JPH0281482A - Gallium nitride-based compound semiconductor light-emitting element - Google Patents

Gallium nitride-based compound semiconductor light-emitting element

Info

Publication number
JPH0281482A
JPH0281482A JP63232885A JP23288588A JPH0281482A JP H0281482 A JPH0281482 A JP H0281482A JP 63232885 A JP63232885 A JP 63232885A JP 23288588 A JP23288588 A JP 23288588A JP H0281482 A JPH0281482 A JP H0281482A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
grown
buffer layer
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63232885A
Other languages
Japanese (ja)
Other versions
JP2829319B2 (en
Inventor
Katsuhide Manabe
勝英 真部
Masaki Mori
正樹 森
Akira Mabuchi
馬渕 彰
Isamu Akasaki
勇 赤崎
Hiroshi Amano
浩 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Japan Science and Technology Agency
Toyoda Gosei Co Ltd
Original Assignee
Nagoya University NUC
Research Development Corp of Japan
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Research Development Corp of Japan, Toyoda Gosei Co Ltd filed Critical Nagoya University NUC
Priority to JP23288588A priority Critical patent/JP2829319B2/en
Publication of JPH0281482A publication Critical patent/JPH0281482A/en
Application granted granted Critical
Publication of JP2829319B2 publication Critical patent/JP2829319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To disperse a nucleus of AlN uniformly thin, to enhance a single- crystal property of an N-layer and an I-layer to be grown on it and to enhance a light-emitting characteristic by a method wherein an AlN buffer layer used to relax a lattice mismatching between sapphire and a GaN-based compound semiconductor is grown by a molecular beam epitaxial method (MBE). CONSTITUTION:A sapphire substrate 2 is attached to a susceptor of an MBE apparatus; it is heated up to 500 deg.C; Al is evaporated in a plasma of N; a polycrystalline AlN buffer layer 3 is formed. An N-type GaN layer 4 is formed on it at 1000 deg. in an MOVPE apparatus; then, an I-type GaN layer 5 is formed at 900 deg.; electrodes 6, 7 are evaporated; a light-emitting diode 1 is completed. Thereby, a growth nucleus of GaN in the N-layer is dispersed uniformly; a single-crystal property of the N-layer 4 and the I-layer 3 is made good.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は青色発光の窒化ガリウム系化合物半導体発光素
子に関する。
The present invention relates to a gallium nitride compound semiconductor light emitting device that emits blue light.

【従来技術】[Prior art]

従来、青色の発光ダイオードとしてGaN系の化合物半
導体を用いたものが知られている。そのGaN系の化合
物半導体は直接遷移であることから発光効率が高いこと
、光の3原色の1つである青色を発光色とすること等か
ら注目されている。 このようなGaN系の化合物半導体を用いた発光ダイオ
ードは、サファイア基板上に直接又は漣化アルミニウム
から成るバッファ層を介在させて、N導電型のGaN系
の化合物半導体から成るN層を成長させ、そのN層の上
に1導電型のGaN系の化合物半導体から成る1層を成
長させた構造を二っている。ごして、J−の成長方法と
して、ハライド気相成長法、有機金属化合物気相成長法
(MOVPE)が用いられている。
Conventionally, blue light emitting diodes using GaN-based compound semiconductors are known. The GaN-based compound semiconductor is attracting attention because it has high luminous efficiency due to direct transition, and because it emits blue light, which is one of the three primary colors of light. A light emitting diode using such a GaN-based compound semiconductor is produced by growing an N layer made of an N-conductivity type GaN-based compound semiconductor on a sapphire substrate directly or with a buffer layer made of aluminum fluoride interposed therebetween. There is a structure in which one layer made of a GaN-based compound semiconductor of one conductivity type is grown on the N layer. As a method for growing J-, halide vapor phase epitaxy and organometallic compound vapor phase epitaxy (MOVPE) are used.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところで、上記の発光ダイオードの性能は、活性層であ
る1層の結晶性にかかっている。その1層の結晶性はN
層の結晶性に依存している。そして、N層の結晶性を向
上させるために、結晶のミスフイツトを減少させる目的
でサファイア基板とN層間にバッファ層を介在させてい
る。このバッファ層の結晶性によりN層の結晶性が支配
される。 本発明者らは、かかる結晶成長について研究を重ねてき
た。その結果、次のことが判明された。 第1に、このバッファ層はMOCVD法により成長させ
ることから、成長温度を高くする必要があり、そのため
、ピットが生じ易く、そのことがN層の結晶性を阻害す
る。 第2に、N層の結晶性を向上させるには、バッファ層は
非常に薄い結晶成長の核が均一に分散していることが必
要である。しかし、そのことを阻止する原因として、M
OCVD法では、トリメチルアルミニウム(TMA)と
アンモニア(NH,)の反応により窒化アルミニウム(
AIN)を成長させる時に、メチル基、水素等の立体障
害がある。 第3に、発光ダイオードの特性上からは、N層や1層へ
のアルミニウム原子の拡散等を防止するためにもバッフ
ァ層の厚さは可能な限り簿い方が望ましい。 本発明は、このような結論を元に完成されたものであり
、その目的は、バッファ層を結晶成長の核を均一に分散
させたものとすることにより、N層及び1層の結晶性を
向上させることができ、更に発光ダイオードの発光特性
を向上させることである。
By the way, the performance of the above-mentioned light emitting diode depends on the crystallinity of one layer, which is the active layer. The crystallinity of that one layer is N
It depends on the crystallinity of the layer. In order to improve the crystallinity of the N layer, a buffer layer is interposed between the sapphire substrate and the N layer in order to reduce crystal misfit. The crystallinity of the N layer is controlled by the crystallinity of this buffer layer. The present inventors have conducted repeated research on such crystal growth. As a result, the following was found. First, since this buffer layer is grown by the MOCVD method, it is necessary to raise the growth temperature, and therefore pits are likely to occur, which inhibits the crystallinity of the N layer. Second, in order to improve the crystallinity of the N layer, the buffer layer needs to have very thin crystal growth nuclei uniformly dispersed therein. However, M
In the OCVD method, aluminum nitride (NH) is produced by the reaction of trimethylaluminum (TMA) and ammonia (NH).
When growing AIN), there are steric hindrances such as methyl groups and hydrogen. Thirdly, from the viewpoint of the characteristics of the light emitting diode, it is desirable to keep the thickness of the buffer layer as small as possible in order to prevent diffusion of aluminum atoms into the N layer and the first layer. The present invention was completed based on this conclusion, and its purpose is to improve the crystallinity of the N layer and the first layer by making the buffer layer a layer in which crystal growth nuclei are uniformly dispersed. It is possible to improve the light emitting characteristics of the light emitting diode.

【課題を解決するための手段】[Means to solve the problem]

本発明は、本発明者らによって初めて明らかにされた上
記結論に立脚するものであり、本発明者らは、バッファ
層を分子線エピタキシー法(MBE)で成長させれば望
ましい結果が得られることを初めて着想したのである。 即ち、上記課題を解決するだめの発明の構成は、サファ
イア基板と、サファイア基板上に成長した窒化アルミニ
ウム(A I N)から成るバッファ層と、バッファ層
上に戊長したN型の窒化ガリウム系化合物半導体(A 
f X G a I−x N ; X=Oを含む)から
なるN層と、N層上に成長したI型の窒化ガリウム系化
合物半導体(A I X G a l−X N :x−
Oを含む)からなる1層とを有し、バッファ層を分子線
エピタキシー法(MBE)で成長させたことを特徴とす
るものである。
The present invention is based on the above conclusion first clarified by the present inventors, and the present inventors have discovered that desired results can be obtained by growing the buffer layer by molecular beam epitaxy (MBE). It was the first time I had the idea. That is, the structure of the invention to solve the above problem is a sapphire substrate, a buffer layer made of aluminum nitride (AIN) grown on the sapphire substrate, and an elongated N-type gallium nitride-based layer grown on the buffer layer. Compound semiconductor (A
f X Ga I-x N ; containing X=O), and an I-type gallium nitride compound semiconductor (A
The buffer layer is grown by molecular beam epitaxy (MBE).

【発明の効果】【Effect of the invention】

本発明は、サファイア基板上に戊長し、サファイアと窒
化ガリウム系化合物半導体との格子不整合を緩和する窒
化アルミニウムから成るバッファ層を分子線エピタキシ
ー法で成長させたので、窒〜 化アルミニウムの核を均一に薄く分散させることができ
、その上に成長させるN層及び1層の単結晶性を向上さ
せることができた。従って、発光ダイオードの発光特性
を向上させることができた。
In the present invention, a buffer layer made of aluminum nitride is grown on a sapphire substrate by molecular beam epitaxy to alleviate the lattice mismatch between sapphire and a gallium nitride compound semiconductor. could be uniformly and thinly dispersed, and the single crystallinity of the N layer and the single layer grown thereon could be improved. Therefore, the light emitting characteristics of the light emitting diode could be improved.

【実施例】【Example】

以下、本発明を具体的な実施例に基づいて説明する。図
は本発明の具体的な一実施例に係る発光ダイオード1の
構成を示した断面図である。 主面を0面((0001)面)とするサファイア基板2
を硝酸で洗浄した後、更にアセトンで洗浄した。 そして、洗浄後、窒素ガスを吹き付けて乾怪させた後、
そのサファイア基板2をMBE装置のサセプタに取り付
けた。その後、サファイア基板2を500℃に加熱して
、窒素ガスプラズマ中で、アルミニウムを蒸発させて、
サファイア基板2の主面上に窒化アルミニウム(AlN
)から成るバッファ層3を約500人の厚さに形成した
。 その後、このバッファ層3の形成されたサファイア基板
2をMBE装置からグラブボックスを通じて、そのサフ
ァイア基板2をMOVPE!置の反応室のサセプタに取
り付けた。そして、サファイア基板2を1000℃に加
熱して、キャリアガスとしてH7を2,51/分、NH
,をり、51/分、トリメチルガリウム(TMG)を2
0d/分の割合で60分間供給し、収厚約10μsのN
型のGaNから成る8層4を形成した。 次に、サファイア基板2を900℃にして、H2を2.
5f/分、NH,を1.5I!/分、TMGを15rn
l/分、ジエチル亜鉛(DEZ)を10−3m1/分の
割合で5分間供給して、■型のGaNから戊る1層5を
膜厚1.0−に形成した。 次に、8層4の側壁と1層5の上面にアルミニウム電極
6.7を蒸着して、発光ダイオードを形成した。 このようにして得られた発光ダイオード1の8層4及び
1層5の断面の顕微鏡写真、高エネルギー電子線による
反射回折法(RHIEED)により、良好な結晶性が得
られていることが分かった。 又、この発光ダイオード1の発光ピークのスペクトルは
480nmであり、発光強度(軸上輝度)は10mcd
であった。 尚、本発明者らの考察によれば、MBEで形成されたバ
ッファ層3では、8層4のGaNの成長の核が、バッフ
ァ層3をMOVPEで成長させたものと比べて、均一に
分散し、そのために、8層4及び1層5の単結晶性が良
くなったと考えられる。 又、バッファ層3は、サファイア基板2を500℃にし
てMBEで形成したので、多結晶であった。 又、本発明者らは、バッファ層3は多結晶で成長させた
方が単結晶で成長させた方よりも、NF’4及び1層5
の単結晶性が良いことも見出した。 このためにもMBEでバッファ層3を成長させることは
効果があり、多結晶とする成長温度は、室温〜500℃
が望ましい。 又、8層4及び1層5の単結晶性を良くするためには、
バッファ層3の厚さは100〜1000人が望ましい。 尚、上記実施例では、8層4及び1層5をGaNで形成
したが、AlxGa+−xNで形成しても良い。
The present invention will be described below based on specific examples. The figure is a sectional view showing the structure of a light emitting diode 1 according to a specific embodiment of the present invention. Sapphire substrate 2 whose main surface is the 0 plane ((0001) plane)
was washed with nitric acid and then further washed with acetone. After cleaning and drying by blowing nitrogen gas,
The sapphire substrate 2 was attached to a susceptor of an MBE apparatus. After that, the sapphire substrate 2 is heated to 500°C to evaporate aluminum in nitrogen gas plasma,
Aluminum nitride (AlN
) was formed to a thickness of approximately 500 mm. Thereafter, the sapphire substrate 2 with the buffer layer 3 formed thereon is transferred from the MBE device through a glove box, and the sapphire substrate 2 is subjected to MOVPE! It was attached to the susceptor in the reaction chamber. Then, the sapphire substrate 2 was heated to 1000°C, H7 was added as a carrier gas at 2.51/min, and NH
, 51/min, trimethyl gallium (TMG) 2
N was supplied at a rate of 0 d/min for 60 minutes, with a concentration of approximately 10 μs.
Eight layers 4 of type GaN were formed. Next, the sapphire substrate 2 is heated to 900°C, and H2 is heated to 2.
5f/min, NH, 1.5I! /min, TMG 15rn
1/min, and diethyl zinc (DEZ) was supplied at a rate of 10-3 ml/min for 5 minutes to form one layer 5 made of ■-shaped GaN to a thickness of 1.0-. Next, aluminum electrodes 6.7 were deposited on the side walls of the 8-layer 4 and the top surface of the 1-layer 5 to form a light emitting diode. Microscopic photographs of cross-sections of the 8 layers 4 and 1 layer 5 of the light emitting diode 1 thus obtained and high-energy electron beam reflection diffraction (RHIEED) revealed that good crystallinity was obtained. . Furthermore, the emission peak spectrum of this light emitting diode 1 is 480 nm, and the emission intensity (on-axis brightness) is 10 mcd.
Met. According to the inventors' considerations, in the buffer layer 3 formed by MBE, the growth nuclei of GaN in the 8 layers 4 are more uniformly dispersed than in the buffer layer 3 grown by MOVPE. However, it is considered that for this reason, the single crystallinity of the 8-layer 4 and the 1-layer 5 was improved. Further, the buffer layer 3 was polycrystalline because it was formed by MBE at 500° C. on the sapphire substrate 2. In addition, the present inventors found that growing the buffer layer 3 as a polycrystalline material has a higher NF'4 and 1 layer 5 than growing a single crystalline buffer layer 3.
It was also found that the single crystallinity of For this reason, it is effective to grow the buffer layer 3 by MBE, and the growth temperature for making it polycrystalline is from room temperature to 500°C.
is desirable. In addition, in order to improve the single crystallinity of 8 layers 4 and 1 layer 5,
The thickness of the buffer layer 3 is preferably 100 to 1000. In the above embodiment, the 8 layers 4 and the 1 layer 5 are made of GaN, but they may be made of AlxGa+-xN.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の具体的な一実施例に係る発光ダイオードの
構成を示した構成図である。 1 発光ダイオード 2 サファイア基板3−バッファ
層 4 N層 5 1層 特許出願人  豊田合或株式会社 同   名古屋大学長 同    新技術開発事業団
The figure is a configuration diagram showing the configuration of a light emitting diode according to a specific example of the present invention. 1 Light emitting diode 2 Sapphire substrate 3 - buffer layer 4 N layer 5 1st layer Patent applicant Toyota Goor Co., Ltd. Nagoya University President New Technology Development Corporation

Claims (1)

【特許請求の範囲】 サファイア基板と、 前記サファイア基板上に成長した窒化アルミニウム(A
lN)から成るバッファ層と、 前記バッファ層上に成長したN型の窒化ガリウム系化合
物半導体(Al_xGa_1_−_xN;X=0を含む
)からなるN層と、 前記N層上に成長したI型の窒化ガリウム系化合物半導
体(Al_xGa_1_−_xN;X=0を含む)から
なるI層とを有し、 前記バッファ層を分子線エピタキシー法(MBE)で成
長させたことを特徴とする窒化ガリウム系化合物半導体
発光素子。
[Claims] A sapphire substrate, and an aluminum nitride (A) grown on the sapphire substrate.
an N layer made of an N-type gallium nitride compound semiconductor (Al_xGa_1_-_xN; including X=0) grown on the buffer layer; and an I-type gallium nitride compound semiconductor grown on the N layer. and an I layer made of a gallium nitride compound semiconductor (Al_xGa_1_-_xN; including X=0), wherein the buffer layer is grown by molecular beam epitaxy (MBE). Light emitting element.
JP23288588A 1988-09-16 1988-09-16 Gallium nitride based compound semiconductor light emitting device Expired - Lifetime JP2829319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23288588A JP2829319B2 (en) 1988-09-16 1988-09-16 Gallium nitride based compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23288588A JP2829319B2 (en) 1988-09-16 1988-09-16 Gallium nitride based compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH0281482A true JPH0281482A (en) 1990-03-22
JP2829319B2 JP2829319B2 (en) 1998-11-25

Family

ID=16946368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23288588A Expired - Lifetime JP2829319B2 (en) 1988-09-16 1988-09-16 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2829319B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237182A (en) * 1990-11-29 1993-08-17 Sharp Kabushiki Kaisha Electroluminescent device of compound semiconductor with buffer layer
US5278433A (en) * 1990-02-28 1994-01-11 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound with double layer structures for the n-layer and/or the i-layer
WO1994003931A1 (en) * 1992-08-07 1994-02-17 Asahi Kasei Kogyo Kabushiki Kaisha Nitride based semiconductor device and manufacture thereof
US5408120A (en) * 1992-07-23 1995-04-18 Toyoda Gosei Co., Ltd. Light-emitting device of gallium nitride compound semiconductor
AU679277B2 (en) * 1994-08-22 1997-06-26 Korea Research Institute Of Chemical Technology A process for growth of gallium nitride
US5733796A (en) * 1990-02-28 1998-03-31 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound
US5764673A (en) * 1995-09-25 1998-06-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor light emitting device
EP1039555A1 (en) * 1999-03-05 2000-09-27 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device
JP2001015803A (en) * 1999-06-29 2001-01-19 Showa Denko Kk AlGaInP LIGHT EMITTING DIODE
US6362017B1 (en) 1990-02-28 2002-03-26 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound
US6830992B1 (en) 1990-02-28 2004-12-14 Toyoda Gosei Co., Ltd. Method for manufacturing a gallium nitride group compound semiconductor
US6939733B2 (en) 1999-03-31 2005-09-06 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and method of producing the same
JP2009021619A (en) * 1991-03-18 2009-01-29 Trustees Of Boston Univ Method for manufacturing semiconductor device by exposing sapphire substrate to active nitrogen and semiconductor device
CN105390578A (en) * 2015-12-04 2016-03-09 天津三安光电有限公司 Nitride bottom layer and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP2002075880A (en) 2000-09-01 2002-03-15 Sanyo Electric Co Ltd Method for forming nitride-based semiconductor layer and method for manufacturing nitride-based semiconductor device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249012B1 (en) 1990-02-28 2001-06-19 Toyoda Gosei Co., Ltd. Light emitting semiconductor device using gallium nitride group compound
US6984536B2 (en) 1990-02-28 2006-01-10 Toyoda Gosei Co., Ltd. Method for manufacturing a gallium nitride group compound semiconductor
US6362017B1 (en) 1990-02-28 2002-03-26 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound
US6593599B1 (en) 1990-02-28 2003-07-15 Japan Science And Technology Corporation Light-emitting semiconductor device using gallium nitride group compound
US6607595B1 (en) 1990-02-28 2003-08-19 Toyoda Gosei Co., Ltd. Method for producing a light-emitting semiconductor device
US5733796A (en) * 1990-02-28 1998-03-31 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound
US6472690B1 (en) 1990-02-28 2002-10-29 Toyoda Gosei Co., Ltd. Gallium nitride group compound semiconductor
US6830992B1 (en) 1990-02-28 2004-12-14 Toyoda Gosei Co., Ltd. Method for manufacturing a gallium nitride group compound semiconductor
US6472689B1 (en) 1990-02-28 2002-10-29 Toyoda Gosei Co., Ltd. Light emitting device
US5278433A (en) * 1990-02-28 1994-01-11 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound with double layer structures for the n-layer and/or the i-layer
US5237182A (en) * 1990-11-29 1993-08-17 Sharp Kabushiki Kaisha Electroluminescent device of compound semiconductor with buffer layer
JP2009021619A (en) * 1991-03-18 2009-01-29 Trustees Of Boston Univ Method for manufacturing semiconductor device by exposing sapphire substrate to active nitrogen and semiconductor device
JP2010093271A (en) * 1991-03-18 2010-04-22 Trustees Of Boston Univ Method of making semiconductor device with exposure of sapphire substrate to activated nitrogen, and semiconductor device
USRE36747E (en) * 1992-07-23 2000-06-27 Toyoda Gosei Co., Ltd Light-emitting device of gallium nitride compound semiconductor
US5408120A (en) * 1992-07-23 1995-04-18 Toyoda Gosei Co., Ltd. Light-emitting device of gallium nitride compound semiconductor
WO1994003931A1 (en) * 1992-08-07 1994-02-17 Asahi Kasei Kogyo Kabushiki Kaisha Nitride based semiconductor device and manufacture thereof
AU679277B2 (en) * 1994-08-22 1997-06-26 Korea Research Institute Of Chemical Technology A process for growth of gallium nitride
US5764673A (en) * 1995-09-25 1998-06-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor light emitting device
EP1039555A1 (en) * 1999-03-05 2000-09-27 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device
US6939733B2 (en) 1999-03-31 2005-09-06 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and method of producing the same
JP2001015803A (en) * 1999-06-29 2001-01-19 Showa Denko Kk AlGaInP LIGHT EMITTING DIODE
CN105390578A (en) * 2015-12-04 2016-03-09 天津三安光电有限公司 Nitride bottom layer and preparation method thereof

Also Published As

Publication number Publication date
JP2829319B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
KR950006968B1 (en) Crystal growth method for gallium nitride-based compound semiconductor
JPH0281482A (en) Gallium nitride-based compound semiconductor light-emitting element
JPH07202265A (en) Manufacture of group iii nitride semiconductor
JPH04297023A (en) Crystal growth method of gallium nitride compound semiconductor
JP2795294B2 (en) A method for growing a gallium aluminum nitride semiconductor crystal.
JP3140751B2 (en) Gallium nitride based compound semiconductor light emitting device
CN115714155A (en) Deep ultraviolet light emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light emitting diode
JPH0281484A (en) Gallium nitride-based compound semiconductor light-emitting element
JP3857467B2 (en) Gallium nitride compound semiconductor and manufacturing method thereof
JPH08264899A (en) Manufacture of gallium nitride semiconductor
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JPH05110138A (en) Growing method for crystal of gallium nitride compound semiconductor and element thereof
JPH09295890A (en) Apparatus for producing semiconductor and production of semiconductor
JPH0936429A (en) Fabrication of iii-v compound semiconductor
JP2812375B2 (en) Gallium nitride based compound semiconductor growth method
JPH07312350A (en) Crystal growth method of gallium nitride-based compound semiconductor
JP3402460B2 (en) Gallium nitride based compound semiconductor growth method
JP2005210091A (en) Group iii nitride semiconductor element and light emitting element
JPH09107124A (en) Method for manufacturing iii-v compound semiconductor
JPH08264455A (en) Semiconductor device and manufacture thereof
TW200527721A (en) Group III nitride semiconductor device and light-emitting device using the same
JPH07283436A (en) Iii-v compound semiconductor and light-emitting element
JPH06216409A (en) Growth method of single-crystal semiconductor nitride
JP4009043B2 (en) Method for producing p-type group III nitride semiconductor
TW200416249A (en) 3-5 Group compound semiconductor and method for preparation thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

EXPY Cancellation because of completion of term