JPH06216409A - Growth method of single-crystal semiconductor nitride - Google Patents

Growth method of single-crystal semiconductor nitride

Info

Publication number
JPH06216409A
JPH06216409A JP2208593A JP2208593A JPH06216409A JP H06216409 A JPH06216409 A JP H06216409A JP 2208593 A JP2208593 A JP 2208593A JP 2208593 A JP2208593 A JP 2208593A JP H06216409 A JPH06216409 A JP H06216409A
Authority
JP
Japan
Prior art keywords
substrate
single crystal
crystal layer
layer
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2208593A
Other languages
Japanese (ja)
Other versions
JP3091593B2 (en
Inventor
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2208593A priority Critical patent/JP3091593B2/en
Publication of JPH06216409A publication Critical patent/JPH06216409A/en
Application granted granted Critical
Publication of JP3091593B2 publication Critical patent/JP3091593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To provide a method, in which a single-crystal InAlGaN layer having excellent crystallizability is grown on a substrate first in order to form a light- emitting device utilizing a semiconductor nitride in double-hetero structure. CONSTITUTION:A single-crystal semiconductor nitride layer shown in general formula InXAlYGa1-X-YN (where X<0<1 an Y<0<1 hold) is grown on a substrate through a vapor growth method in the title method, a substrate, a substrate, in which a buffer layer consisting of GaZAl1-ZN (0<=Z<=1) is formed onto sapphire and a single-crystal layer composed of GaN onto the buffer layer, is employed as the substrate, and the semiconductor nitride single-crystal layer is grown on the single-crystal GaN layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は紫外、青色発光ダイオー
ド、レーザーダイオード等の発光デバイスに利用される
窒化物半導体単結晶層の成長方法に係り、特に、四元混
晶の窒化インジウムアルミニウムガリウム(以下InA
lGaNという)単結晶層の成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a nitride semiconductor single crystal layer used in a light emitting device such as an ultraviolet light emitting diode, a blue light emitting diode and a laser diode, and more particularly to a quaternary mixed crystal indium aluminum gallium nitride Below InA
lGaN) and a method for growing a single crystal layer.

【0002】[0002]

【従来の技術】窒化物半導体、特に四元混晶のInX
YGa1-X-YNはXおよび、Yの組成比によってバンドギ
ャップエネルギーが約2eV〜6eV、a軸の格子定数
が約3.1オングストローム〜3.5オングストローム
まで変わり、しかも直接遷移であるために、紫外、青色
ダイオード、レーザーダイオード等の発光素子の材料と
して注目されている。しかしながら、現在のところ、I
nAlGaNの高品質な単結晶層が成長できていないた
め、この材料を使った発光デバイスは実用化されていな
い。
2. Description of the Related Art Nitride semiconductors, especially quaternary mixed crystal In X A
l Y Ga 1-XY N has a band gap energy of about 2 eV to 6 eV, a-axis lattice constant of about 3.1 angstroms to 3.5 angstroms, and a direct transition, depending on the composition ratio of X and Y. In addition, it is attracting attention as a material for light emitting devices such as ultraviolet, blue and laser diodes. However, at the moment, I
Since a high-quality single crystal layer of nAlGaN has not been grown, a light emitting device using this material has not been put to practical use.

【0003】InAlGaNは、有機金属化合物気相成
長法、分子線エピタキシー法等の気相成長法によって成
長することができる。これらの方法によると、従来、基
板上に成長されたInAlGaNは単結晶ではなく、多
結晶の状態となっていた。そのため、このInAlGa
N多結晶の上に他の種類の窒化物半導体、例えば二元混
晶のGaN、AlN、三元混晶のInGaN、AlGa
N、四元混晶のInAlGaN等を積層してヘテロ構造
とした場合、基板上に形成されたInAlGaNの結晶
性が悪いために、その上に結晶性に優れた二元混晶、三
元混晶、四元混晶の窒化物半導体層を形成することがで
きなかった。なぜなら、従来、基板には通常サファイア
が用いられており、このサファイア基板とInAlGa
Nとの格子定数不整が11%以上もあるため、結晶性に
優れたInAlGaN層が得られなかったのである。
InAlGaN can be grown by a vapor phase growth method such as a metal organic compound vapor phase growth method and a molecular beam epitaxy method. According to these methods, conventionally, InAlGaN grown on a substrate is not in a single crystal but in a polycrystalline state. Therefore, this InAlGa
Other types of nitride semiconductors on N polycrystal, for example, binary GaN, AlN, ternary InGaN, AlGa
When N and quaternary mixed crystal InAlGaN are laminated to form a heterostructure, the crystallinity of InAlGaN formed on the substrate is poor, and therefore binary crystal and ternary mixed crystal having excellent crystallinity It was not possible to form a crystal semiconductor or a quaternary mixed crystal nitride semiconductor layer. Because conventionally, sapphire is usually used for the substrate, and this sapphire substrate and InAlGa
Since the lattice constant mismatch with N was 11% or more, an InAlGaN layer having excellent crystallinity could not be obtained.

【0004】基板上に成長させる窒化物半導体の結晶性
を向上させるため、従来数々の方法が提案されている。
例えば特公昭59−48794号公報ではサファイア基
板の上にAlNより成るバッファ層を設ける方法が開示
されている。また特開平2−21620号公報ではサフ
ァイア基板のM面に成長する方法が開示され、特開平3
−3233号公報ではサファイア基板のR面に成長する
方法が開示されている。また、特開平4−209577
号公報では基板にZnOを使用する方法が開示されてい
る。これらの方法はいずれも基板と窒化物半導体との格
子定数不整を緩和するために提案されたものであるが、
いずれの方法もGaN、AlN等の二元混晶までしか結
晶性に優れた窒化物半導体が得られないのが実状であ
る。そのため窒化物半導体を利用した発光デバイスで、
唯一実用化されているものは、基板の上にn型GaN層
と、その上にp型ドーパントをドープした高抵抗なi型
GaN層とを積層した、いわゆるホモ接合のMIS構造
GaN発光ダイオードしか知られていない。
In order to improve the crystallinity of the nitride semiconductor grown on the substrate, various methods have been conventionally proposed.
For example, Japanese Patent Publication No. 59-48794 discloses a method of providing a buffer layer made of AlN on a sapphire substrate. Further, JP-A-2-21620 discloses a method of growing on the M-plane of a sapphire substrate.
No. 3233 discloses a method of growing on the R surface of a sapphire substrate. In addition, JP-A-4-209577
The publication discloses a method of using ZnO for a substrate. All of these methods have been proposed to alleviate the lattice constant mismatch between the substrate and the nitride semiconductor,
In all of these methods, a nitride semiconductor having excellent crystallinity can only be obtained up to a binary mixed crystal of GaN, AlN, etc. Therefore, in a light emitting device using a nitride semiconductor,
The only one that has been put to practical use is a so-called homojunction MIS structure GaN light emitting diode in which an n-type GaN layer and a high-resistance i-type GaN layer doped with a p-type dopant are stacked on the substrate. unknown.

【0005】[0005]

【発明が解決しようとする課題】基板上に、まず結晶性
に優れた四元混晶のInAlGaNを成長させることが
できれば、その上に二元混晶、三元混晶、四元混晶の窒
化物半導体を成長することは、窒化物半導体の格子定数
不整が極めて小さくなるため容易となり、従来極めて困
難であったダブルヘテロ構造の発光デバイスを実現する
ことができる。従って、本発明はこのような事情を鑑み
て成されたものであり、窒化物半導体を利用した発光素
子をダブルヘテロ構造とするため、基板上にまず結晶性
に優れた四元混晶のInAlGaN単結晶層を成長する
方法を提供することを目的とする。
If a quaternary mixed crystal InAlGaN having excellent crystallinity can be grown on a substrate, a binary mixed crystal, a ternary mixed crystal, or a quaternary mixed crystal can be grown on it. Growing a nitride semiconductor becomes easy because the lattice constant irregularity of the nitride semiconductor becomes extremely small, and a light emitting device having a double hetero structure, which has been extremely difficult in the past, can be realized. Therefore, the present invention has been made in view of such circumstances, and since the light emitting element using the nitride semiconductor has the double hetero structure, the quaternary mixed crystal InAlGaN having excellent crystallinity is first formed on the substrate. It is an object to provide a method for growing a single crystal layer.

【0006】[0006]

【課題を解決するための手段】四元混晶InAlGaN
の単結晶層を成長させるにあたり、本発明者は、結晶性
に優れたGaNを有する基板の上に成長させることによ
り、上記課題が解決できることを見いだした。即ち、本
発明の成長方法は、気相成長法により、基板上に一般式
InXAlYGa1-X-YN(但し、X<0<1、Y<0<
1)で表される窒化物半導体単結晶層を成長させる方法
であって、前記基板に、サファイアの上にGaZAl1-Z
N(0≦Z≦1)よりなるバッファ層と、該バッファ層
の上にGaNよりなる単結晶層とを形成した基板を使用
し、該GaN単結晶層の上に前記窒化物半導体単結晶層
を成長させることを特徴とする。
Means for Solving the Problems Quaternary mixed crystal InAlGaN
In growing the single crystal layer of, the present inventor has found that the above problem can be solved by growing the single crystal layer on a substrate having GaN having excellent crystallinity. That is, the growth method of the present invention uses the general formula In X Al Y Ga 1-XY N (where X <0 <1 and Y <0 <by a vapor phase growth method.
1) A method for growing a nitride semiconductor single crystal layer represented by 1), wherein the substrate is Ga Z Al 1 -Z on sapphire.
A substrate in which a buffer layer made of N (0 ≦ Z ≦ 1) and a single crystal layer made of GaN is formed on the buffer layer is used, and the nitride semiconductor single crystal layer is formed on the GaN single crystal layer. It is characterized by growing.

【0007】本発明の成長方法において、気相成長法に
は、前記したように有機金属化合物気相成長法(以下、
MOCVD法という。)、分子線エピタキシー法を好ま
しく用いることができ、例えばMOCVD法を用いる方
法では金属元素源として、トリメチルガリウム、トリメ
チルインジウム、トリメチルアルミニウム等の有機金属
化合物ガスと、窒素源としてアンモニア、ヒドラジン等
のガスを、反応容器内の加熱された基板上に供給するこ
とによってInAlGaNを成長することができる。成
長温度は700℃〜1100℃の範囲が好ましく、70
0℃以下であるとInAlGaNが多結晶になりやす
く、1100℃以上であると同じくInNが分解してし
まうため、四元混晶のInAlGaNができにくい傾向
にある。
In the growth method of the present invention, the vapor phase epitaxy method includes the organometallic compound vapor phase epitaxy method (hereinafter,
This is called the MOCVD method. ), A molecular beam epitaxy method can be preferably used. For example, in the method using MOCVD, an organometallic compound gas such as trimethylgallium, trimethylindium, and trimethylaluminum is used as a metal element source, and a gas such as ammonia and hydrazine is used as a nitrogen source. Can be grown on a heated substrate in a reaction vessel to grow InAlGaN. The growth temperature is preferably in the range of 700 ° C to 1100 ° C,
If the temperature is 0 ° C. or lower, InAlGaN is likely to become polycrystalline, and if the temperature is 1100 ° C. or higher, InN similarly decomposes, so that InAlGaN of a quaternary mixed crystal tends to be difficult to be formed.

【0008】バッファ層GaZAl1-ZN(0≦Z≦1)
は、バッファ層の上に成長するGaN単結晶の結晶性を
向上させるために必要である。このバッファ層について
は特公昭59−48794号公報、また特開平4−29
7023号公報に開示されたバッファ層と特に変わるも
のではないが、好ましくはZ=0のAlNバッファ層よ
りも、Z=1のGaNバッファ層を選択する方が結晶性
に優れたGaN単結晶層を得ることができる。
Buffer layer Ga Z Al 1-Z N (0 ≦ Z ≦ 1)
Are necessary for improving the crystallinity of the GaN single crystal grown on the buffer layer. This buffer layer is disclosed in JP-B-59-48794 and JP-A-4-29.
Although not particularly different from the buffer layer disclosed in Japanese Patent No. 7023, a GaN single crystal layer having a crystallinity superior to that of a GaN buffer layer of Z = 1 is preferred to an AlN buffer layer of Z = 0. Can be obtained.

【0009】バッファ層の上に形成する単結晶層はGa
Nとする必要がある。特に、そのGaNの結晶性は優れ
たものでなければならず、結晶性を評価する手段とし
て、X線二結晶法によるX線回折測定(以下、X線ロッ
キングカーブ測定という。)において、(0002)面
の回折ピークの半値幅が15分以下、さらに好ましくは
10分以下であることが好ましい。その半値幅が15分
より大きくても、GaN単結晶の上にInAlGaN単
結晶層を成長させることができるが、15分以下のGa
N単結晶層を選択することによりさらに優れたInAl
GaN単結晶層を成長させることができる。しかし、従
来のように、このGaN単結晶層のGaの一部をAl、
In等で置換することはGaN単結晶層の結晶性が悪く
なるので好ましくない。
The single crystal layer formed on the buffer layer is Ga
Must be N. In particular, the crystallinity of the GaN must be excellent, and as a means for evaluating the crystallinity, in the X-ray diffraction measurement by the X-ray double crystal method (hereinafter referred to as X-ray rocking curve measurement), (0002). It is preferable that the half width of the diffraction peak of the (1) plane is 15 minutes or less, more preferably 10 minutes or less. An InAlGaN single crystal layer can be grown on a GaN single crystal even if its half-value width is larger than 15 minutes.
More excellent InAl by selecting N single crystal layer
A GaN single crystal layer can be grown. However, as in the prior art, a part of Ga of this GaN single crystal layer is Al,
Substitution with In or the like is not preferable because the crystallinity of the GaN single crystal layer deteriorates.

【0010】[0010]

【作用】従来の方法では、サファイア基板上に、サファ
イアと窒化物半導体との格子定数不整を緩和するための
AlNバッファ層を形成し、その上に直接、四元混晶の
InAlGaNを形成するか、または基板を窒化物半導
体と格子定数の近い基板に変えて、その基板の上に同じ
く直接InAlGaNを成長しようとするために多結晶
のInAlGaNしか得られなかった。
According to the conventional method, an AlN buffer layer is formed on the sapphire substrate to reduce the lattice constant mismatch between sapphire and the nitride semiconductor, and quaternary mixed crystal InAlGaN is directly formed on the AlN buffer layer. Alternatively, the substrate was changed to a substrate having a lattice constant close to that of the nitride semiconductor, and the same InAlGaN was directly grown on the substrate, so that only polycrystalline InAlGaN was obtained.

【0011】一方、本発明では、サファイアの上にバッ
ファ層を形成し、そのバッファ層の上に、まず第一に結
晶性に優れたGaNの単結晶層を形成する点が、従来と
異なるところである。次に、サファイアとバッファ層と
GaN単結晶層とを一つの基板と考え、この基板上で最
も結晶性に優れたGaN単結晶面に、格子定数不整が小
さく、GaNと同じ窒化物半導体からなる四元混晶のI
nAlGaNを成長させることにより、初めてその成長
に成功することができた。これは結晶性の優れた窒化物
半導体上に、同一の窒化物半導体を積層するために可能
になったことであると推察される。
On the other hand, the present invention is different from the prior art in that a buffer layer is formed on sapphire, and a GaN single crystal layer having excellent crystallinity is first formed on the buffer layer. is there. Next, the sapphire, the buffer layer, and the GaN single crystal layer are considered as one substrate, and the GaN single crystal plane having the highest crystallinity on this substrate has the smallest lattice constant irregularity and is made of the same nitride semiconductor as GaN. Quaternary mixed crystal I
The growth was successful for the first time by growing nAlGaN. It is speculated that this is possible because the same nitride semiconductor is stacked on the nitride semiconductor having excellent crystallinity.

【0012】[0012]

【実施例】以下、図面を元に実施例で本発明の成長方法
を詳説する。図1は本発明の成長方法に使用したMOC
VD装置の主要部の構成を示す概略断面図であり、反応
部の構造、およびその反応部と通じるガス系統図を示し
ている。1は真空ポンプおよび排気装置と接続された反
応容器、2は基板を載置するサセプター、3はサセプタ
ーを加熱するヒーター、4はサセプターを回転、上下移
動させる制御軸、5は基板に向かって斜め、または水平
に原料ガスを供給する石英ノズル、6は不活性ガスを基
板に向かって垂直に供給することにより、原料ガスを基
板面に押圧して、原料ガスを基板に接触させる作用のあ
るコニカル石英チューブ、7は基板である。TMG(ト
リメチルガリウム)、TMI(トリメチルインジウ
ム)、TMA(トリメチルアルミニウム)等の有機金属
化合物ソースは微量のバブリングガスによって気化さ
れ、メインガスであるキャリアガスによって反応容器内
に供給される。なお、特に図示していないが、各原料ガ
ス、キャリアガスの流量は、各ガスラインに設置された
マスフローコントローラ(MFC)によって制御されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The growth method of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 shows the MOC used in the growth method of the present invention.
FIG. 3 is a schematic cross-sectional view showing the configuration of the main part of the VD device, showing the structure of a reaction part and a gas system diagram communicating with the reaction part. Reference numeral 1 is a reaction vessel connected to a vacuum pump and an exhaust device, 2 is a susceptor for mounting a substrate, 3 is a heater for heating the susceptor, 4 is a control shaft for rotating and vertically moving the susceptor, and 5 is a diagonal to the substrate. , Or a quartz nozzle that supplies the raw material gas horizontally, and 6 is a conical device that presses the raw material gas against the substrate surface by supplying the inert gas vertically toward the substrate to bring the raw material gas into contact with the substrate. A quartz tube, 7 is a substrate. Organometallic compound sources such as TMG (trimethylgallium), TMI (trimethylindium), and TMA (trimethylaluminum) are vaporized by a small amount of bubbling gas and supplied into the reaction vessel by a carrier gas that is a main gas. Although not shown in particular, the flow rates of the source gases and the carrier gas are controlled by a mass flow controller (MFC) installed in each gas line.

【0013】[実施例1]まず、よく洗浄したサファイ
ア板7をサセプター2にセットし、反応容器内を真空排
気した後、水素を供給して反応容器内を水素で十分置換
する。次に、石英ノズル5から水素を流しながらヒータ
ー3で温度を1050℃まで上昇させ、20分間保持し
てサファイア板7のクリーニングを行う。
Example 1 First, a well-cleaned sapphire plate 7 was set on the susceptor 2, the inside of the reaction vessel was evacuated, and then hydrogen was supplied to sufficiently replace the inside of the reaction vessel with hydrogen. Next, while flowing hydrogen from the quartz nozzle 5, the temperature is raised to 1050 ° C. by the heater 3 and kept for 20 minutes to clean the sapphire plate 7.

【0014】続いて、温度を510℃まで下げ、石英ノ
ズル5からアンモニア(NH3)4リットル/分と、T
MGを27×10ー6モル/分と、キャリアガスとして水
素を2リットル/分とで流しながら、1分間保持してG
aNバッファー層を約200オングストローム成長す
る。この間、コニカル石英チューブ7からは水素を10
リットル/分と、窒素を10リットル/分とで流し続
け、サセプター2をゆっくりと回転させる。
Subsequently, the temperature is lowered to 510 ° C., and the quartz nozzle 5 is used to feed ammonia (NH 3 ) 4 liters / minute and T
Hold MG for 1 minute while flowing MG at 27 × 10 −6 mol / min and hydrogen as carrier gas at 2 liter / min.
The aN buffer layer is grown to about 200 Å. During this time, hydrogen is supplied from the conical quartz tube 7 to 10
Continue to flow liters / minute and nitrogen at 10 liters / minute and slowly rotate susceptor 2.

【0015】GaNバッファ層成長後、TMGのみ止め
て、温度を1020℃まで上昇させる。温度が1020
℃になったら、同じく水素をキャリアガスとしてTMG
を60×10ー6モル/分で流して30分間成長させ、G
aN単結晶層を約2μm成長させる。GaN単結晶層成
長後、装置を冷却し、基板を反応容器から取り出しGa
N単結晶層のX線ロッキングカーブ測定を行うとその半
値幅は5分であり、結晶性に優れていることを確認し
た。
After growth of the GaN buffer layer, only TMG is stopped and the temperature is raised to 1020.degree. Temperature is 1020
When the temperature reaches ℃, hydrogen is also used as a carrier gas for TMG.
At 60 × 10 −6 mol / min for 30 minutes to grow,
The aN single crystal layer is grown to about 2 μm. After growing the GaN single crystal layer, the apparatus is cooled, the substrate is taken out of the reaction container, and Ga is removed.
When the X-ray rocking curve of the N single crystal layer was measured, the full width at half maximum was 5 minutes, and it was confirmed that the crystallinity was excellent.

【0016】X線ロッキングカーブ測定後、基板を再度
反応容器内のサセプターに設置し、サセプター内を真空
排気し、窒素で置換した後、アンモニアガスを流しなが
ら温度を800℃まで上昇させる。800℃になった
ら、窒素を2リットル/分、TMGを2×10-6モル/
分と、TMIを1×10-5モル/分と、TMAを2×1
-7モル/分と、アンモニアを4リットル/分とで流し
ながら、InAlGaN層を60分間成長させる。
After measuring the X-ray rocking curve, the substrate was set again on the susceptor in the reaction vessel, the inside of the susceptor was evacuated and replaced with nitrogen, and then the temperature was raised to 800 ° C. while flowing ammonia gas. When the temperature reached 800 ° C, nitrogen was 2 liters / minute and TMG was 2 × 10 -6 mol / min.
Min, TMI 1 × 10 -5 mol / min, TMA 2 × 1
The InAlGaN layer is grown for 60 minutes while flowing 0 -7 mol / min and 4 liter / min of ammonia.

【0017】成長後、反応容器からウエハーを取り出
し、得られたInAlGaN単結晶層のX線ロッキング
カーブを測定すると、In0.2Al0.1Ga0.7Nの組成
を示すところにピークを有しており、そのピークの半値
幅は6分であった。これより、このIn0.2Al0.1Ga
0.7Nの結晶性が非常に優れていることを示している。
またIn0.2Al0.1Ga0.7N層に、常温でHe−Cd
レーザーを照射して、フォトルミネッセンススペクトル
を測定すると、360nm付近にピークを有する強い紫
外発光を示した。
After the growth, the wafer was taken out from the reaction container, and the X-ray rocking curve of the obtained InAlGaN single crystal layer was measured. As a result, a peak was found at a composition of In0.2Al0.1Ga0.7N. The full width at half maximum of the peak was 6 minutes. From this, this In0.2Al0.1Ga
It shows that the crystallinity of 0.7N is very excellent.
Moreover, He-Cd is deposited on the In0.2Al0.1Ga0.7N layer at room temperature.
When laser was irradiated and the photoluminescence spectrum was measured, strong ultraviolet emission having a peak at around 360 nm was shown.

【0018】[実施例2]実施例1において、GaN単
結晶層の半値幅が10分である基板を使用する他は実施
例1と同様にして、GaN単結晶層の上にIn0.2Al
0.1Ga0.7N単結晶層を成長させたところ、得られたI
n0.2Al0.1Ga0.7N単結晶層のX線ロッキングカー
ブの半値幅は8分であり、優れた結晶性を示した。
[Embodiment 2] In0.2Al was formed on the GaN single crystal layer in the same manner as in Embodiment 1 except that a substrate having a GaN single crystal layer with a half width of 10 minutes was used.
When a 0.1 Ga 0.7 N single crystal layer was grown, the obtained I
The half-width of the X-ray rocking curve of the n0.2Al0.1Ga0.7N single crystal layer was 8 minutes, indicating excellent crystallinity.

【0019】[実施例3]実施例1において、GaN単
結晶層の半値幅が15分である基板を使用する他は実施
例1と同様にして、GaN単結晶層の上にIn0.2Al
0.1Ga0.7N単結晶層を成長させたところ、得られたI
n0.2Al0.1Ga0.7N単結晶層のX線ロッキングカー
ブの半値幅は10分であり、同じく優れた結晶性を示し
た。
[Example 3] In0.2Al was formed on the GaN single crystal layer in the same manner as in Example 1 except that the substrate in which the GaN single crystal layer had a half value width of 15 minutes was used.
When a 0.1 Ga 0.7 N single crystal layer was grown, the obtained I
The full width at half maximum of the X-ray rocking curve of the n0.2Al0.1Ga0.7N single crystal layer was 10 minutes, which also showed excellent crystallinity.

【0020】[実施例4]実施例1においてGaN単結
晶層成長後、基板を反応容器から取り出さず、連続して
温度を800℃まで下げる。800℃になったら、TM
Aの流量を4×10-7モル/分で流す他は、実施例1と
同様にしてInAlGaN層を60分間成長させる。
Example 4 After the growth of the GaN single crystal layer in Example 1, the substrate is not taken out of the reaction vessel and the temperature is continuously lowered to 800 ° C. When it reaches 800 ℃, TM
An InAlGaN layer is grown for 60 minutes in the same manner as in Example 1 except that the flow rate of A is 4 × 10 −7 mol / min.

【0021】成長後、反応容器からウエハーを取り出
し、得られたInAlGaN単結晶層のX線ロッキング
カーブを測定すると、In0.2Al0.2Ga0.6Nの組成
を示すところにピークを有しており、そのピークの半値
幅は10分であり、同じく結晶性に優れたIn0.2Al
0.2Ga0.6Nが得られたことを示した。
After the growth, the wafer was taken out from the reaction container, and the X-ray rocking curve of the obtained InAlGaN single crystal layer was measured. As a result, a peak was found at a composition of In0.2Al0.2Ga0.6N. The half-width of the peak is 10 minutes, and In0.2Al, which also has excellent crystallinity
It was shown that 0.2 Ga0.6 N was obtained.

【0022】[比較例]実施例1において、GaNバッ
ファ層を成長させた後、そのGaNバッファ層の上に、
実施例1と同様の条件で直接InAlGaNを成長させ
る。
Comparative Example In Example 1, after growing the GaN buffer layer, the GaN buffer layer was grown on the GaN buffer layer.
InAlGaN is directly grown under the same conditions as in Example 1.

【0023】成長後、得られたInAlGaN層のX線
ロッキングカーブを測定すると、ブロードなピークしか
検出されず、また、実施例1と同様にしてフォトルミネ
ッセンス測定を行っても、InAlGaN層からは何の
発光も観測されなかった。これより得られたInAlG
aNはアモルファス状になって成長されていることが判
明した。
After the growth, when the X-ray rocking curve of the obtained InAlGaN layer was measured, only a broad peak was detected, and even if the photoluminescence measurement was carried out in the same manner as in Example 1, the InAlGaN layer showed no difference. Was not observed. InAlG obtained from this
It was found that aN was grown in an amorphous state.

【0024】[0024]

【発明の効果】以上説明したように、本発明の成長方法
によると、結晶性に優れたGaN単結晶層を有する基板
上に成長させることにより、従来では困難であった結晶
性に優れた四元混晶のInAlGaN単結晶層を得るこ
とができる。そのためこのInAlGaNの上に二元混
晶、三元混晶、四元混晶の窒化物半導体を容易に積層す
ることができ、ダブルへテロ構造の窒化物半導体の発光
素子を得ることができ、その産業上の利用価値は大き
い。
As described above, according to the growth method of the present invention, by growing on a substrate having a GaN single crystal layer having excellent crystallinity, it is possible to obtain excellent crystallinity which was conventionally difficult. An original mixed crystal InAlGaN single crystal layer can be obtained. Therefore, a binary mixed crystal, a ternary mixed crystal, or a quaternary mixed crystal nitride semiconductor can be easily stacked on this InAlGaN, and a nitride semiconductor light emitting device having a double hetero structure can be obtained. Its industrial utility value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に使用したMOCVD装置
の主要部の構成を示す概略断面図。
FIG. 1 is a schematic cross-sectional view showing the configuration of the main part of a MOCVD apparatus used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・・・・反応容器 2・・・・・・・・サセプター 3・・・・・・・・ヒーター 4・・・・・・・・制御軸 5・・・・・・・・石英ノズル 6・・・・・・・・コニカル石英
チューブ 7・・・・・・・・サファイア板
1 ... Reaction container 2 ... Susceptor 3 ... Heater 4 ... Control shaft 5 ...・ Quartz nozzle 6 ・ ・ ・ ・ ・ ・ ・ ・ Conical quartz tube 7 ・ ・ ・ ・ ・ ・ Sapphire plate

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年3月5日[Submission date] March 5, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【課題を解決するための手段】四元混晶InAlGaN
の単結晶層を成長させるにあたり、本発明者は、結晶性
に優れたGaNを有する基板の上に成長させることによ
り、上記課題が解決できることを見いだした。即ち、本
発明の成長方法は、気相成長法により、基板上に一般式
InXAlYGa1-X-YN(但し、0<X<1、0<Y<
1)で表される窒化物半導体単結晶層を成長させる方法
であって、前記基板に、サファイアの上にGaZAl1-Z
N(0≦Z≦1)よりなるバッファ層と、該バッファ層
の上にGaNよりなる単結晶層とを形成した基板を使用
し、該GaN単結晶層の上に前記窒化物半導体単結晶層
を成長させることを特徴とする。
Means for Solving the Problems Quaternary mixed crystal InAlGaN
In growing the single crystal layer of, the present inventor has found that the above problem can be solved by growing the single crystal layer on a substrate having GaN having excellent crystallinity. That is, the growth method of the present invention uses the general formula In X Al Y Ga 1-XY N (where 0 <X <1, 0 <Y <
1) A method for growing a nitride semiconductor single crystal layer represented by 1), wherein the substrate is Ga Z Al 1 -Z on sapphire.
A substrate in which a buffer layer made of N (0 ≦ Z ≦ 1) and a single crystal layer made of GaN is formed on the buffer layer is used, and the nitride semiconductor single crystal layer is formed on the GaN single crystal layer. It is characterized by growing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気相成長法により、基板上に一般式In
XAlYGa1-X-YN(但し、X<0<1、Y<0<1)で
表される窒化物半導体単結晶層を成長させる方法であっ
て、前記基板に、サファイアの上にGaZAl1-ZN(0
≦Z≦1)よりなるバッファ層と、該バッファ層の上に
GaNよりなる単結晶層とを形成した基板を使用し、該
GaN単結晶層の上に前記窒化物半導体単結晶層を成長
させることを特徴とする窒化物半導体単結晶層の成長方
法。
1. A general formula In is formed on a substrate by a vapor deposition method.
A method of growing a nitride semiconductor single crystal layer represented by X Al Y Ga 1-XY N (where X <0 <1 and Y <0 <1), wherein Ga is formed on sapphire on the substrate. Z Al 1-Z N (0
Using a substrate having a buffer layer of ≦ Z ≦ 1) and a single crystal layer of GaN formed on the buffer layer, the nitride semiconductor single crystal layer is grown on the GaN single crystal layer. A method for growing a nitride semiconductor single crystal layer, comprising:
【請求項2】 前記GaN単結晶層は、X線二結晶法に
よるX線回折測定において、(0002)面の回折ピー
クの半値幅が15分以下であることを特徴とする請求項
1に記載の窒化物半導体単結晶層の成長方法。
2. The GaN single crystal layer has a half width of a diffraction peak of a (0002) plane of 15 minutes or less in an X-ray diffraction measurement by an X-ray double crystal method. Method for growing nitride semiconductor single crystal layer.
JP2208593A 1993-01-14 1993-01-14 Stack for nitride semiconductor light emitting device Expired - Fee Related JP3091593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2208593A JP3091593B2 (en) 1993-01-14 1993-01-14 Stack for nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2208593A JP3091593B2 (en) 1993-01-14 1993-01-14 Stack for nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH06216409A true JPH06216409A (en) 1994-08-05
JP3091593B2 JP3091593B2 (en) 2000-09-25

Family

ID=12073047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2208593A Expired - Fee Related JP3091593B2 (en) 1993-01-14 1993-01-14 Stack for nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3091593B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19603782A1 (en) * 1995-02-03 1996-08-08 Sumitomo Chemical Co Layered III=V semiconductor structure
WO1998024129A1 (en) * 1996-11-27 1998-06-04 The Furukawa Electric Co., Ltd. Iii-v nitride semiconductor devices and process for the production thereof
US6030848A (en) * 1996-06-28 2000-02-29 Kabushiki Kaisha Toshiba Method for manufacturing a GaN-based compound semiconductor light emitting device
USRE42074E1 (en) 1996-04-26 2011-01-25 Sanyo Electric Co., Ltd. Manufacturing method of light emitting device
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864158B2 (en) 2001-01-29 2005-03-08 Matsushita Electric Industrial Co., Ltd. Method of manufacturing nitride semiconductor substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
DE19603782A1 (en) * 1995-02-03 1996-08-08 Sumitomo Chemical Co Layered III=V semiconductor structure
USRE42074E1 (en) 1996-04-26 2011-01-25 Sanyo Electric Co., Ltd. Manufacturing method of light emitting device
US6030848A (en) * 1996-06-28 2000-02-29 Kabushiki Kaisha Toshiba Method for manufacturing a GaN-based compound semiconductor light emitting device
WO1998024129A1 (en) * 1996-11-27 1998-06-04 The Furukawa Electric Co., Ltd. Iii-v nitride semiconductor devices and process for the production thereof
US6255004B1 (en) 1996-11-27 2001-07-03 The Furukawa Electric Co., Ltd. III-V nitride semiconductor devices and process for the production thereof

Also Published As

Publication number Publication date
JP3091593B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
JP2751963B2 (en) Method for growing indium gallium nitride semiconductor
JP2827794B2 (en) Method for growing p-type gallium nitride
US7951617B2 (en) Group III nitride semiconductor stacked structure and production method thereof
US6559038B2 (en) Method for growing p-n heterojunction-based structures utilizing HVPE techniques
US9040319B2 (en) Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp
JPH07249795A (en) Semiconductor device
JPH088217B2 (en) Crystal growth method for gallium nitride-based compound semiconductor
US20040026704A1 (en) III-V compound semiconductor device with an AIxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer
JP2011238971A (en) Method of manufacturing nitride semiconductor light-emitting element
US6555452B2 (en) Method for growing p-type III-V compound material utilizing HVPE techniques
US6599133B2 (en) Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques
US6472300B2 (en) Method for growing p-n homojunction-based structures utilizing HVPE techniques
JP2751987B2 (en) Method for growing indium gallium nitride semiconductor
JP3857467B2 (en) Gallium nitride compound semiconductor and manufacturing method thereof
JP3091593B2 (en) Stack for nitride semiconductor light emitting device
JP3174257B2 (en) Method for producing nitride-based compound semiconductor
JP3274907B2 (en) Method for growing indium gallium nitride compound semiconductor
JP3203282B2 (en) Indium gallium nitride semiconductor for light emitting devices
JPH07283436A (en) Iii-v compound semiconductor and light-emitting element
JPH09148626A (en) Manufacture of iii-v group compound semiconductor
JP4009043B2 (en) Method for producing p-type group III nitride semiconductor
JP3473595B2 (en) Light emitting device
JP3214349B2 (en) Semiconductor wafer having InGaN layer, method of manufacturing the same, and light emitting device having the same
JP3883303B2 (en) Method for producing p-type group III nitride semiconductor
JPH0529653A (en) Semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees