02  :Zr
O2:Si 02 =80:  5:15(T−/L/
比)でSET表面積は210Td/(lであった。得ら
れた粉体をT Z S −1と呼び、このT Z S−
1を用いて実施例1と同様にして同様の組成の触媒を調
製した。得られた完成触媒中の丁ZS−1、H型ぜオラ
イドおよびWO3の含有量は重量%でそれぞれ65%、
30%、5%であった。
Example 2 Titanium tetrachloride 11.41 (g, zirconium acid chloride [Z
Ti 02-Zr 02-8i 02 was prepared according to Example 1 except that r 0Cf2-8t-42071,2Kg and Snowtex-03,4Kg were used. The composition of the obtained powder was Ti 02 :Zr as an oxide.
O2:Si02 =80:5:15(T-/L/
ratio) and the SET surface area was 210Td/(l. The obtained powder was called TZS-1, and this TZS-
A catalyst having a similar composition was prepared in the same manner as in Example 1 using No. 1. The content of ZS-1, H-type zeolide and WO3 in the obtained finished catalyst was 65% by weight, respectively.
They were 30% and 5%.

実施例3〜7 実施例1で得られたTi 02−8i 02粉体(TS
−1)を用いてWO3、Ce 02 、Sn 02およ
びH型ゼオライトの組成を変えて実施例1に準じて触媒
を調製した。得られた触媒組成はfiffi%で示すと
下記の通りである。
Examples 3 to 7 Ti 02-8i 02 powder obtained in Example 1 (TS
A catalyst was prepared according to Example 1 using WO3, Ce 02 , Sn 02 and H-type zeolite using 1). The resulting catalyst composition, expressed in fiffi%, is as follows.

比較例1〜3 実施例1で得られたTi 02−8i 02粉体(T 
5−1)を用いてWO3およびH型ゼオライトの組成を
変えて実施例1に準じて触媒を調製した。
Comparative Examples 1 to 3 Ti 02-8i 02 powder obtained in Example 1 (T
A catalyst was prepared according to Example 1 using 5-1) and changing the composition of WO3 and H-type zeolite.

得られた触媒組成は、m聞%で示すと下記の通りである
The resulting catalyst composition, expressed in m%, is as follows.

実施例1〜7および比較例1〜3の各触媒について次の
ような方法で脱硝率を求めた。
The denitrification rate was determined for each catalyst of Examples 1 to 7 and Comparative Examples 1 to 3 by the following method.

触120.ml!を電気炉に投入した内116.の石英
製反応管に充填し、下記組成の合成ガスを触媒層に導入
した。反応器前後のNOx濃度を柳本製作所製化学発光
式NOx計(ECL−77A型)により測定し、次式に
従って脱硝率を算出した。
Touch 120. ml! 116. A quartz reaction tube was filled, and a synthesis gas having the following composition was introduced into the catalyst layer. The NOx concentration before and after the reactor was measured using a chemiluminescent NOx meter (model ECL-77A) manufactured by Yanagimoto Seisakusho, and the denitrification rate was calculated according to the following formula.

脱硝率(%)= 入口NOx濃度−出口NOx濃度 反応ガス条件 ガスffi          3.33 N 1 /
1lin空間速a (S V )     100OO
Hr −1NH3/NOX  (モル比)1.0 ガス組成  N Ox   100100pp   1
5% 802  200ppm )120  10% N2    残り 胃られた結果を表1に示す。
Denitrification rate (%) = Inlet NOx concentration - Outlet NOx concentration Reaction gas condition gas ffi 3.33 N 1 /
1lin space velocity a (SV) 100OO
Hr -1NH3/NOX (molar ratio) 1.0 Gas composition N Ox 100100pp 1
5% 802 200ppm) 120 10% N2 The results are shown in Table 1.

また、実施例1,5.6および比較例1.3の各触媒に
ついて次のような方法で耐熱試験を行なった。
Further, a heat resistance test was conducted on each of the catalysts of Examples 1, 5.6 and Comparative Example 1.3 using the following method.

電気炉を用いて500℃で熱曝露を行ない、経過時間に
伴う500℃での脱硝率の変化を調べた。得られた結果
を表2に示す。
Heat exposure was performed at 500°C using an electric furnace, and changes in the denitrification rate at 500°C with elapsed time were investigated. The results obtained are shown in Table 2.

表 (脱 硝 率 %) 表1 (脱硝率%) 〈発明の効果〉 本発明における触媒は、400℃以上の高温において高
い脱硝性能を有しかつ長期間に亘って効率良<NOxを
除去できる触媒である。
Table (Denitrification rate %) Table 1 (Denitrification rate %) <Effects of the invention> The catalyst of the present invention has high denitrification performance at high temperatures of 400°C or higher and is a catalyst that can efficiently remove NOx for a long period of time. It is.

Claims (1)

【特許請求の範囲】[Claims] (1)排ガス中の窒素酸化物をアンモニアと共に400
〜700℃の温度で反応せしめて接触的に還元する触媒
としてチタン(Ti)およびケイ素(Si)からなる二
元系酸化物および/またはチタン(Ti)、ジルコニウ
ム(Zr)およびケイ素(Si)からなる三元系酸化物
を触媒A成分とし、タングステン(W)、セリウム(C
e)およびスズ(Sn)よりなる群から選ばれた少くと
も一種の元素の酸化物を触媒B成分とし、さらに、酸化
アルミニウム(Al_2O_3)に対する酸化ケイ素(
SiO_2)の比が8以上含有してなるゼオライトを触
媒C成分としてなり、かつ触媒A成分は50〜95重量
%、触媒B成分は0.5〜10重量%および触媒C成分
は5〜50重量%の範囲であり、さらに触媒A成分の組
成が原子百分率でチタン(Ti)40〜95重量%、ケ
イ素(Si)および/またはジルコニウム(Zr)5〜
60重量%の範囲であることを特徴とする窒素酸化物除
去用触媒。
(1) Nitrogen oxides in exhaust gas together with ammonia
A binary oxide consisting of titanium (Ti) and silicon (Si) and/or titanium (Ti), zirconium (Zr) and silicon (Si) as a catalyst for catalytic reduction by reaction at a temperature of ~700°C The catalyst A component is a ternary oxide consisting of tungsten (W), cerium (C
e) and an oxide of at least one element selected from the group consisting of tin (Sn) as the catalyst B component;
The catalyst C component is a zeolite containing SiO_2) at a ratio of 8 or more, and the catalyst A component is 50 to 95% by weight, the catalyst B component is 0.5 to 10% by weight, and the catalyst C component is 5 to 50% by weight. Furthermore, the composition of the catalyst A component is 40 to 95% by weight of titanium (Ti) and 5 to 95% of silicon (Si) and/or zirconium (Zr) in atomic percentage.
A catalyst for removing nitrogen oxides, characterized in that the content is in the range of 60% by weight.
JP63233793A 1988-09-20 1988-09-20 Catalyst for nitrogen oxide removal Pending JPH0283039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63233793A JPH0283039A (en) 1988-09-20 1988-09-20 Catalyst for nitrogen oxide removal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63233793A JPH0283039A (en) 1988-09-20 1988-09-20 Catalyst for nitrogen oxide removal

Publications (1)

Publication Number Publication Date
JPH0283039A true JPH0283039A (en) 1990-03-23

Family

ID=16960657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233793A Pending JPH0283039A (en) 1988-09-20 1988-09-20 Catalyst for nitrogen oxide removal

Country Status (1)

Country Link
JP (1) JPH0283039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108554462A (en) * 2018-05-14 2018-09-21 南京工业大学 A kind of cerium tungsten titanium denitrating catalyst and its preparation method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108554462A (en) * 2018-05-14 2018-09-21 南京工业大学 A kind of cerium tungsten titanium denitrating catalyst and its preparation method and application

Similar Documents

Publication Publication Date Title
JPS6214339B2 (en)
JPS6245341A (en) Catalyst for reducing content of nitrogen oxide in combustion exhaust gas
JP2730987B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
JP4204692B2 (en) Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst
JP2980633B2 (en) Nitrogen oxide removal catalyst
JP3507906B2 (en) DeNOx catalyst
JPH04363143A (en) Catalyst for decomposition of nitrous oxide and method for purifying exhaust gas containing nitrous oxide
JP2919541B2 (en) Nitrogen oxide removal catalyst
JP3537209B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
JPH0283039A (en) Catalyst for nitrogen oxide removal
JP3246757B2 (en) Nitrogen oxide removal catalyst
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPS6214336B2 (en)
JP2605956B2 (en) Exhaust gas purification catalyst
JPS59213442A (en) Preparation of denitration catalyst
JP3537210B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
JP3838415B2 (en) NOx removal catalyst and exhaust gas treatment method using the same
JPH06170166A (en) Removal of nitrogen oxide
JP2743336B2 (en) Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas
JP3395219B2 (en) Nitrogen oxide removal method
JP3495527B2 (en) Sulfur trioxide reduction method
JP2001113170A (en) Method for manufacturing for denitration catalyst
JP3482658B2 (en) Nitrogen oxide removal method
JP3395221B2 (en) Nitrogen oxide removal method
JPH04197442A (en) Production of catalyst for removal of nitrogen oxide