JPH038264A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH038264A
JPH038264A JP1142816A JP14281689A JPH038264A JP H038264 A JPH038264 A JP H038264A JP 1142816 A JP1142816 A JP 1142816A JP 14281689 A JP14281689 A JP 14281689A JP H038264 A JPH038264 A JP H038264A
Authority
JP
Japan
Prior art keywords
gas
cathode
solid electrolyte
cell
gas passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1142816A
Other languages
Japanese (ja)
Inventor
Shuzo Murakami
修三 村上
Yukinori Akiyama
幸徳 秋山
Noboru Ishida
石田 登
Toshihiko Saito
斎藤 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1142816A priority Critical patent/JPH038264A/en
Publication of JPH038264A publication Critical patent/JPH038264A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • H01M8/0219Chromium complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To avoid oxidation in the contact part of a gas passage plate with a cathode under a high temperature, oxidizing atmosphere in cell operation over a long period of time and to make cell performance steady by forming an oxidation resistant, highly conductive film on the contact part. CONSTITUTION:A flat plate cell 1 consists of an electrolyte layer 2, an anode 3, and a cathode 4. A set of gas passage plates 5, 6 between which the cell 1 is interposed are made of a heat resistant metal such as a nickel-chromium alloy, and have gas grooves 5' through which oxidizing gas is supplied to the cathode 4 and gas grooves 6' through which fuel gas is supplied to the anode 3. A 5mum thick thin film 7 made of LaCrO3 is previously formed on the contact part of the gas passage plate 5 with the cathode 4 by an ion plating method. As the film forming material, a metal which is stable in a high temperature, oxidizing atmosphere and conductive, such as LaMnO3 and LaCoO3 in addition to LaCrO3 is used. Steady cell performance can be obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は高温固体電解質燃料電池に関するものである。[Detailed description of the invention] (b) Industrial application field The present invention relates to high temperature solid electrolyte fuel cells.

(ロ)従来の技術 高温固体電解質燃料電池(以下5OFCと記す)は、固
体電解質内での酸素イオン導電性を利用し、燃料ガスと
酸化剤ガスを反応させるものである。固体電解質及び対
向極を平板状に重ねたセルでは、各極背面に反応ガスの
供給及び集電のためガス通路板を設ける必要があり、こ
のガス通路板として、耐熱性に優れたニッケルークロム
合金(商品名インコネル)が検討されている。
(B) Conventional Technology A high temperature solid electrolyte fuel cell (hereinafter referred to as 5OFC) utilizes oxygen ion conductivity within a solid electrolyte to cause fuel gas and oxidant gas to react. In a cell in which a solid electrolyte and a counter electrode are layered in a flat plate, it is necessary to provide a gas passage plate on the back of each electrode for supplying reactive gas and collecting current, and this gas passage plate is made of nickel-chromium, which has excellent heat resistance. An alloy (trade name: Inconel) is being considered.

しかし1000℃の高温下で酸化雰囲気にさらされるカ
ソード側ガス通路板は、表面に酸化皮膜を形成して酸化
の進行を防ぐが、長期に亘る使用により酸化膜が成長し
、特にCrt O1層の成長はt気導電性の低下をもた
らし、カソード極との接触抵抗を増大させるという問題
があった。
However, the cathode side gas passage plate, which is exposed to an oxidizing atmosphere at a high temperature of 1000°C, forms an oxide film on the surface to prevent the progress of oxidation. There was a problem that the growth caused a decrease in electrical conductivity and increased contact resistance with the cathode.

(ハ)発明が解決しようとする課題 本発明は長期に亘ってガス通路板とカソード極間の電気
的接触状態を安定化するものである。
(c) Problems to be Solved by the Invention The present invention is intended to stabilize the state of electrical contact between the gas passage plate and the cathode electrode over a long period of time.

(ニ)課題を解決するための手段 本発明はアノード極、固体電解質、カソード極からなる
平板状セルの各極背面にニッケルークロム合金などの耐
熱性ガス通路板を配置した5OFCにおいて、前記ガス
通路板のカソード極と接触する部分に耐酸化性、良導電
性のペロブスカイト型酸化物の被覆層を形成したもので
ある。
(d) Means for Solving the Problems The present invention provides a 5OFC in which a heat-resistant gas passage plate made of nickel-chromium alloy or the like is arranged on the back surface of each electrode of a flat cell consisting of an anode, a solid electrolyte, and a cathode. A coating layer of perovskite-type oxide, which is oxidation-resistant and has good conductivity, is formed on the portion of the path plate that contacts the cathode electrode.

(ホ)作 用 本発明では耐酸化性に優れた導電被覆層がガス通路板の
カソード極と接触する部分に形成されているので、長期
に亘って接触部の酸化を抑制し、電池特性の低下を防止
する。
(E) Function In the present invention, since a conductive coating layer with excellent oxidation resistance is formed on the part of the gas passage plate that contacts the cathode electrode, oxidation of the contact part is suppressed over a long period of time, and the battery characteristics are improved. Prevent decline.

(へ)実施例 第1図は本発明平板状単セルの断面図、第2図は同上の
要部拡大断面図を示す。
(f) Example FIG. 1 is a sectional view of a flat unit cell of the present invention, and FIG. 2 is an enlarged sectional view of the same essential parts.

平板状セル(1)は、8%イツトリアで安定化したジル
コニアの焼成体からなる電解質層(2)と、Ni  Z
r0mサーメットからなるアノード極(3)と、Lao
、 * S re、 +MnOrペロブスカイト型酸化
物からなるカソード極(4)とで構成され、これら各p
i(3)(4)はt極構成材粉末を含むスラリーを電解
質層(2)の各面に夫々0,2閣厚で塗布して後焼成し
た。
The flat cell (1) has an electrolyte layer (2) consisting of a fired body of zirconia stabilized with 8% ittria, and a NiZ
An anode pole (3) made of r0m cermet and Lao
, *S re, + cathode electrode (4) made of MnOr perovskite type oxide, and each of these p
For i(3) and (4), a slurry containing the t-electrode constituent material powder was applied to each surface of the electrolyte layer (2) at a thickness of 0.2 mm and then post-baked.

このセル(1)を挟持する一対のガス通路板(5)(6
)はニッケルクロム合金(商品名インコネル600.6
01)などの耐熱性金属からなり、カソード極(4)に
酸化剤ガスを供給するガス溝(5゛)及びアノード極(
3)に燃料ガスを供給するガス溝(6′)を夫々有する
A pair of gas passage plates (5) (6) sandwiching this cell (1).
) is a nickel-chromium alloy (trade name Inconel 600.6
A gas groove (5゛) that supplies oxidant gas to the cathode electrode (4) and an anode electrode (
3) respectively have gas grooves (6') for supplying fuel gas.

このカソード側ガス通路板(5)には、カソード極(4
)と接する部分に予めLaCrOsをイオンブレーティ
ング法により厚み5μmの薄′層(7)として被覆する
。被覆材としてLaCr0.の他LaMnQ j+  
L aCoO、あるいはその置換体(La、−xMxC
rys   ここでM=Mg、Ca、Srなどのアルカ
リ土類金属)なとの高温酸化雰囲気において安定で導電
性(導電率101〜10″s/cm)を示すものであれ
ば使用できる。以上列記した被覆材はカソード極(4)
に用いたと同様のペロブスカイト型酸化物である。
This cathode side gas passage plate (5) has a cathode electrode (4
) is coated in advance with LaCrOs as a thin layer (7) with a thickness of 5 μm by ion blasting. LaCr0. Other LaMnQ j+
L aCoO or its substituted product (La, -xMxC
rys (where M=alkaline earth metals such as Mg, Ca, and Sr) can be used as long as it is stable and has conductivity (conductivity 101 to 10"s/cm) in a high-temperature oxidizing atmosphere. Listed above. The covered material is the cathode electrode (4)
It is a perovskite-type oxide similar to that used in .

又被覆法としてイオンプレーテングの他スパッタリング
法各種溶射法(プラズマ溶射、アーク溶射)及び化学蒸
着(CVD)法なども使用できる。被覆層として密着性
が良く緻密であることが要求されるので、減圧下で被覆
することが好ましい。又厚みについてはできるだけ小さ
いことが望ましいが、1μm以下では長期使用に耐えら
れず、密着性を考慮して2〜10μm程度とする。
In addition to ion plating, sputtering, various thermal spraying methods (plasma spraying, arc spraying), and chemical vapor deposition (CVD) can also be used as coating methods. Since the coating layer is required to have good adhesion and be dense, it is preferable to coat under reduced pressure. Further, it is desirable that the thickness be as small as possible, but if it is less than 1 .mu.m, it will not be able to withstand long-term use, so the thickness should be about 2 to 10 .mu.m in consideration of adhesion.

尚第1図実施例で一方のガス通路板(6)と一体に他方
のガス通路板(5)の外周をとっかこむ溜部(8)を形
成し、この溜部に、パイレックスガラスのような非導電
性高粘度融体(9)を満たすことによりシール部を構成
した場合を例示した。
In the embodiment shown in FIG. 1, one gas passage plate (6) is integrally formed with a reservoir (8) that encloses the outer periphery of the other gas passage plate (5), and this reservoir is made of a material such as Pyrex glass. The case where the seal portion is constructed by filling the non-conductive high viscosity melt (9) is illustrated.

上記単セルを所定の条件で1000℃まで昇温し、燃料
ガスにHl、酸化剤ガスにO8を用い、500mAハか
にて長期運転した場合の電池特性を第3図に示す。又比
較のため被覆層を有しない同様の単セルの特性を点線で
示した。比較電池では800時間経過後除々に特性の低
下が見られるに対し本発明電池では安定した特性を示す
ことがわかる。
FIG. 3 shows the cell characteristics when the above single cell was heated to 1000° C. under predetermined conditions and operated for a long period at 500 mA using H1 as the fuel gas and O8 as the oxidant gas. For comparison, the characteristics of a similar single cell without a coating layer are shown by dotted lines. It can be seen that the characteristics of the comparative battery gradually deteriorated after 800 hours, whereas the battery of the present invention exhibited stable characteristics.

(ト)発明の効果 本発明によればガス通路板のカソード極と接触する部分
に耐酸化性・導電性に優れた被覆層が形成されているの
で、電池作動時の高温酸化雰囲気下で接触部分の酸化を
長期間に亘って抑制し、電池特性の安定化を図ることが
できる。
(G) Effects of the Invention According to the present invention, a coating layer with excellent oxidation resistance and conductivity is formed on the part of the gas passage plate that comes into contact with the cathode electrode, so that contact may occur under a high-temperature oxidizing atmosphere during battery operation. It is possible to suppress the oxidation of the portion over a long period of time, thereby stabilizing the battery characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明固体電解質燃料電池の平板状単セル断面
図、第2図は同上の要部拡大断面図、第3図は電池特性
比較図である。 (2)・・・固体電解質層、(3)・・・アノード極、
(4)・・・カソード極、(5)(6)・・・ガス通路
板、(5’)(6゛)・・・ガス溝、(7)・・・被覆
層、(8)・・・溜部、(9)・・・シール用融体。
FIG. 1 is a sectional view of a flat single cell of the solid electrolyte fuel cell of the present invention, FIG. 2 is an enlarged sectional view of the same main part, and FIG. 3 is a comparison diagram of cell characteristics. (2)...Solid electrolyte layer, (3)...Anode electrode,
(4)...Cathode electrode, (5)(6)...Gas passage plate, (5')(6゛)...Gas groove, (7)...Coating layer, (8)... - Reservoir, (9)...melt for sealing.

Claims (2)

【特許請求の範囲】[Claims] (1)アノード極、固体電解質層、カソード極からなる
平板状セルの前記各極背面に、耐熱性金属からなるガス
通路板を配置した固体電解質燃料電池において、前記ガ
ス通路板の前記カソード極と接触する部分に耐酸化性、
良導電性の被覆層を形成したことを特徴とする固体電解
質燃料電池。
(1) In a solid electrolyte fuel cell in which a gas passage plate made of a heat-resistant metal is arranged on the back surface of each electrode of a flat cell consisting of an anode electrode, a solid electrolyte layer, and a cathode electrode, the cathode electrode of the gas passage plate Oxidation resistance on contact parts,
A solid electrolyte fuel cell characterized by forming a coating layer with good conductivity.
(2)前記被覆層がLaCrO_3、LaMnO_3、
LaCoO_3あるいはその置換体(La_1_−_x
M_xCrO_3M=Mg、Ca、Sr)から選ばれた
ペロブスカイト型酸化物であることを特徴とする請求項
1の固体電解質燃料電池。
(2) The coating layer is LaCrO_3, LaMnO_3,
LaCoO_3 or its substituted product (La_1_-_x
2. The solid electrolyte fuel cell according to claim 1, wherein the solid electrolyte fuel cell is a perovskite oxide selected from M_xCrO_3M=Mg, Ca, Sr.
JP1142816A 1989-06-05 1989-06-05 Solid electrolyte fuel cell Pending JPH038264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1142816A JPH038264A (en) 1989-06-05 1989-06-05 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1142816A JPH038264A (en) 1989-06-05 1989-06-05 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH038264A true JPH038264A (en) 1991-01-16

Family

ID=15324296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1142816A Pending JPH038264A (en) 1989-06-05 1989-06-05 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH038264A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399442A (en) * 1993-02-08 1995-03-21 Fuji Electric Co., Ltd. Solid electrolyte fuel cell
EP0714147A1 (en) * 1994-11-23 1996-05-29 Sulzer Innotec Ag High-temperature fuel cell with chromium-containing connecting elements between the electrochemical active plates
WO1998036464A1 (en) * 1997-02-15 1998-08-20 Forschungszentrum Jülich GmbH Interconnector for sofc fuel cell piles
WO1998040921A1 (en) * 1997-03-13 1998-09-17 Forschungszentrum Jülich GmbH Material for electric contact layers between a high-temperature fuel cell electrode and an interconnector
EP1825553A1 (en) * 2004-11-16 2007-08-29 Versa Power Systems, Ltd. Electrically conductive fuel cell contact materials

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100866A (en) * 1987-10-14 1989-04-19 Toa Nenryo Kogyo Kk Heat-resisting component

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100866A (en) * 1987-10-14 1989-04-19 Toa Nenryo Kogyo Kk Heat-resisting component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399442A (en) * 1993-02-08 1995-03-21 Fuji Electric Co., Ltd. Solid electrolyte fuel cell
EP0714147A1 (en) * 1994-11-23 1996-05-29 Sulzer Innotec Ag High-temperature fuel cell with chromium-containing connecting elements between the electrochemical active plates
WO1998036464A1 (en) * 1997-02-15 1998-08-20 Forschungszentrum Jülich GmbH Interconnector for sofc fuel cell piles
WO1998040921A1 (en) * 1997-03-13 1998-09-17 Forschungszentrum Jülich GmbH Material for electric contact layers between a high-temperature fuel cell electrode and an interconnector
EP1825553A1 (en) * 2004-11-16 2007-08-29 Versa Power Systems, Ltd. Electrically conductive fuel cell contact materials
EP1825553A4 (en) * 2004-11-16 2012-01-11 Versa Power Systems Ltd Electrically conductive fuel cell contact materials

Similar Documents

Publication Publication Date Title
US4950562A (en) Solid electrolyte type fuel cells
US6007683A (en) Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
JP3756524B2 (en) Electrical interconnector for planar fuel cell
US20030194592A1 (en) Solid oxide electrolytic device
JP2003501796A (en) Gas separator for fuel cells
JPH11126624A (en) Current collector for fuel cell and its manufacture
JPH08185870A (en) Separator for solid electrolyte fuel cell
JPH11162478A (en) Separator for fuel cell
JP3915500B2 (en) THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME
JPH038264A (en) Solid electrolyte fuel cell
JP2015088446A (en) Intercell connecting member joining structure and intercell connecting member joining method
JP2002527612A (en) Method of coating support plate and fuel cell provided with such support plate
JP3057342B2 (en) Solid electrolyte fuel cell
JPH0567473A (en) Solid electrolyte fuel cell
JPH09266000A (en) Solid electrolyte type fuel cell and its manufacture
JP2604437B2 (en) High-temperature fuel cell interelectrode assembly and high-temperature fuel cell cathode current collector
US8940451B2 (en) Planar high-temperature fuel cell
JPH0652868A (en) Separator masking material for molten carbonate fuel cell and manufacture thereof
JP2003331859A (en) Separator for fuel cell, its manufacturing method, and fuel cell using separator for fuel cell
JP2661692B2 (en) Electrode assembly for high temperature fuel cells
JPH0371561A (en) Solid electrode fuel cell
JPS62262376A (en) Melted carbonate type fuel cell
JPH02100270A (en) Molten carbonate fuel cell
JPH03192660A (en) Fuel cell device
JPH06219834A (en) Sintered compact with electric conductivity at high temperature and its production