JPS6214336B2 - - Google Patents
Info
- Publication number
- JPS6214336B2 JPS6214336B2 JP57022694A JP2269482A JPS6214336B2 JP S6214336 B2 JPS6214336 B2 JP S6214336B2 JP 57022694 A JP57022694 A JP 57022694A JP 2269482 A JP2269482 A JP 2269482A JP S6214336 B2 JPS6214336 B2 JP S6214336B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- titanium
- oxide
- tio
- zirconium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003054 catalyst Substances 0.000 claims description 69
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 43
- 239000007789 gas Substances 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 35
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 22
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 22
- 229910052719 titanium Inorganic materials 0.000 claims description 22
- 239000010936 titanium Substances 0.000 claims description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000010703 silicon Substances 0.000 claims description 20
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 18
- 229910052726 zirconium Inorganic materials 0.000 claims description 18
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 15
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 14
- 239000010937 tungsten Substances 0.000 claims description 14
- 229910052721 tungsten Inorganic materials 0.000 claims description 13
- 229910021529 ammonia Inorganic materials 0.000 claims description 10
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 9
- 239000011218 binary composite Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 6
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 5
- 150000003609 titanium compounds Chemical class 0.000 claims description 5
- 150000003755 zirconium compounds Chemical class 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 239000011206 ternary composite Substances 0.000 claims description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 4
- FAKFSJNVVCGEEI-UHFFFAOYSA-J tin(4+);disulfate Chemical compound [Sn+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O FAKFSJNVVCGEEI-UHFFFAOYSA-J 0.000 claims description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 3
- 150000003377 silicon compounds Chemical class 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 229910001887 tin oxide Inorganic materials 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 53
- 229910004298 SiO 2 Inorganic materials 0.000 description 47
- 238000000034 method Methods 0.000 description 29
- 239000000843 powder Substances 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 238000007254 oxidation reaction Methods 0.000 description 14
- 229910052718 tin Inorganic materials 0.000 description 14
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 13
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 13
- 230000003647 oxidation Effects 0.000 description 12
- 239000000377 silicon dioxide Substances 0.000 description 12
- 229910052720 vanadium Inorganic materials 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 229910052681 coesite Inorganic materials 0.000 description 10
- 229910052906 cristobalite Inorganic materials 0.000 description 10
- 235000012239 silicon dioxide Nutrition 0.000 description 10
- 229910052682 stishovite Inorganic materials 0.000 description 10
- 229910052905 tridymite Inorganic materials 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 229910052815 sulfur oxide Inorganic materials 0.000 description 8
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 8
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical class Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 230000010718 Oxidation Activity Effects 0.000 description 6
- 229910006404 SnO 2 Inorganic materials 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 239000000428 dust Substances 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 238000010531 catalytic reduction reaction Methods 0.000 description 4
- 150000002366 halogen compounds Chemical class 0.000 description 4
- 239000004071 soot Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- AWXLLPFZAKTUCQ-UHFFFAOYSA-N [Sn].[W] Chemical compound [Sn].[W] AWXLLPFZAKTUCQ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910021331 inorganic silicon compound Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- BBJSDUUHGVDNKL-UHFFFAOYSA-J oxalate;titanium(4+) Chemical compound [Ti+4].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O BBJSDUUHGVDNKL-UHFFFAOYSA-J 0.000 description 1
- DAWBXZHBYOYVLB-UHFFFAOYSA-J oxalate;zirconium(4+) Chemical compound [Zr+4].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O DAWBXZHBYOYVLB-UHFFFAOYSA-J 0.000 description 1
- VBLQNYINPWASGP-UHFFFAOYSA-M oxygen(2-) titanium(3+) chloride Chemical compound [O-2].[Ti+3].[Cl-] VBLQNYINPWASGP-UHFFFAOYSA-M 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- -1 sodium and potassium Chemical class 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- RCIVOBGSMSSVTR-UHFFFAOYSA-L stannous sulfate Chemical compound [SnH2+2].[O-]S([O-])(=O)=O RCIVOBGSMSSVTR-UHFFFAOYSA-L 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 229910000375 tin(II) sulfate Inorganic materials 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 150000003658 tungsten compounds Chemical class 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
- ZXAUZSQITFJWPS-UHFFFAOYSA-J zirconium(4+);disulfate Chemical compound [Zr+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZXAUZSQITFJWPS-UHFFFAOYSA-J 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明はボイラー、火力発電所、製鉄所などを
はじめ各種工場の固定燃焼装置から排出される排
ガス中に含有される窒素酸化物(以下NOxとす
る)の除去用触媒に関する。特に本発明はNOx
および硫黄化合物(主として二酸化硫黄以下SOx
とする。)を同時に含有する排ガスにアンモニア
を還元剤として加え接触的に反応させることによ
り効率よくNOxを無害な窒素と水に分解し、同
時に生じる二酸化硫黄(SO2)の三酸化硫黄
(SO3)への酸化反応を低水準に抑制し、かつ、耐
久性にすぐれた性能を有する触媒を提供するもの
である。
排ガス中のNOx除去法としては大別して吸着
法、吸収法及び接触還元法などがあるが、このう
ちでも接触還元法が排ガス処理量が大きくかつ廃
水処理も不用であり、技術的、経済的にも有利で
ある。
接触還元法には還元剤としてメタン、LPG等の
炭化水素、水素あるいは一酸化炭素を用いる非選
択的還元法と還元剤としてアンモニアを用いる選
択的還元法とがある。後者の場合高濃度の酸素を
含む排ガスでもNOxを選択的に除去でき、又使
用する還元剤も少量ですむため経済的でもあり極
めて有利な方法である。
アンモニアを還元剤とする選択的接触還元法に
おける触媒の備えるべき特質としては第一に排ガ
ス中には酸素、SOx、炭酸ガス、水蒸気、ハロゲ
ン化合物、炭化水素類等を含んでいるが、それ等
の共存ガスの影響を受けないこと。
第二に広範囲の温度領域でしかも高空間速度で
十分高性能を示すこと。第三に、排ガス中に存在
している煤塵にはバナジウム、ニツケル、鉄等の
重金属や、ナトリウム、カリウム等のアルカリ金
属が含まれているが、これ等の煤塵が付着しても
触媒が被毒されないこと。
第四に、排ガス中に二酸化硫黄(SO2)を三酸
化硫黄(SO3)に酸化する能力の小さいこと。す
なわち、排ガス中に含まれているSO2は触媒上で
酸化されてSO3となり触媒上に蓄積し脱硝活性が
低下したり又還元剤として、添加しているアンモ
ニアと反応して、硫安、酸性硫安を生成し、これ
が煙道や熱交換器等の諸設備に蓄積、閉塞して円
滑な操業を妨げる等の欠点がある。従つて、極力
SO2からSO3への酸化を抑制する触媒が望まれ
る。
上記四点が触媒の備えるべき重要な特質であ
る。
本発明者らは脱硝活性が高く、耐久性も良好
で、かつ、SO2酸化活性の低い触媒(たとえば特
開昭52−122293号公報参照)を既に開示している
が石炭焚きボイラー排ガスのようなSO2含有量の
多い排ガスを対象とする場合には更にSO2酸化活
性の低い触媒が必要とされることを知つた。
本発明者らが検討したところによると触媒中の
酸化バナジウムは優れた脱硝活性をもたらす。一
方、SO2酸化活性を高める大きな原因となつてい
る。従つて、酸化バナジウムを減少させることに
よりSO2酸化能力を抑制することが可能であるが
同時に脱硝活性も低下させざるをえないのが実情
である。そこで触媒中の酸化バナジウム含有量を
減少させても脱硝活性を低下させない種々の調製
法を検討した。
本発明者らは、上記の点に鑑み排ガス中にアン
モニアを加え、共存するSOx、ハロゲン化合物、
煤塵などの影響を受けることなく、高空間速度で
効率よくNOxを無害な窒素に還元除去し、同時
にSO2からSO3への酸化能力が極めて小さく、か
つ、耐久性のある触媒の開発に取り組んだ結果、
触媒成分としてチタンおよびケイ素からなる二元
系複合酸化物、チタンおよびジルコニウムからな
る二元系複合酸化物、ならびにチタン、ケイ素、
およびジルコニウムからなる三元系複合酸化物を
用いて、これにバナジウム、タングステン、スズ
を高分散状態で担持させることにより得られた触
媒が上記の欠点を克服して長期にわたり優れた
NOx除去能力を持続し、かつ運転上トラブルの
少ないことを見い出して本発明にかかる触媒を完
成した。
すなわち、本発明は以下の如く特定しうるので
ある。
(1) 排ガス中の窒素酸化物をアンモニアと共に接
触的に反応せしめて選択還元する触媒として、
チタン源として可溶性チタン化合物、ジルコニ
ウム源として可溶性ジルコニウム化合物および
ケイ素源として可溶性ケイ素化合物および/ま
たはシリカゾルを用い、中和反応によつて共沈
物をえ、これを洗滌し乾燥し焼成することによ
つて得られるチタンおよびケイ素からなる二元
系複合酸化物、チタンおよびジルコニウムから
なる二元系複合酸化物ならびにチタン、ケイ素
およびジルコニウムからなる三元系複合酸化物
よりなる群から選ばれた少なくとも1種の複合
酸化物を触媒A成分とし、バナジウム酸化物を
触媒B成分とし、タングステン酸化物を触媒C
成分としかつ錫酸化物および/または錫の硫酸
塩を触媒D成分としてなり、その組成がそれぞ
れAは73〜95重量%、Bは0.3〜3重量%、C
は3〜12重量%およびDは0.5〜10重量%の範
囲、錫/タングステンが原子比で0.1〜3.0の範
囲、さらに、A成分の組成が酸化物としてモル
パーセントでチタン酸化物40〜95%、ケイ素お
よび/またはジルコニウム酸化物5〜60%の範
囲に調整されてなることを特徴とする窒素酸化
物浄化用触媒。
本発明の触媒の第一の特徴はチタン、ケイ素か
らなる二元系複合酸化物(以下TiO2−SiO2とす
る。)およびチタン、ジルコニウムから二元系複
合酸化物(以下TiO2−ZrO2とする。)およびチタ
ン、ジルコニウムおよびケイ素からなる三元系複
合酸化物(以下TiO2−ZrO2−SiO2とする。)を使
用することである。
TiO2−SiO2、TiO2−ZrO2およびTiO2−ZrO2−
SiO2はそれ自身排ガス中のNOxに対して活性を
持つと同時に、本発明においては、担体の役割も
かねており、しかもTiO2−SiO2、TiO2−ZrO2お
よびTiO2−ZrO2−SiO2の物性も完成触媒に対し
好ましい物性を与えるものである。
本発明におけるTiO2−SiO2は、例えば田部浩
三(触媒、第17巻、No.3、72頁(1975年)によつ
ても周知のように、固体酸として知られ、構成す
るおのおのの単独の酸化物には見られない顕著な
酸性を示し、また高表面積を有する。
すなわち、TiO2−SiO2は酸化チタンおよび酸
化ケイ素を単に混合したものではなく、チタンお
よびケイ素がいわゆる二元系酸化物を形成するこ
とによりその特異な物性が発現するものと認める
ことのできるものである。同様にTiO2−ZrO2お
よびTiO2−ZrO2−SiO2も上記TiO2−SiO2と同様
の物性を有するものである。また、本発明で用い
るTiO2−SiO2、TiO2−ZrO2およびTiO2−ZrO2−
SiO2はいずれもX線回折による分析の結果、非
晶質と認められるものである。
TiO2−SiO2、TiO2−ZrO2およびTiO2−ZrO2−
SiO2を使用する有利点は、本発明の触媒が顕し
い耐酸性を示し全くSOxやハロゲン化合物の影響
を受けないで、長期にわたつて安定したNOxの
浄化能を示す点にある。さらに、本発明の触媒
は、TiO2−SiO2、TiO2−ZrO2およびTiO2−ZrO2
−SiO2を用いているために処理ガス中に存在す
る二酸化硫黄(SO2)を三酸化硫黄(SO3)に酸化
する能力が極めて低いという利点を有する。この
ことは、還元処理したガス中に存在するSO3によ
る露点温度上昇を防ぎ、熱交換器による熱交換を
より経済的に行なわしめることが可能なことと、
生成したSO3による材質腐蝕を防ぐ点で工業的に
は極めて有利となる。またさらに他の特徴は、
TiO2−SiO2、TiO2−ZrO2およびTiO2−ZrO2−
SiO2を用いる本触媒は極めて広範囲の温度およ
び高空間速度において良好なNOxの浄化能を示
す点である。
第二の特徴として、本発明の触媒は触媒成分が
高度に分散された状態にあるため、バナジウムに
比較してSO2酸化活性はほとんどなく、かつ脱硝
活性も比較的低いタングステンおよびスズを用い
ても、予想外に高い脱硝活性が得られるという点
にある。
本発明の触媒はX線回折による解析の結果、本
質的に非晶質を呈する。触媒活性成分であるバナ
ジウム、タングステンおよびスズの酸化物、また
は硫酸塩としての回折ピークは認められず高表面
積を有するA成分であるTiO2−SiO2、TiO2−
ZrO2およびTiO2−ZrO2−SiO2と互いに相互作用
をおよぼしあつて、高度に分散されているからで
ある。
かくして、TiO2−SiO2、TiO2−ZrO2および
TiO2−ZrO2−SiO2を触媒成分Aとして用いた場
合、バナジウム含有量を低くし、かつ、バナジウ
ムに比較して脱硝活性の低いタングステン、スズ
を用いても脱硝活性の向上に有効に働き脱硝活性
をあまり低下させることなく、逆に選択的にSO2
酸化活性を大巾に低下させ、かつ耐久性にすぐれ
た触媒が得られることが見い出されたのである。
本発明の触媒においてはバナジウムの含有量を
酸化物として3重量%以上にするとSO2酸化活性
が増加し、また0.3重量%以下にすると脱硝活性
が大幅に低下するために0.3〜3重量%、好まし
くは0.3〜2.5重量%とするのが好ましいことが知
見された。また、タングステンの含有量を酸化物
として3重量%以下にすると極端に脱硝活性が低
下し、12重量%以上では脱硝活性の向上もあまり
期待できず、触媒の原料費が高くなるために3〜
12重量%、好ましくは5〜11重量%の範囲とする
のが好ましいことが見出された。
一方、スズについてもタングステンと同等の効
果が見出されているか特にタングステンと組み合
わせて用いることにより脱硝活性が飛躍的に向上
し、相乗効果が認められた。スズの含有量として
は酸化物として0.5〜10重量%、好ましくは1〜
7重量%とするのが好ましい。
そして、本発明触媒においてはタングステンに
対しスズが0.1〜3.0(原子比)の範囲に含有され
てなるとき、その相乗効果が発揮される。とくに
タングステン化合物およびスズ化合物がともに水
溶液の形で導入され、触媒が調製される場合に上
述の効果が認められる。もつとも上記の範囲を外
れることは好ましくなく、たとえば0.1以下では
スズの添加にする相乗効果が薄れるし、3以上に
してもスズ−タングステンによる有効性がさらに
増加するわけのものではないからである。
そして、本発明触媒においては、バナジウム、
タングステン、スズはそれぞれきわめて微細に分
散担持され、X線回折によつてもそのピークが認
められないほどであり、長期にわたる使用におい
ても分散状態が維持されるため、シンタリングな
どによる熱劣化もなく、すぐれた耐熱性を示すこ
とが認められた。
ところで、触媒中のバナジウム含有量が減少す
るとともにTiO2/SiO2、TiO2/ZrO2、および
TiO2/(ZrO2+SiO2)含有比の脱硝活性におよぼ
す影響が顕著になる。特にバナジウムが酸化物と
して3重量%以下の場合酸化物としてのモル百分
率でチタンが40%以下でかつ、ケイ素および/ま
たはジルコニウムが60%以上の場合、脱硝活性が
悪くなる。また、チタンが95%以上でかつ、ケイ
素および/またはジルコニウムが5%以下の場合
SO2酸化活性が増大して好ましくない。従つて、
酸化物としてのモル百分率でチタン40−95%、ケ
イ素および/またはジルコニウム5−60%の範囲
が好ましい。
一方、触媒活性成分の分散度を向上させるため
にTiO2−SiO2、TiO2−ZrO2、およびTiO2−ZrO2
−SiO2は比表面積が80m2/g以上特に100m2/g
以上が好ましい。
本発明において用いられるTiO2−SiO2を調製
するには、まずチタン源として塩化チタン類、硫
酸チタンなどの無機性チタン化合物および修酸チ
タン、テトライソプロピルチタネートなどの有機
性チタン化合物などから選ぶことができ、またケ
イ素源としてはコロイド状シリカ、水ガラス、四
塩化ケイ素、など無機性のケイ素化合物およびテ
トラエチルシリケートなど有機ケイ素化合物など
から選ぶことができる。そしてこれら原料中に
は、微量の不純物、混入物のあるものがあるが、
えられるTiO2−SiO2の物性に大きく影響を与え
るものでない限り問題とならない。
好ましいTiO2−SiO2の調製法としては、以下
の方法が挙げられる。
四塩化チタンをシルカゾルと共に混合し、ア
ンモニアを添加して沈殿を生成せしめ、この沈
殿を洗滌、乾燥後300〜650℃で焼成せしめる方
法。
四塩化チタンにケイ酸ナトリウム水溶液を添
加し、反応せしめて沈殿を生成させ、これを洗
滌乾燥後300〜650℃で焼成せしめる方法。
四塩化チタンの水−アルコール溶液にエチル
シリケート〔(C2H5O)4Si〕を添加し加水分解
反応せしめ沈殿を形成させ、これを洗滌、乾燥
後300〜650℃で焼成せしめる方法。
酸化塩化チタン(TiOCl2)とエチルシリケー
トの水−アルコール溶液にアンモニアを加えて
沈殿を形成せしめ、これを洗滌乾燥後300〜650
℃で焼成せしめる方法。
以上の好ましい方法のうちでもとくにの方法
が好ましく、この方法は具体的には以下のごとく
実施される。すなわち、上記チタン源およびケイ
素源の化合物をTiO2とSiO2のモル比が所定量に
なるようにとり、酸性の水溶液状態またはゾル状
態でチタンおよびケイ素を酸化物換算して1〜
100g/の濃度とし10〜100℃に保つ。
その中へ撹拌下中和剤としてアンモニア水を滴
下し、10分間ないし3時間PH2〜10にてチタンお
よびケイ素よりなる共沈化合物を生成せしめ、
別しよく洗滌したのち80〜140℃で1〜10時間乾
燥し、300〜650℃で1〜10時間焼成してTiO2−
SiO2をえることができる。
また、TiO2−ZrO2−SiO2については、TiO2−
SiO2同様の方法で調製されるものであり、ジル
コニウム源として、塩化ジルコニウム、硫酸ジル
コニウムなどの無機性ジルコニウム化合物および
修酸ジルコニウムなど有機性ジルコニウム化合物
のなかから選ぶことができる。すなわち、ジルコ
ニウム化合物をチタン化合物と共に上述の方法と
同様に扱うことによりTiO2−ZrO2−SiO2は容易
に調製しうるのである。そして、このジルコニウ
ムの存在量は、TiO2+ZrO2+SiO2の合計量に対
しZrO2に換算して30重量%までの範囲内にある
のが好ましい。TiO2−ZrO2の調製法も同様にし
て行なうことができる。
つぎにTiO2−SiO2、TiO2−ZrO2およびTiO2−
ZrO2−SiO2と共に用いる他の触媒成分の出発原
料としては酸化物、水酸化物、アンモニウム塩、
シユウ酸塩、硫酸塩、ハロゲン化物などから適宜
選ばれる。特にスズを用いた場合、硫酸スズが好
ましい結果を与える。
本発明における触媒調製法として一例を示せ
ば、シユウ酸水溶液にメタバナジン酸アンモニウ
ム及び硫酸スズを溶解させ、さらにモノエタノー
ルアミンと共にパラタングステン酸アンモニウム
を溶解させてえられた溶液を加えて、バナジウ
ム、タングステン及びスズを含む溶液をえる。つ
ぎにこのえられた水溶液に上述の方法で得た
TiO2−SiO2の粉体を成型助剤とともに加え、混
合、混練し、押し出し成型機でハニカム状に成型
する。成型物を50〜120℃で乾燥後300〜650℃、
好ましくは350〜550℃で1〜10時間、好ましくは
2〜6時間空気流中で焼成して触媒を得ることが
できる。また別法としてTiO2−SiO2の粉体を予
めハニカム状とし、これにバナジウム、タングス
テン及びスズを含む水溶液を含浸させて担持させ
る方法も採用できる。また、さらに担体を使用す
ることも可能である。担体としては、例えばアル
ミナ、シリカ、シリカアルミナ、ベントナイト、
ケイソウ土、シリコンカーバイド、チタニア、ジ
ルコニア、マグネシア、コーデイライト、ムライ
ト、軽石、活性炭、無機繊維などを用いることが
でき、例えば粒状のシリコンカーバイドにTiO2
−SiO2と他の触媒成分をスラリー状としそれを
含浸法により担持させる方法で調製することがで
きる。もちろん触媒調製法はこれらの方法に限定
されるものではない。
触媒形状としては上記のハニカム状にとどまら
ず、円柱状、円筒状、板状、リボン状、波板状、
パイプ状、ドーナツ状、格子状、その他一体化成
型されたものが適宜選ばれる。
本発明の触媒が使用される処理の対象となる排
ガスの組成としては、通常SOx10〜1500ppm、酸
素1〜20容量%、炭酸ガス1〜15容量%、水蒸気
5〜15容量%、煤塵0.01〜30g/Nm3およびNOx
(主にNO)100〜1000ppmの程度に含有するもの
である。通常のボイラー排ガスはこの範囲に入る
が、特にガス組成を限定しない。本発明の触媒
は、例えばSOxを含まない含NOx排ガス、および
ハロゲン化合物を含む含NOx排ガス等の特殊な
排ガスをも処理することができるからである。
また、処理条件としては排ガスの種類、性状に
よつて異なるが、まずアンモニア(NH3)の添加
量は、NOx1部に対して0.5〜3部が好ましい。例
えばボイラーの排ガス組成ではNOxのうちの大
部分がNOであるので、NOとNH3のモル比1:1
の近辺が特に好ましい。過剰のNH3は未反応分と
して排出されないよう留意しなければならないか
らである。さらに、未反応分のNH3を極力抑制す
る必要のある場合はNH3/NOのモル比を1以下
で使用することが好ましい。次に、反応温度は
150〜500℃、特に200〜400℃が好ましく、空間速
度は、1000〜100000hr-1、特に3000〜30000hr-1
の範囲が好適である。圧力は特に限定はないが
0.01〜10Kg/cm2の範囲が好ましい。
反応器の形式としては特に限定はないが、通常
の固定床、移動床、流動床等の反応器が適用でき
る。
以下に実施例および比較例を用いて本発明をさ
らに詳細に説明するが、本発明はこれら実施例の
みに限定されるものではない。
実施例 1
TiO2−SiO2を以下に述べる方法で調製した。
水800に四塩化チタン(TiCl4)114.0Kgを氷
冷撹拌下徐々に滴下し、次にスノーテツクス−O
(日産化学製シリカゾルSiO2として20〜21重量%
含有)45.0Kgを加えた。これを温度約30℃に担持
しつつよく撹拌しながらアンモニア水を徐々に滴
下し、PHが7になるまで加え、さらにそのまま放
置して、2時間熟成した。
かくして得られたTiO2−SiO2ゲルを過、水
洗後120℃で10時間乾燥し、さらに水洗した後550
℃で3時間焼成した。得られた粉体の組成は酸化
物としてTiO2/SiO2=4(モル比)で、BET表
面積は200m2/gであつた。ここで得られた粉体
を以後TS−1と呼ぶ。
メタバナジン酸アンモニウム0.478Kgを等量の
蓚酸と共に水3に溶解させ、ついで硫酸第一ス
ズ0.795Kgを添加し、溶解させた。この溶液とパ
ラタングステン酸アンモニウム1.95Kgを適当量の
モノエタノールアミンと共に溶解させて、得られ
た溶液3を混合してバナジウム、タングステン
およびスズを含む均一溶液を得た。
さらに、この溶液を上記のTS−1 16.0Kgに
加え、ニーダーで適量の水を添加しつつよく混
合、混練した後押し出し機で外形80mm角、目開き
4.6mm、肉厚1.3mm、長さ500mmのハニカムに成型
した。つぎにこの成型物を50〜120℃で乾燥後400
℃で5時間空気流通下で焼成した。得られた完成
触媒の組成は酸化物として重量比でTS−1:
WO3:SnO2:V2O5=86:9:3:2であつた。
実施例 2
TiO2として55.1Kgを含む硫酸チタニルの硫酸
溶液およびスノーテツクス−O23.0Kgを用いた以
外は実施例1に準じてTiO2・SiO2を調製した。
得られた粉体の組成は酸化物としてTiO2/SiO2
=9(モル比)でBET表面積は190m2/gであつ
た。得られた粉体をTS−2と呼び、このTS−2
を用いて実施例1と同様にして同様の組成の触媒
(TS−2:WO3:SnO2:V2O5=86:9:3:2
重量比)を調製した。
実施例 3
四塩化チタン114.0Kg、酸塩化ジルコニウム
〔ZrOCl2・8H2O〕12.0Kgおよびスノーテツクス−
O34.0Kgを用いた以外は実施例1に準じてTiO2−
ZrO2−SiO2を調製した。得られた粉体の組成は
酸化物としてTiO2:ZrO2:SiO2=80:5:15
(モル比)でBET表面積は210m2/gであつた。
得られた粉体をTZS−1と呼び、このTZS−1を
用いて実施例1と同様にして同様の組成の触媒
(TZS−1:WO3:SnO2:V2O5=86:9:3:
2重量比)を調製した。
実施例 4
四塩化チタン、酸塩化ジルコニウムを用いて実
施例1に準じてTiO2−ZrO2を調製した。得られ
た粉体の組成はTiO2:ZrO2=85:15(モル比)
で、BET表面積は170m2/gであつた。得られた
粉体をTZ−1と呼び、このTZ−1を用いて実施
例1と同様にして同様の組成の触媒(TZ−1:
WO3:SnO2:V2O5=86:9:3:2重量比)を
調製した。
実施例 5〜8
TiO2/SiO2のモル比を変えた以外は実施例2
に準じてTiO2−SiO2を調製した。得られた粉体
の組成とBET表面積を表1に示す。これらの
TiO2−SiO2を用いて実施例1と同様にして同様
の組成の触媒を調製した。
The present invention relates to a catalyst for removing nitrogen oxides (hereinafter referred to as NOx) contained in exhaust gas discharged from fixed combustion equipment of various factories including boilers, thermal power plants, steel mills, etc. In particular, the present invention
and sulfur compounds (mainly sulfur dioxide or SOx
shall be. ), ammonia is added as a reducing agent to the exhaust gas and reacted catalytically, which efficiently decomposes NOx into harmless nitrogen and water, and at the same time converts the generated sulfur dioxide (SO 2 ) into sulfur trioxide (SO 3 ). The purpose of the present invention is to provide a catalyst that suppresses the oxidation reaction of oxidation reactions to a low level and has excellent durability. Methods for removing NOx from exhaust gas can be broadly classified into adsorption methods, absorption methods, and catalytic reduction methods, but among these methods, catalytic reduction methods have a large amount of exhaust gas to process and do not require wastewater treatment, so they are technically and economically preferable. is also advantageous. Catalytic reduction methods include a non-selective reduction method using a hydrocarbon such as methane, LPG, hydrogen, or carbon monoxide as a reducing agent, and a selective reduction method using ammonia as a reducing agent. In the latter case, NOx can be selectively removed even from exhaust gas containing a high concentration of oxygen, and since only a small amount of reducing agent is required, it is economical and extremely advantageous. The first characteristic that a catalyst must have in a selective catalytic reduction method using ammonia as a reducing agent is that exhaust gas contains oxygen, SOx, carbon dioxide, water vapor, halogen compounds, hydrocarbons, etc. be unaffected by coexisting gases. Second, it must exhibit sufficient performance over a wide temperature range and at high space velocities. Third, the soot and dust present in the exhaust gas contains heavy metals such as vanadium, nickel, and iron, as well as alkali metals such as sodium and potassium, but even if these soot and dust adhere, the catalyst will not be covered. Don't be poisoned. Fourth, the ability to oxidize sulfur dioxide (SO 2 ) into sulfur trioxide (SO 3 ) in exhaust gas is small. In other words, SO 2 contained in the exhaust gas is oxidized on the catalyst and becomes SO 3 , which accumulates on the catalyst and reduces the denitrification activity, and also reacts with ammonia added as a reducing agent to form ammonium sulfate and acid. There are drawbacks such as the generation of ammonium sulfate, which accumulates and blocks equipment such as flues and heat exchangers, impeding smooth operation. Therefore, as much as possible
A catalyst that suppresses the oxidation of SO 2 to SO 3 is desired. The above four points are important characteristics that a catalyst should have. The present inventors have already disclosed a catalyst that has high denitrification activity, good durability, and low SO 2 oxidation activity (for example, see Japanese Patent Application Laid-Open No. 122293/1983). We learned that when dealing with exhaust gas containing a large amount of SO 2 , a catalyst with even lower SO 2 oxidation activity is required. According to studies conducted by the present inventors, vanadium oxide in the catalyst provides excellent denitrification activity. On the other hand, it is a major cause of increasing SO2 oxidation activity. Therefore, although it is possible to suppress SO 2 oxidation ability by reducing vanadium oxide, the reality is that the denitrification activity must also be reduced at the same time. Therefore, we investigated various preparation methods that would not reduce the denitrification activity even if the vanadium oxide content in the catalyst was reduced. In view of the above points, the present inventors added ammonia to the exhaust gas to remove the coexisting SOx and halogen compounds.
We are developing a durable catalyst that efficiently reduces and removes NOx to harmless nitrogen at high space velocities without being affected by soot and dust, and at the same time has an extremely low ability to oxidize SO 2 to SO 3 . As a result,
A binary composite oxide consisting of titanium and silicon, a binary composite oxide consisting of titanium and zirconium, and titanium, silicon,
A catalyst obtained by supporting vanadium, tungsten, and tin in a highly dispersed state using a ternary composite oxide consisting of zirconium and zirconium overcomes the above drawbacks and has excellent long-term performance.
We have completed the catalyst of the present invention by discovering that it maintains NOx removal ability and causes fewer operational troubles. That is, the present invention can be specified as follows. (1) As a catalyst that selectively reduces nitrogen oxides in exhaust gas by catalytically reacting them with ammonia,
Using a soluble titanium compound as a titanium source, a soluble zirconium compound as a zirconium source, and a soluble silicon compound and/or silica sol as a silicon source, a coprecipitate is obtained by a neutralization reaction, which is washed, dried, and fired. At least one member selected from the group consisting of a binary composite oxide of titanium and silicon, a binary composite oxide of titanium and zirconium, and a ternary composite oxide of titanium, silicon, and zirconium. composite oxide as catalyst A component, vanadium oxide as catalyst B component, and tungsten oxide as catalyst C component.
and tin oxide and/or tin sulfate as the catalyst component D, the composition of which is 73 to 95% by weight for A, 0.3 to 3% by weight for B, and 0.3 to 3% by weight for C.
is in the range of 3 to 12% by weight, D is in the range of 0.5 to 10% by weight, tin/tungsten is in the range of 0.1 to 3.0 in atomic ratio, and the composition of component A is 40 to 95% titanium oxide in mole percent as oxide. , silicon and/or zirconium oxide in a range of 5 to 60%. The first feature of the catalyst of the present invention is that it is a binary composite oxide consisting of titanium and silicon (hereinafter referred to as TiO 2 -SiO 2 ) and a binary composite oxide consisting of titanium and zirconium (hereinafter referred to as TiO 2 -ZrO 2 ) . ) and a ternary composite oxide (hereinafter referred to as TiO 2 -ZrO 2 -SiO 2 ) consisting of titanium, zirconium and silicon. TiO2 − SiO2 , TiO2 − ZrO2 and TiO2 − ZrO2−
SiO 2 itself has activity against NOx in exhaust gas , and at the same time, in the present invention, it also plays the role of a carrier . Physical properties 2 also provide desirable physical properties to the finished catalyst. TiO 2 -SiO 2 in the present invention is known as a solid acid, as is well known, for example, by Kozo Tabe (Catalysts, Vol. 17, No. 3, p. 72 (1975)), and each constituent individual TiO 2 -SiO 2 is not a simple mixture of titanium oxide and silicon oxide, but a so-called binary oxide of titanium and silicon. It can be recognized that unique physical properties are expressed by forming a substance. Similarly, TiO 2 -ZrO 2 and TiO 2 -ZrO 2 -SiO 2 also have the same physical properties as the above-mentioned TiO 2 -SiO 2 . Furthermore, TiO 2 −SiO 2 , TiO 2 −ZrO 2 and TiO 2 −ZrO 2 − used in the present invention
All SiO 2 was found to be amorphous as a result of X-ray diffraction analysis. TiO2 − SiO2 , TiO2 − ZrO2 and TiO2 − ZrO2−
The advantage of using SiO 2 is that the catalyst of the present invention exhibits remarkable acid resistance, is completely unaffected by SOx and halogen compounds, and exhibits a stable NOx purification ability over a long period of time. Furthermore, the catalyst of the present invention comprises TiO2 - SiO2 , TiO2 - ZrO2 and TiO2 - ZrO2
- Since SiO 2 is used, it has the advantage that the ability to oxidize sulfur dioxide (SO 2 ) present in the processing gas into sulfur trioxide (SO 3 ) is extremely low. This prevents the dew point temperature from rising due to SO 3 present in the reduced gas, making it possible to perform heat exchange using a heat exchanger more economically.
This is extremely advantageous industrially in terms of preventing material corrosion due to the generated SO 3 . In addition, other features are
TiO2 − SiO2 , TiO2 − ZrO2 and TiO2 − ZrO2−
The present catalyst using SiO 2 exhibits good NOx purification ability over an extremely wide range of temperatures and high space velocities. The second characteristic of the catalyst of the present invention is that the catalyst components of the present invention are in a highly dispersed state. Another advantage is that unexpectedly high denitrification activity can be obtained. As a result of X-ray diffraction analysis, the catalyst of the present invention is essentially amorphous. No diffraction peaks were observed for vanadium, tungsten, and tin oxides, which are catalytic active components, or sulfates, and component A, TiO 2 -SiO 2 , TiO 2 - has a high surface area.
This is because it interacts with ZrO 2 and TiO 2 -ZrO 2 -SiO 2 and is highly dispersed. Thus, TiO 2 −SiO 2 , TiO 2 −ZrO 2 and
When TiO 2 -ZrO 2 -SiO 2 is used as catalyst component A, it works effectively to improve the denitrification activity even if the vanadium content is lowered and tungsten and tin, which have lower denitrification activity than vanadium, are used. On the contrary, it selectively removes SO 2 without significantly reducing denitrification activity.
It has been discovered that it is possible to obtain a catalyst with significantly reduced oxidation activity and excellent durability. In the catalyst of the present invention, when the content of vanadium as an oxide is 3% by weight or more, the SO 2 oxidation activity increases, and when the content is 0.3% by weight or less, the denitrification activity is significantly reduced. It has been found that it is preferably between 0.3 and 2.5% by weight. In addition, if the content of tungsten as an oxide is less than 3% by weight, the denitrification activity will be extremely reduced, and if it is more than 12% by weight, the denitrification activity cannot be expected to improve much, and the raw material cost of the catalyst will increase.
It has been found that a range of 12% by weight, preferably between 5 and 11% by weight, is preferred. On the other hand, tin has been found to have the same effect as tungsten, and in particular when used in combination with tungsten, the denitrification activity was dramatically improved, and a synergistic effect was observed. The tin content is 0.5 to 10% by weight as an oxide, preferably 1 to 10% by weight.
It is preferably 7% by weight. In the catalyst of the present invention, a synergistic effect is exhibited when tin is contained in the range of 0.1 to 3.0 (atomic ratio) to tungsten. In particular, the above-mentioned effects are observed when the catalyst is prepared by introducing both the tungsten compound and the tin compound in the form of an aqueous solution. Of course, it is not preferable to deviate from the above range; for example, if it is less than 0.1, the synergistic effect of tin addition will be weakened, and if it is more than 3, the effectiveness of tin-tungsten will not further increase. In the catalyst of the present invention, vanadium,
Tungsten and tin are each supported in an extremely finely dispersed manner, with no peaks visible even in X-ray diffraction, and the dispersed state is maintained even during long-term use, so there is no thermal deterioration due to sintering, etc. , it was recognized that it exhibited excellent heat resistance. By the way, as the vanadium content in the catalyst decreases, TiO 2 /SiO 2 , TiO 2 /ZrO 2 , and
The influence of the TiO 2 /(ZrO 2 +SiO 2 ) content ratio on the denitrification activity becomes significant. In particular, when vanadium is 3% by weight or less as an oxide, titanium is 40% or less as an oxide, and silicon and/or zirconium is 60% or more, the denitrification activity becomes poor. Also, if titanium is 95% or more and silicon and/or zirconium is 5% or less
This is undesirable as it increases SO 2 oxidation activity. Therefore,
A preferred range is 40-95% titanium and 5-60% silicon and/or zirconium in mole percentage as oxide. On the other hand, TiO2 - SiO2 , TiO2 - ZrO2 , and TiO2 - ZrO2 were used to improve the dispersion of catalytic active components.
-SiO 2 has a specific surface area of 80 m 2 /g or more, especially 100 m 2 /g
The above is preferable. To prepare TiO 2 -SiO 2 used in the present invention, first select a titanium source from inorganic titanium compounds such as titanium chlorides and titanium sulfate, and organic titanium compounds such as titanium oxalate and tetraisopropyl titanate. The silicon source can be selected from inorganic silicon compounds such as colloidal silica, water glass, silicon tetrachloride, and organic silicon compounds such as tetraethyl silicate. Some of these raw materials contain trace amounts of impurities and contaminants,
This is not a problem unless it greatly affects the physical properties of the TiO 2 −SiO 2 obtained. A preferred method for preparing TiO 2 -SiO 2 includes the following method. A method in which titanium tetrachloride is mixed with silkasol, ammonia is added to form a precipitate, the precipitate is washed, dried, and then calcined at 300 to 650°C. A method in which a sodium silicate aqueous solution is added to titanium tetrachloride and reacted to form a precipitate, which is then washed and dried and then calcined at 300 to 650°C. A method in which ethyl silicate [(C 2 H 5 O) 4 Si] is added to a water-alcohol solution of titanium tetrachloride to cause a hydrolysis reaction to form a precipitate, which is washed, dried, and then calcined at 300 to 650°C. Ammonia is added to a water-alcohol solution of titanium oxide chloride (TiOCl 2 ) and ethyl silicate to form a precipitate, which is washed and dried at a temperature of 300 to 650
A method of firing at ℃. Among the above preferred methods, this method is particularly preferred, and this method is specifically carried out as follows. That is, the above-mentioned titanium source and silicon source compounds are taken so that the molar ratio of TiO 2 and SiO 2 is a predetermined amount, and titanium and silicon are converted into oxides in an acidic aqueous solution state or sol state to 1 to 1.
Make the concentration 100g/keep at 10-100℃. Aqueous ammonia was added dropwise as a neutralizing agent into the solution while stirring, and a coprecipitated compound consisting of titanium and silicon was produced at pH 2 to 10 for 10 minutes to 3 hours.
After separating and washing well, drying at 80-140°C for 1-10 hours, baking at 300-650°C for 1-10 hours to obtain TiO 2 −
You can get SiO 2 . Furthermore, for TiO 2 −ZrO 2 −SiO 2 , TiO 2 −
It is prepared by a method similar to SiO 2 , and the zirconium source can be selected from inorganic zirconium compounds such as zirconium chloride and zirconium sulfate, and organic zirconium compounds such as zirconium oxalate. That is, TiO2 - ZrO2 - SiO2 can be easily prepared by treating a zirconium compound together with a titanium compound in the same manner as described above. The amount of zirconium present is preferably within a range of up to 30% by weight in terms of ZrO 2 based on the total amount of TiO 2 +ZrO 2 +SiO 2 . The method for preparing TiO 2 -ZrO 2 can be performed in the same manner. Next, TiO 2 −SiO 2 , TiO 2 −ZrO 2 and TiO 2 −
Starting materials for other catalyst components used with ZrO 2 -SiO 2 include oxides, hydroxides, ammonium salts,
It is appropriately selected from oxalates, sulfates, halides, etc. Especially when tin is used, tin sulfate gives favorable results. An example of the catalyst preparation method in the present invention is to dissolve ammonium metavanadate and tin sulfate in an aqueous oxalic acid solution, and then add a solution obtained by dissolving ammonium paratungstate together with monoethanolamine. and a solution containing tin. Next, the obtained aqueous solution was added to the aqueous solution obtained by the above method.
TiO 2 -SiO 2 powder is added together with a molding aid, mixed and kneaded, and molded into a honeycomb shape using an extrusion molding machine. After drying the molded product at 50-120℃, 300-650℃,
The catalyst can be obtained by calcining preferably at 350-550° C. for 1-10 hours, preferably 2-6 hours in a stream of air. Alternatively, it is also possible to adopt a method in which TiO 2 -SiO 2 powder is formed into a honeycomb shape in advance, and the honeycomb is impregnated with an aqueous solution containing vanadium, tungsten, and tin to support the honeycomb. It is also possible to use additional carriers. Examples of carriers include alumina, silica, silica alumina, bentonite,
Diatomaceous earth, silicon carbide, titania, zirconia, magnesia, cordierite, mullite, pumice, activated carbon, inorganic fibers, etc. can be used, for example, granular silicon carbide with TiO 2
- It can be prepared by making a slurry of SiO 2 and other catalyst components and supporting it by an impregnation method. Of course, the catalyst preparation method is not limited to these methods. The catalyst shape is not limited to the above-mentioned honeycomb shape, but also cylindrical, cylindrical, plate, ribbon, corrugated, etc.
A pipe shape, a donut shape, a lattice shape, and other integrally molded shapes are appropriately selected. The composition of the exhaust gas to be treated using the catalyst of the present invention is usually 10 to 1500 ppm SOx, 1 to 20% by volume of oxygen, 1 to 15% by volume of carbon dioxide, 5 to 15% by volume of water vapor, and 0.01 to 30 g of soot and dust. / Nm3 and NOx
(mainly NO) contained in the range of 100 to 1000 ppm. Normal boiler exhaust gas falls within this range, but the gas composition is not particularly limited. This is because the catalyst of the present invention can also treat special exhaust gases such as NOx-containing exhaust gas that does not contain SOx and NOx-containing exhaust gas that contains halogen compounds. The processing conditions vary depending on the type and properties of the exhaust gas, but the amount of ammonia (NH 3 ) added is preferably 0.5 to 3 parts per 1 part of NOx. For example, in the exhaust gas composition of a boiler, most of the NOx is NO, so the molar ratio of NO and NH 3 is 1:1.
Particularly preferred is the vicinity of . This is because care must be taken so that excess NH 3 is not discharged as an unreacted component. Furthermore, when it is necessary to suppress unreacted NH 3 as much as possible, it is preferable to use a molar ratio of NH 3 /NO of 1 or less. Next, the reaction temperature is
150-500℃, especially 200-400℃, space velocity is 1000-100000hr -1 , especially 3000-30000hr -1
A range of is suitable. There is no particular limit to the pressure
A range of 0.01 to 10 Kg/cm 2 is preferred. The type of reactor is not particularly limited, but common fixed bed, moving bed, fluidized bed, and other reactors can be used. The present invention will be explained in more detail below using Examples and Comparative Examples, but the present invention is not limited only to these Examples. Example 1 TiO2 - SiO2 was prepared by the method described below. 114.0 kg of titanium tetrachloride (TiCl 4 ) was gradually added dropwise to 800 g of water while stirring on ice, and then
(20-21% by weight as silica sol SiO2 manufactured by Nissan Chemical
(Contains) 45.0Kg was added. Aqueous ammonia was gradually added dropwise to the mixture while stirring the mixture at a temperature of about 30° C. until the pH reached 7, and the mixture was left to mature for 2 hours. The thus obtained TiO 2 −SiO 2 gel was filtered, washed with water, dried at 120°C for 10 hours, further washed with water, and then dried at 550°C.
It was baked at ℃ for 3 hours. The composition of the obtained powder was TiO 2 /SiO 2 =4 (molar ratio) as an oxide, and the BET surface area was 200 m 2 /g. The powder obtained here is hereinafter referred to as TS-1. 0.478 kg of ammonium metavanadate was dissolved in 3 parts of water along with an equal amount of oxalic acid, and then 0.795 kg of stannous sulfate was added and dissolved. This solution and 1.95 kg of ammonium paratungstate were dissolved together with an appropriate amount of monoethanolamine, and the resulting solution 3 was mixed to obtain a homogeneous solution containing vanadium, tungsten, and tin. Furthermore, this solution was added to the above TS-1 16.0Kg, and mixed well with a kneader while adding an appropriate amount of water.
It was molded into a honeycomb with a diameter of 4.6 mm, a wall thickness of 1.3 mm, and a length of 500 mm. Next, after drying this molded product at 50 to 120℃,
It was baked at ℃ for 5 hours under air circulation. The composition of the obtained finished catalyst was TS-1:
WO 3 :SnO 2 :V 2 O 5 =86:9:3:2. Example 2 TiO 2 ·SiO 2 was prepared according to Example 1, except that a sulfuric acid solution of titanyl sulfate containing 55.1 kg of TiO 2 and 3.0 kg of Snowtex-O were used.
The composition of the obtained powder is TiO 2 /SiO 2 as an oxide.
=9 (molar ratio) and the BET surface area was 190 m 2 /g. The obtained powder is called TS-2, and this TS-2
A catalyst of the same composition (TS-2:WO 3 :SnO 2 :V 2 O 5 =86:9:3:2) was prepared in the same manner as in Example 1 using
weight ratio) was prepared. Example 3 Titanium tetrachloride 114.0Kg, zirconium acid chloride [ZrOCl 2 8H 2 O] 12.0Kg and snowtex
TiO 2 − according to Example 1 except that O34.0Kg was used.
ZrO2 - SiO2 was prepared. The composition of the obtained powder was TiO 2 :ZrO 2 :SiO 2 =80:5:15 as an oxide.
(molar ratio), the BET surface area was 210 m 2 /g.
The obtained powder is called TZS-1, and using this TZS-1, a catalyst with the same composition (TZS-1: WO3 : SnO2 : V2O5 = 86 :9) was prepared in the same manner as in Example 1. :3:
2 weight ratio) was prepared. Example 4 TiO 2 -ZrO 2 was prepared according to Example 1 using titanium tetrachloride and zirconium acid chloride. The composition of the obtained powder is TiO 2 :ZrO 2 = 85:15 (molar ratio)
The BET surface area was 170 m 2 /g. The obtained powder is called TZ-1, and using this TZ-1, a catalyst with the same composition (TZ-1:
WO 3 :SnO 2 :V 2 O 5 =86:9:3:2 weight ratio) was prepared. Examples 5 to 8 Example 2 except that the molar ratio of TiO 2 /SiO 2 was changed.
TiO 2 -SiO 2 was prepared according to . Table 1 shows the composition and BET surface area of the obtained powder. these
A catalyst having the same composition as in Example 1 was prepared using TiO 2 -SiO 2 .
【表】
比較例 1
実施例2に準じてTiO2/SiO2=24(モル比)
になるようにTiO2−SiO2粉体を調製し、その
BET表面積は140m2/gであつた。この粉体を用
いて実施例1と同様にして同様の組成の触媒を調
製した。
比較例 2
実施例2に準じてTiO2/SiO2=0.2(モル比)
になるようにTiO2−SiO2粉体を調製し、その
BET表面積は200m2/gであつた。この粉体を用
いて実施例1と同様にして、同様の組成の触媒を
調製した。
比較例 3
実施例3に準じてTiO2−ZrO2−SiO2を調製し
た。得られた粉体の組成は酸化物としてTiO2:
ZrO2:SiO2=30:60:10(モル比)であり、
BET表面積は150m2/gであつた。得られた粉体
をTZS−2と呼び、このTZS−2を用いて実施例
1と同様にして、同様の組成の触媒(TZS−2:
WO3:SnO2:V2O5=86:9:3:2重量比)を
調製した。
比較例 4〜5
実施例1で得られたTiO2−SiO2粉体(TS−
1)を用いてバナジウム、スズおよびタングステ
ンを含む触媒を実施例1に準じて調製した。得ら
れた触媒の組成は下記の通りである。
組 成(重量比)
比較例4 TS−1:WO3:SnO2:V2O5
=97.5:2:0.3:0.2
比較例5 TS−1:WO3:SnO2:V2O5
=88:11:0.7:0.3
実施例 9
実施例1〜8および比較例1〜3の各触媒につ
き次のような方法で脱硝率およびSO2転化率を求
めた。適当な大きさの形状に切断されたハニカム
状触媒(3セル角、目開き4.6mm、肉厚1.3mm、長
さ400mm)を溶融塩浴に浸漬された内径38mmのス
テンレス製反応管に充填し、触媒の空孔部のみに
下記組成の合成ガスをNH3を添加して供給した。
反応器前後のNOx濃度を柳本製作所製、化学
発光式NOx計(ECL−7S)により測定し、次式
に従つて脱硝率(%)を算出した。
脱硝率(%)
=入口NOx濃度−出口NOx濃度/入口NOx濃度
×100
ガス量 0.794Nm3/H
空間速度(SV) 5500H-1(空筒換算)
NH3/NOx(モル比) 1.0
(表 2)
ガス組成 NO 200ppm
(合成ガス) O2 4%
SO2 800ppm
H2O 10%
N2 残 り
またSO2酸化率は表2に示している組成の合成
ガスにNH3を添加しないで反応温度350℃、
SV5500H-1の条件下で測定した。
反応管出口SO3濃度はゴクソイヤーらの方法
(文献H.GOKSφYR、他J.Ins.Fuel第35巻、177
頁、1961年)により硫酸として捕集し、イソプロ
ピルアルコール中で指示薬としてアルセナヅを
用いて酢酸バリウム水溶液で滴定することにより
求めた。
又、生成排出ガスの全SOxは5%の過酸化水素
水に吸収してSO3濃度測定と同様の方法で求め
た。SO2酸化率(%)は次式に従つて計算した。
SO2酸化率(%)=出口SO3濃度/全SOx濃度×1
00
得られた結果を表3に示す。
実施例 10〜13
実施例1で用いたTiO2−SiO2粉体、すなわち
TS−1を使用し、バナジウム、タングステンお
よびスズを含む触媒を組成比を変えて実施例1に
準じて調製した。
実施例10〜13および比較例4、5の各触媒につ
き実施例9に準じて脱硝率およびSO2酸化率を求
めた。得られた結果を表4に示す。
実施例 14
実施例11の触媒と同じ組成を有するハニカム状
触媒(150mm角、ピツチ7.4mm、肉厚1.4mm、長さ
500mm)を6本直列に接続して、ガス流れ方向に
対して平行になるように設置して、C重油焚ボイ
ラー排ガスに供して耐久試験を行つた。
試験条件はガス温度360℃、空間速度(SV)
5000H-1、ガス量337.5Nm3/H、NH3/NOx=1.0
(モル比)であり、排ガス組成としてはNOx130
〜150ppm、SOx800〜1000ppm、SO330〜
50ppm、O22〜3%、H2O10%、CO210〜12%、
残りN2である。脱硝率およびSO2酸化率は6000時
間経過した後でも反応初期と変化なく、脱硝率は
94〜95%、SO2酸化率は0.4〜0.5%であり、すぐ
れた耐久性を示すことがわかつた。
実施例 15
実施例10の触媒と同じ組成を有するハニカム状
触媒(150mm角、ピツチ7.4mm、肉厚1.4mm、長さ
500mm)を実施例14と同様な方法で石炭焚ボイラ
ー排ガスに供して耐久試験を行つた。
試験条件はガス温度380℃、空間速度(SV)
5000H-1、ガス量337.5Nm3/H、NH3/NOx=1.0
(モル比)であり、排ガス組成としてはNOx250
〜340ppm、SO21000〜1300ppm、O23〜4%、
H2O10%、CO28〜10%、残りN2である。又、ダ
ストは100mg/Nm3(電気集塵機で脱塵後)含ま
れていた。
脱硝率およびSO2酸化率は6000時間経過した後
も反応初期と変化なく、脱硝率は93〜94%、SO2
酸化率は0.3〜0.4%であり、すぐれた耐久性を示
すことがわかつた。
脱硝率およびSO2酸化率[Table] Comparative Example 1 According to Example 2 TiO 2 /SiO 2 = 24 (molar ratio)
Prepare TiO 2 −SiO 2 powder so that
The BET surface area was 140 m 2 /g. Using this powder, a catalyst having a similar composition was prepared in the same manner as in Example 1. Comparative Example 2 TiO 2 /SiO 2 = 0.2 (molar ratio) according to Example 2
Prepare TiO 2 −SiO 2 powder so that
The BET surface area was 200 m 2 /g. Using this powder, a catalyst having a similar composition was prepared in the same manner as in Example 1. Comparative Example 3 TiO2 - ZrO2 - SiO2 was prepared according to Example 3. The composition of the obtained powder is TiO2 as oxide:
ZrO 2 :SiO 2 = 30:60:10 (molar ratio),
The BET surface area was 150 m 2 /g. The obtained powder is called TZS-2, and using this TZS-2, a catalyst with the same composition (TZS-2:
WO 3 :SnO 2 :V 2 O 5 =86:9:3:2 weight ratio) was prepared. Comparative Examples 4-5 TiO 2 -SiO 2 powder obtained in Example 1 (TS-
A catalyst containing vanadium, tin and tungsten was prepared according to Example 1 using 1). The composition of the obtained catalyst is as follows. Composition (weight ratio) Comparative example 4 TS-1:WO 3 :SnO 2 :V 2 O 5 =97.5:2:0.3:0.2 Comparative example 5 TS-1:WO 3 :SnO 2 :V 2 O 5 =88 :11:0.7:0.3 Example 9 The denitrification rate and SO 2 conversion rate were determined for each of the catalysts of Examples 1 to 8 and Comparative Examples 1 to 3 using the following methods. A honeycomb-shaped catalyst (3 cell square, opening 4.6 mm, wall thickness 1.3 mm, length 400 mm) cut into an appropriate size was packed into a stainless steel reaction tube with an inner diameter of 38 mm that was immersed in a molten salt bath. , Synthesis gas having the following composition and NH 3 added thereto was supplied only to the pores of the catalyst. The NOx concentration before and after the reactor was measured using a chemiluminescent NOx meter (ECL-7S) manufactured by Yanagimoto Seisakusho, and the denitrification rate (%) was calculated according to the following formula. Denitrification rate (%) = Inlet NOx concentration - Outlet NOx concentration / Inlet NOx concentration × 100 Gas amount 0.794Nm 3 /H Space velocity (SV) 5500H -1 (Cavity cylinder conversion) NH 3 /NOx (molar ratio) 1.0 (Table 2) Gas composition NO 200ppm (synthesis gas) O 2 4% SO 2 800ppm H 2 O 10% N 2 remaining Also, the SO 2 oxidation rate is calculated by reacting the synthesis gas with the composition shown in Table 2 without adding NH 3 Temperature 350℃,
Measured under the conditions of SV5500H -1 . The SO 3 concentration at the outlet of the reaction tube was determined by the method of Goxoyer et al.
Page, 1961) and was determined by titration with an aqueous barium acetate solution in isopropyl alcohol using Arsenadz as an indicator. In addition, the total SOx of the generated exhaust gas was absorbed in 5% hydrogen peroxide solution and determined in the same manner as the SO 3 concentration measurement. The SO 2 oxidation rate (%) was calculated according to the following formula. SO2 oxidation rate (%) = outlet SO3 concentration/total SOx concentration x 1
00 The results obtained are shown in Table 3. Examples 10 to 13 The TiO 2 −SiO 2 powder used in Example 1, i.e.
A catalyst containing vanadium, tungsten, and tin was prepared according to Example 1 using TS-1 and changing the composition ratio. The denitrification rate and the SO 2 oxidation rate were determined for each of the catalysts of Examples 10 to 13 and Comparative Examples 4 and 5 according to Example 9. The results obtained are shown in Table 4. Example 14 A honeycomb-shaped catalyst having the same composition as the catalyst of Example 11 (150 mm square, pitch 7.4 mm, wall thickness 1.4 mm, length
A durability test was conducted by connecting six (500 mm) in series and installing them parallel to the gas flow direction, and exposing them to C heavy oil-fired boiler exhaust gas. Test conditions are gas temperature 360℃, space velocity (SV)
5000H -1 , gas amount 337.5Nm 3 /H, NH 3 /NOx = 1.0
(molar ratio), and the exhaust gas composition is NOx130
~150ppm, SOx800~1000ppm, SO330 ~
50ppm, O2 2-3%, H2O10 %, CO2 10-12%,
There are N2 left. The denitrification rate and SO 2 oxidation rate remained unchanged from the initial stage of the reaction even after 6000 hours, and the denitrification rate remained unchanged.
It was found that the oxidation rate was 94-95% and the SO2 oxidation rate was 0.4-0.5%, indicating excellent durability. Example 15 A honeycomb-shaped catalyst having the same composition as the catalyst of Example 10 (150 mm square, pitch 7.4 mm, wall thickness 1.4 mm, length
500mm) was exposed to coal-fired boiler exhaust gas in the same manner as in Example 14 to conduct a durability test. Test conditions are gas temperature 380℃, space velocity (SV)
5000H -1 , gas amount 337.5Nm 3 /H, NH 3 /NOx = 1.0
(molar ratio), and the exhaust gas composition is NOx250
~340ppm, SO2 1000~1300ppm, O2 3~4%,
10% H2O , 8-10% CO2 , balance N2 . Further, dust was contained at 100 mg/Nm 3 (after dust removal using an electrostatic precipitator). The denitrification rate and SO 2 oxidation rate remained unchanged from the initial stage of the reaction even after 6000 hours, and the denitrification rate was 93-94%, SO 2
The oxidation rate was 0.3 to 0.4%, indicating excellent durability. Denitration rate and SO2 oxidation rate
【表】【table】
【表】【table】
Claims (1)
触的に反応せしめて選択還元する触媒として、チ
タン源として可溶性チタン化合物、ジルコニウム
源として可溶性ジルコニウム化合物およびケイ素
源として可溶性ケイ素化合物および/またはシリ
カゾルを用い、中和反応によつて共沈物をえ、こ
れを洗滌し乾燥し焼成することによつて得られる
チタンおよびケイ素からなる二元系複合酸化物、
チタンおよびジルコニウムからなる二元系複合酸
化物ならびにチタン、ケイ素およびジルコニウム
からなる三元系複合酸化物よりなる群から選ばれ
た少なくとも1種の複合酸化物を触媒A成分と
し、バナジウム酸化物を触媒B成分とし、タング
ステン酸化物を触媒C成分としかつ錫酸化物およ
び/または錫の硫酸塩を触媒D成分としてなり、
その組成がそれぞれAは73〜95重量%、Bは0.3
〜3重量%、Cは3〜12重量%およびDは0.5〜
10重量%の範囲、錫/タングステンが原子比で
0.1〜3.0の範囲、さらに、A成分の組成が酸化物
としてモルパーセントでチタン酸化物40〜95%、
ケイ素および/またはジルコニウム酸化物5〜60
%の範囲に調整されてなることを特徴とする窒素
酸化物浄化用触媒。1 As a catalyst for selectively reducing nitrogen oxides in exhaust gas by catalytically reacting them with ammonia, a soluble titanium compound is used as a titanium source, a soluble zirconium compound is used as a zirconium source, and a soluble silicon compound and/or silica sol is used as a silicon source. A binary composite oxide consisting of titanium and silicon obtained by forming a coprecipitate through a sum reaction, washing, drying and firing the coprecipitate,
At least one composite oxide selected from the group consisting of binary composite oxides consisting of titanium and zirconium and ternary composite oxides consisting of titanium, silicon and zirconium is used as the catalyst A component, and vanadium oxide is used as the catalyst. B component, tungsten oxide as catalyst C component, and tin oxide and/or tin sulfate as catalyst D component,
The composition is 73-95% by weight for A and 0.3% by weight for B.
~3% by weight, C from 3 to 12% by weight and D from 0.5%
In the range of 10% by weight, tin/tungsten in atomic ratio
In the range of 0.1 to 3.0, furthermore, the composition of component A is 40 to 95% titanium oxide in mole percent as an oxide,
Silicon and/or zirconium oxide 5-60
%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57022694A JPS58143838A (en) | 1982-02-17 | 1982-02-17 | Catalyst for purifying nitrogen oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57022694A JPS58143838A (en) | 1982-02-17 | 1982-02-17 | Catalyst for purifying nitrogen oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58143838A JPS58143838A (en) | 1983-08-26 |
JPS6214336B2 true JPS6214336B2 (en) | 1987-04-01 |
Family
ID=12089976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57022694A Granted JPS58143838A (en) | 1982-02-17 | 1982-02-17 | Catalyst for purifying nitrogen oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58143838A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6090043A (en) * | 1983-10-21 | 1985-05-21 | Nippon Shokubai Kagaku Kogyo Co Ltd | Catalyst for purifying nitrogen oxide |
JPS61230748A (en) * | 1985-04-03 | 1986-10-15 | Nippon Shokubai Kagaku Kogyo Co Ltd | Catalyst for purifying nitrogen oxide |
US5015617A (en) * | 1988-04-14 | 1991-05-14 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Catalyst for purifying exhaust gas and method for production thereof |
JPH0724774B2 (en) * | 1988-11-25 | 1995-03-22 | 株式会社日本触媒 | Exhaust gas treatment catalyst carrier, method for producing the same, and exhaust gas treatment catalyst containing the carrier |
JPH0665127A (en) * | 1992-08-21 | 1994-03-08 | Japan Tobacco Inc | Production of alcohol |
-
1982
- 1982-02-17 JP JP57022694A patent/JPS58143838A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58143838A (en) | 1983-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6214339B2 (en) | ||
US4221768A (en) | Catalyst for purifying exhaust and waste gases | |
CA1299343C (en) | Method of cleaning exhaust gases | |
US6521559B1 (en) | Superior pillared clay catalysts for selective catalytic reduction of nitrogen oxides for power plant emission control | |
JP2730987B2 (en) | Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst | |
JPS5915022B2 (en) | Catalyst for removing nitrogen oxides from exhaust gas | |
US5658546A (en) | Denitration catalyst | |
JPS6211892B2 (en) | ||
JP4204692B2 (en) | Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst | |
JPS6214336B2 (en) | ||
JP3507906B2 (en) | DeNOx catalyst | |
JP3263406B2 (en) | Catalyst for decomposing nitrous oxide and method for purifying exhaust gas containing nitrous oxide | |
JPH0587291B2 (en) | ||
JP2980633B2 (en) | Nitrogen oxide removal catalyst | |
JP2916377B2 (en) | Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst | |
JP3537209B2 (en) | Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst | |
JPS6214335B2 (en) | ||
JP2825343B2 (en) | Method for producing catalyst for removing nitrogen oxides | |
JP2919541B2 (en) | Nitrogen oxide removal catalyst | |
JPS6312348A (en) | Catalyst for catalytic reduction of nitrogen oxide by ammonia | |
JPH0417091B2 (en) | ||
JPS61230748A (en) | Catalyst for purifying nitrogen oxide | |
JPH08229412A (en) | Catalyst and method for removing nitrogen oxide | |
JPS60225650A (en) | Catalyst for purifying nitrogen oxide | |
JP3537210B2 (en) | Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst |