JPH0282458A - Fused carbonate fuel cell - Google Patents

Fused carbonate fuel cell

Info

Publication number
JPH0282458A
JPH0282458A JP63232802A JP23280288A JPH0282458A JP H0282458 A JPH0282458 A JP H0282458A JP 63232802 A JP63232802 A JP 63232802A JP 23280288 A JP23280288 A JP 23280288A JP H0282458 A JPH0282458 A JP H0282458A
Authority
JP
Japan
Prior art keywords
layer
gas separation
separation plate
zirconia
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63232802A
Other languages
Japanese (ja)
Other versions
JP2755611B2 (en
Inventor
Shuzo Murakami
修三 村上
Riichi Nakajima
中嶋 利一
Toshihiko Saito
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63232802A priority Critical patent/JP2755611B2/en
Publication of JPH0282458A publication Critical patent/JPH0282458A/en
Application granted granted Critical
Publication of JP2755611B2 publication Critical patent/JP2755611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To make it possible to retain an excellent gas sealing property for a long time by forming the two-layer anticorrosion coating layer of a first layer composed of a specific compound and the second layer consists of alumina or zirconia on the sealed surface touching with the electrolyte plate of a gas separation plate. CONSTITUTION:The two-layer coating layer of a first layer 7; composed of the compound of an element selected from carbon, nitrogen, boron, and silicon, and the metal selected from groups IVa, Va and VIa, in the periodic table and the second layer 8, composed of alumina or zirconia, is formed on the sealed surface 6 closely touching with the electrolyte plate 1 of a gas separation plate 5. Consequently since the compound layer, interposed between the sealed surface of the gas separation plate and the alumina or zirconia layer, has the thermal expansion coefficient of the nearly middle between stainless steel and ceramics layer, the excellent adhesion with the ceramics layer is obtained, and also the crack or peeling of the ceramics layer due to thermocycle is eliminated, and thereby an stable gas sealing property can be retained for a long time.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は溶融炭酸塩を電解質とする燃料電池に係り、特
に電解質板と接するガス分離板のシール面耐食構成に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a fuel cell using molten carbonate as an electrolyte, and more particularly to a corrosion-resistant construction of a sealing surface of a gas separation plate in contact with an electrolyte plate.

(ロ)従来の技術 溶融炭酸塩燃料電池は、第1図の分解斜面図に示すよう
、電解質板(])の両面に夫々アノード極(2)・カソ
ード極(3)を配置したセル(4)と、前記各極背面に
各反応ガス供給室を形成するガス分離板(5)とを交互
に積重し、上下端板(図示せず)間で積重方向に締付け
て電池スタックに構成される。この場合ステンレス鋼製
ガス分離板(5)のシール面(6)は電解質板(1)の
周辺部に密接してウェットシール部を構成し、燃料ガス
と酸化剤ガスのリークを防止するようにしている。しか
し、電解質である溶融炭酸塩は腐食性が強いため長期の
使用によりガス分離板(5)のシール面が腐食されてシ
ール性が低下し、各反応ガスのリーク及びクロスリーク
を生じる。
(b) Conventional technology A molten carbonate fuel cell consists of a cell (4) in which an anode (2) and a cathode (3) are arranged on both sides of an electrolyte plate (2), respectively, as shown in the exploded perspective view of Figure 1. ) and gas separation plates (5) forming each reaction gas supply chamber on the back of each pole are stacked alternately, and the upper and lower end plates (not shown) are tightened in the stacking direction to form a battery stack. be done. In this case, the sealing surface (6) of the stainless steel gas separation plate (5) is in close contact with the periphery of the electrolyte plate (1) to form a wet seal to prevent leakage of fuel gas and oxidant gas. ing. However, since molten carbonate, which is an electrolyte, is highly corrosive, long-term use corrodes the sealing surface of the gas separation plate (5), reducing sealing performance and causing leakage and cross-leakage of each reaction gas.

このようなウェットシール部の腐食を防止するため、ガ
ス分離板のシール面にアルミナもしくはジルコニアなど
のセラミックス被覆層を設けることは周知である。しか
し金属(ステンレス′に4)の上に直接被覆されたセラ
ミックス層は密着性が必ずしも良好でなく、特に電池の
運転・停止によるヒートサイクルを受けると両者の熱膨
張率の差により、セラミックス被覆層のひび割れ、はく
離などが生じ、ガスシール性が低下するという問題があ
った。
In order to prevent such corrosion of the wet seal portion, it is well known to provide a ceramic coating layer such as alumina or zirconia on the sealing surface of the gas separation plate. However, the adhesion of the ceramic layer directly coated on the metal (stainless steel) is not necessarily good, and the difference in thermal expansion coefficient between the two, especially when subjected to heat cycles due to battery operation and shutdown, causes the ceramic coating to There was a problem that cracks and peeling occurred, resulting in a decrease in gas sealing properties.

(ハ)発明が解決しようとする課題 本発明は前記欠点を解消し長時間に亘って、良好なガス
シール性を維持するシール面の耐食層を提供するもので
ある。
(c) Problems to be Solved by the Invention The present invention provides a corrosion-resistant layer on a sealing surface that eliminates the above-mentioned drawbacks and maintains good gas sealing properties over a long period of time.

(ニ)課題を解決するための手段 本発明はガス分離板の電解質板と密接するシール面に、
炭素・窒素・ホウ素・ケイ素から選ばれた元素と周期表
IVa族・Va族・Via族から選ばれた金属との化合
物からなる第1層(下地層)と、アルミナもしくはジル
コニアからなる第2層との二層被覆層を形成したことを
特徴とする。
(d) Means for Solving the Problems The present invention provides a sealing surface of the gas separation plate that is in close contact with the electrolyte plate.
A first layer (base layer) made of a compound of an element selected from carbon, nitrogen, boron, and silicon and a metal selected from groups IVa, Va, and Via of the periodic table, and a second layer made of alumina or zirconia. It is characterized by forming a two-layer coating layer with.

(ホ)作用 本発明ではガス分離板のシール面とアルミナもしくはジ
ルコニア層との間に介在する前記化合物層(下地層)が
ステンレス鋼とセラミックス層とのほぼ中間の熱膨張率
を有するため、セラミックス層との密着性が良好となる
と共にヒートサイクルによるセラミックス層のひび割れ
やはく離などを生ずることなく長期に亘って安定なガス
シールを保持させることができる。
(e) Effect In the present invention, the compound layer (underlying layer) interposed between the sealing surface of the gas separation plate and the alumina or zirconia layer has a coefficient of thermal expansion approximately between that of stainless steel and the ceramic layer. Adhesion to the ceramic layer is improved, and a stable gas seal can be maintained for a long period of time without cracking or peeling of the ceramic layer due to heat cycles.

(へ)実施例 第1図は溶融炭酸塩燃料電池の要部分解斜面図、第2図
は本発明ガス分離板の斜面図、第3図は同上の要部拡大
1tli面図である。
(F) Embodiment FIG. 1 is an exploded perspective view of the main parts of a molten carbonate fuel cell, FIG. 2 is a perspective view of the gas separation plate of the present invention, and FIG. 3 is an enlarged 1tli view of the main parts of the same.

本発明によるシール面の耐食層は次のようにして形成さ
れる。先ずガス分離板(5)は、そのシール面(6)を
除き、マスキングを施した後プラズマ溶射により第3図
に示すようシール面(6)上に化合物層(7)を形成す
る(厚み1〜571m )。この化合物層(7)は、周
期表rVa族・Va族・Vla族に属するTi、Ta、
Zr、Hf、Nb、V、CrW等から選ばれた金属の炭
素化合物、窒素化合物、ホウ素化合物、ケイ素化合物で
あり、本発明実施例ではT i C,T i N、T 
i B、及びTiS、を用いた。ついでこの化合物層(
7)上に同じくプラズマ18射によりアルミナもしくは
ジルコニアからなるセラミックス層(8)を形成した(
厚み1〜5)l、m)。
The corrosion-resistant layer on the sealing surface according to the present invention is formed as follows. First, the gas separation plate (5) is masked except for its sealing surface (6), and then a compound layer (7) is formed on the sealing surface (6) by plasma spraying as shown in FIG. ~571m). This compound layer (7) includes Ti, Ta, which belongs to groups rVa, Va, and Vla of the periodic table.
Carbon compounds, nitrogen compounds, boron compounds, and silicon compounds of metals selected from Zr, Hf, Nb, V, CrW, etc. In the examples of the present invention, T i C, T i N, T
iB and TiS were used. Next, this compound layer (
7) A ceramic layer (8) made of alumina or zirconia was formed thereon by plasma irradiation (
Thickness 1-5) l, m).

に のようにしてシール面(キ)に形成された二層被覆層(
9)の厚みは2〜10μm程度であり、これ以−ヒ厚く
するとはく離しやすくなるため10/Jm以下、特に5
〜6μm程度が望ましい。
The two-layer coating layer (
The thickness of 9) is about 2 to 10 μm, and if it gets thicker, it will peel off easily, so it should be less than 10/Jm, especially 5 μm.
~6 μm is desirable.

このような耐食層(9)を有するガス分離板(5)を用
いて電池に組立てた。第4図は単セルの模式的断面図を
示す。
A battery was assembled using the gas separation plate (5) having such a corrosion-resistant layer (9). FIG. 4 shows a schematic cross-sectional view of a single cell.

電池は650℃まで昇温後、燃料ガスとして80%I(
、−20%CO7の混合ガスをアノード極(2)に、酸
化剤ガスとして70%空気−30%CO7の混合ガスを
カソード極(3)に夫々供給し、電池特性を測定した。
After heating the battery to 650℃, 80% I (
, -20% CO7 was supplied to the anode (2), and a mixed gas of 70% air-30% CO7 was supplied as an oxidant gas to the cathode (3), and the battery characteristics were measured.

比較のため、シール面にプラズマ溶射てアルミナもしく
はジルコニアのみからなる耐食層を形成した従来電池に
ついても同様の測定を行った。
For comparison, similar measurements were also performed on conventional batteries in which a corrosion-resistant layer made only of alumina or zirconia was formed by plasma spraying on the sealing surface.

第5図の特性図は150 mA/cm”の放電電流密度
での平均単セル電圧の経時変化及び開路電圧を示したら
のである。尚400時間及び800時間経過時に運転(
650℃)−停止(20℃)−再運転のヒートサイクル
テストを行った。
The characteristic diagram in Figure 5 shows the change in average single cell voltage over time and the open circuit voltage at a discharge current density of 150 mA/cm''.
A heat cycle test of 650°C)-stop (20°C)-restart was conducted.

従来電池CB)ではヒートサイクル後に電圧が低下し、
その時の燃料ガス出口のガス組成を分析するとN、iが
400時間後5%、SOO時間?& l 29iであっ
た。これはシール面の気密性が低下し反応ガスの混合が
生じたためである。−力木発明電池(A)ではヒートサ
イクル後ら電圧の低下は見られず、燃料ガス出口のガス
組成分析結果らNi量が400時間後0.7%及び80
0時間後1.4%と少なかった。
In the conventional battery CB), the voltage decreases after the heat cycle,
Analyzing the gas composition at the fuel gas outlet at that time, N, i was 5% after 400 hours, SOO time? & l It was 29i. This is because the airtightness of the sealing surface was reduced and the reaction gases were mixed. - In the Rigid invention cell (A), no voltage drop was observed after the heat cycle, and the gas composition analysis results at the fuel gas outlet showed that the Ni amount was 0.7% and 80% after 400 hours.
After 0 hours, it was as low as 1.4%.

又1000時間後時間後終了し電池を分解したところ従
来電池の耐食層にひび割れがみられたのに対し、本発明
の二層耐食層では認められなかった。
Furthermore, when the battery was disassembled after 1000 hours, cracks were observed in the corrosion-resistant layer of the conventional battery, whereas no cracks were observed in the two-layer corrosion-resistant layer of the present invention.

尚上記実施例で用いたTiC,TiN、TiB7、及び
Ti5zなどの化合物の他、ガス分離板との良好な密着
性を維持でき、その熱膨張率が10’ −1,0−’ 
(1/deg)  程度で、耐熱性と成程度の耐食性を
有する化合物も用いることができる。このような化合物
を列記すれば次の通りである。
In addition to the compounds used in the above examples such as TiC, TiN, TiB7, and Ti5z, compounds that can maintain good adhesion with the gas separation plate and have a coefficient of thermal expansion of 10'-1,0-'
A compound having heat resistance and corrosion resistance of about (1/deg) can also be used. A list of such compounds is as follows.

(1)炭素化合物 ’「aC,ZrC,HfC,NbC,VC。(1) Carbon compounds 'aC, ZrC, HfC, NbC, VC.

Cr、C,、WCなど (2)窒素化合物 Tag、ZrN、HfN、NbN、VN、Cry、WN
など (3) ホウ素化合物 TaB、ZrBt、HfB2、N b B +、\lB
、、Cr B 1、W、Bなど (4)ケイ素化合物 T a S + t、ZrSi、、N b S l !
V S 1r、(:rSit、WSi、など(ト)発明
の効果 本発明ではガス分離板の電解質板と接するシール面に、
アルミナもしくはジルコニアのセラミックス耐食層を形
成するに先立ち、予め下地層としてステンレス鋼とセラ
ミックス層とのほぼ中間の熱膨張率を有する特別の化合
物層を被覆したので、セラミックス層の密着性が良好と
なると共にヒートサイクルによるセラミックス層のひび
割れやはく離を生ずることがなく、溶融炭酸塩に対する
シール面の耐食性を著しく改善し、長期に亘って安全な
ガスシール性を維持することができる。
Cr, C,, WC, etc. (2) Nitrogen compounds Tag, ZrN, HfN, NbN, VN, Cry, WN
etc. (3) Boron compounds TaB, ZrBt, HfB2, N b B +, \lB
, Cr B 1, W, B, etc. (4) Silicon compounds T a S + t, ZrSi, , N b S l !
V S 1r, (:rSit, WSi, etc.) Effects of the invention In the present invention, on the sealing surface of the gas separation plate in contact with the electrolyte plate,
Prior to forming the ceramic corrosion-resistant layer of alumina or zirconia, a special compound layer with a thermal expansion coefficient approximately intermediate between that of stainless steel and the ceramic layer is coated as a base layer, so the adhesion of the ceramic layer is good. At the same time, the ceramic layer does not crack or peel due to heat cycles, and the corrosion resistance of the sealing surface against molten carbonate is significantly improved, making it possible to maintain safe gas sealing properties over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶融炭酸塩燃料電池の要部分解斜面図、第2図
は本発明によるガス分離板の斜面図、第3図は同上の要
部拡大断面図、第4図は本発明による単セルの模式的な
断面図、第5図は電池性能を比較して示す特性図である
。 l:を解質板、2ニアノード極、3:カソー ド極、5
:ガス分離板、6:シール面、7;化合物層(第1層)
、8:セラミックス層(第2層)、9ニニ層耐食層。
FIG. 1 is an exploded perspective view of the main parts of a molten carbonate fuel cell, FIG. 2 is a perspective view of a gas separation plate according to the present invention, FIG. 3 is an enlarged sectional view of the main parts of the same, and FIG. FIG. 5, which is a schematic cross-sectional view of the cell, is a characteristic diagram showing a comparison of battery performance. l: solute plate, 2 near node pole, 3: cathode pole, 5
: Gas separation plate, 6: Seal surface, 7; Compound layer (first layer)
, 8: Ceramic layer (second layer), 9 corrosion-resistant layers.

Claims (2)

【特許請求の範囲】[Claims] (1)アノード極、カソード極間に介在する電解質板と
、前記各極背面に各反応ガス供給室を構成するガス分離
板とを備える溶融炭酸塩燃料電池において、前記ガス分
離板の前記電解質板と接するシール面に、炭素・窒素・
ホウ素・ケイ素から選ばれた元素と周期表IVa族・Va
族・VIa族から選ばれた金属との化合物からなる第1層
と、アルミナもしくはジルコニアからなる第2層との二
層耐食被覆層を形成してなることを特徴とする溶融炭酸
塩燃料電池
(1) In a molten carbonate fuel cell comprising an electrolyte plate interposed between an anode electrode and a cathode electrode, and a gas separation plate forming each reaction gas supply chamber on the back surface of each electrode, the electrolyte plate of the gas separation plate Carbon, nitrogen,
Elements selected from boron and silicon and group IVa of the periodic table/Va
A molten carbonate fuel cell characterized by forming a two-layer corrosion-resistant coating layer: a first layer made of a compound with a metal selected from Group VIa and Group VIa, and a second layer made of alumina or zirconia.
(2)請求項1において前記金属はチタン・タンタル・
ジルコニウム・ハフニウム・ニオブ・バナジウム・クロ
ム・タングステンであることを特徴とする溶融炭酸塩燃
料電池
(2) In claim 1, the metal is titanium, tantalum,
Molten carbonate fuel cell characterized by zirconium, hafnium, niobium, vanadium, chromium, and tungsten
JP63232802A 1988-09-16 1988-09-16 Molten carbonate fuel cell Expired - Fee Related JP2755611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63232802A JP2755611B2 (en) 1988-09-16 1988-09-16 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63232802A JP2755611B2 (en) 1988-09-16 1988-09-16 Molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH0282458A true JPH0282458A (en) 1990-03-23
JP2755611B2 JP2755611B2 (en) 1998-05-20

Family

ID=16944993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63232802A Expired - Fee Related JP2755611B2 (en) 1988-09-16 1988-09-16 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP2755611B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690434A (en) * 1979-12-19 1981-07-22 Hitachi Ltd Optical information reproducing device
JPS57199903A (en) * 1981-06-03 1982-12-08 Matsushita Electric Ind Co Ltd Position detector
JPS5826331A (en) * 1981-08-11 1983-02-16 Nippon Telegr & Teleph Corp <Ntt> Optical head
JPS59152543A (en) * 1983-02-21 1984-08-31 Toshiba Corp Optical disk record reproducer
JPS60140665A (en) * 1983-12-27 1985-07-25 Toshiba Corp Electrode of fused carbonate fuel cell
JPS618745A (en) * 1984-06-20 1986-01-16 Mitsubishi Electric Corp Optical information reproducing device
JPS62262376A (en) * 1986-05-07 1987-11-14 Mitsubishi Electric Corp Melted carbonate type fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690434A (en) * 1979-12-19 1981-07-22 Hitachi Ltd Optical information reproducing device
JPS57199903A (en) * 1981-06-03 1982-12-08 Matsushita Electric Ind Co Ltd Position detector
JPS5826331A (en) * 1981-08-11 1983-02-16 Nippon Telegr & Teleph Corp <Ntt> Optical head
JPS59152543A (en) * 1983-02-21 1984-08-31 Toshiba Corp Optical disk record reproducer
JPS60140665A (en) * 1983-12-27 1985-07-25 Toshiba Corp Electrode of fused carbonate fuel cell
JPS618745A (en) * 1984-06-20 1986-01-16 Mitsubishi Electric Corp Optical information reproducing device
JPS62262376A (en) * 1986-05-07 1987-11-14 Mitsubishi Electric Corp Melted carbonate type fuel cell

Also Published As

Publication number Publication date
JP2755611B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
US4950562A (en) Solid electrolyte type fuel cells
CA2445599A1 (en) Metal-supported solid electrolyte electrochemical cell and multi cell reactors incorporating same
JPH08185870A (en) Separator for solid electrolyte fuel cell
EP1249050A1 (en) Bipolar separator plate with improved wet seals
JP2001297777A (en) Macromolecular electrolyte fuel cell
JPH1092446A (en) Solid electrolyte type fuel cell
AU4109299A (en) Perowskite for a coating of interconnectors
JPH0282458A (en) Fused carbonate fuel cell
JP2752101B2 (en) Molten carbonate fuel cell
DE59505729D1 (en) FUEL CELL WITH CERAMICALLY COATED BIPOLAR PLATES AND THEIR PRODUCTION
JPS59201371A (en) Fused carbonate type fuel battery
JPH06243879A (en) Solid electrolyte fuel cell
JP2698162B2 (en) Solid electrolyte fuel cell
JPH0237669A (en) Fuel cell of solid electrolyte type
JP2948439B2 (en) Solid electrolyte fuel cell
JPH038264A (en) Solid electrolyte fuel cell
JP2621863B2 (en) Molten carbonate fuel cell
JP2999653B2 (en) Solid electrolyte fuel cell
JPS61127864A (en) Covered carbon electrode
JPH0294365A (en) Solid electrolyte fuel cell
JP2661692B2 (en) Electrode assembly for high temperature fuel cells
JP7263283B2 (en) METAL MEMBER AND MANUFACTURING METHOD THEREOF
JP3101358B2 (en) Solid oxide fuel cell separator
JPH1140177A (en) Gas-sealing method in solid electrolyte type fuel cell
JPH0992301A (en) Cylindrical lateral-striped solid electrolyte fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees