JPH07249795A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH07249795A
JPH07249795A JP3815794A JP3815794A JPH07249795A JP H07249795 A JPH07249795 A JP H07249795A JP 3815794 A JP3815794 A JP 3815794A JP 3815794 A JP3815794 A JP 3815794A JP H07249795 A JPH07249795 A JP H07249795A
Authority
JP
Japan
Prior art keywords
buffer layer
layer
substrate
growth
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3815794A
Other languages
Japanese (ja)
Other versions
JP3325380B2 (en
Inventor
Yasuo Oba
康夫 大場
Gokou Hatano
吾紅 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3815794A priority Critical patent/JP3325380B2/en
Priority to US08/400,865 priority patent/US5656832A/en
Publication of JPH07249795A publication Critical patent/JPH07249795A/en
Priority to US08/866,056 priority patent/US5909040A/en
Priority to US08/874,299 priority patent/US5929466A/en
Priority to US09/915,710 priority patent/USRE38805E1/en
Application granted granted Critical
Publication of JP3325380B2 publication Critical patent/JP3325380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize a high luminance short wavelength semiconductor light emitting element by growing a high quality AlGaInN based thin film with high reproducibility on a saphire substrate. CONSTITUTION:The semiconductor light emitting element comprises a plurality of semiconductor layers of AlGaInN based material laminated through buffer layers on a saphire substrate 10 wherein the buffer layer comprises a first porous AlN butter layer 11 for polarity control and nucleus formation formed sparcely (granularly) by 10nm or less on the surface of the substrate 10, and a second InN buffer layer 12 for relaxing thermal stress formed thicker than the first buffer layer 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、AlGaInN系材料
を用いた半導体素子に係わり、特に基板と素子作成のた
めの半導体積層構造との間に設けるバッファ層の改良を
はかった半導体素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device using an AlGaInN-based material, and more particularly to a semiconductor device having an improved buffer layer provided between a substrate and a semiconductor laminated structure for producing the device.

【0002】[0002]

【従来の技術】窒素を含むIII-V族化合物半導体の一つ
であるGaNはバンドギャップが3.4eVと大きく、
また直接遷移型であり、短波長発光素子用材料として期
待されている。この材料系では、格子整合する良質な基
板がないため、サファイア基板上に成長することが多い
が、サファイアとGaNは格子不整合が15%程度と大
きいために島状に成長し易い。さらに、良質なGaN層
を成長するためにその膜厚を厚くすると、サファイア基
板とGaN(又はAlGaInN)間の熱膨脹差により
冷却時に転位が増大したりひび割れが生じるために、高
品質の膜を成長するのは困難であった。
2. Description of the Related Art GaN, which is one of III-V group compound semiconductors containing nitrogen, has a large band gap of 3.4 eV,
Further, it is a direct transition type and is expected as a material for a short wavelength light emitting device. In this material system, since there is no good substrate that is lattice-matched, it often grows on a sapphire substrate. However, sapphire and GaN have a large lattice mismatch of about 15%, so that they easily grow like islands. Furthermore, if the film thickness is increased in order to grow a good quality GaN layer, dislocations increase and cracks are generated during cooling due to the difference in thermal expansion between the sapphire substrate and GaN (or AlGaInN), so that a high quality film is grown. It was difficult to do.

【0003】これに対し格子不整合の影響を緩和するた
めに、サファイア基板上に極薄膜のアモルファス又は多
結晶のAlN又はGaNを低温成長によりバッファ層と
して形成した後、その上にGaN層を形成する方法が知
られている。このとき、アモルファス又は多結晶のバッ
ファ層が熱歪みを緩和し、バッファ層内部に含まれてい
る微結晶が1000℃の高温時に方位が揃った種結晶と
なり、GaN層の結晶品質が向上すると考えられてい
る。
On the other hand, in order to mitigate the effect of lattice mismatch, a very thin film of amorphous or polycrystalline AlN or GaN is formed as a buffer layer on the sapphire substrate by low temperature growth, and then a GaN layer is formed thereon. It is known how to do it. At this time, the amorphous or polycrystalline buffer layer alleviates thermal strain, and the microcrystals contained in the buffer layer become seed crystals whose orientation is aligned at a high temperature of 1000 ° C., which improves the crystal quality of the GaN layer. Has been.

【0004】この方法を用いた場合、例えばX線回折の
半値幅で表わされる結晶の品質はバッファ層の成長条件
に大きく依存する。即ち、バッファ層が厚い場合、成長
核となる種結晶の方位が乱れるために結晶品質が劣化す
る。一方、バッファ層厚が薄くなるに従って半値幅は減
少するが、薄すぎるとバッファ層の機能が全く失われて
結晶の表面状態が急激に劣化する。つまり、バッファ層
の成長条件が厳しく制限される上に、結晶品質も十分と
は言えなかった。
When this method is used, the quality of the crystal represented by the half width of X-ray diffraction largely depends on the growth conditions of the buffer layer. That is, when the buffer layer is thick, the crystal quality is deteriorated because the orientation of the seed crystal that serves as a growth nucleus is disturbed. On the other hand, the full width at half maximum decreases as the thickness of the buffer layer becomes thinner, but if it is too thin, the function of the buffer layer is completely lost and the surface state of the crystal deteriorates sharply. That is, the growth conditions of the buffer layer are severely limited, and the crystal quality is not sufficient.

【0005】[0005]

【発明が解決しようとする課題】このように従来、サフ
ァイア基板上に高品質のAlGaInN系薄膜を結晶成
長させるのは困難である。さらに、アモルファスや多結
晶のバッファ層を用いても、バッファ層の成長条件が厳
しく制限される上に、バッファ層上に形成されるAlG
aInN系薄膜の結晶品質も十分とは言えない。このた
め、AlGaInN系材料を用いた高輝度短波長の半導
体発光素子を実現することは困難であった。
As described above, conventionally, it is difficult to grow a crystal of a high quality AlGaInN thin film on a sapphire substrate. Furthermore, even if an amorphous or polycrystalline buffer layer is used, the growth conditions of the buffer layer are severely limited and AlG formed on the buffer layer
The crystal quality of the aInN-based thin film cannot be said to be sufficient. Therefore, it has been difficult to realize a high-luminance short-wavelength semiconductor light emitting device using an AlGaInN-based material.

【0006】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、格子整合しない基板上
にも高品質なAlGaInN系薄膜を再現性良く形成す
ることができ、例えば高輝度短波長半導体発光素子の実
現を可能とする半導体素子を提供することにある。
The present invention has been made in consideration of the above circumstances, and it is an object of the present invention to form a high-quality AlGaInN-based thin film with good reproducibility on a substrate that is not lattice-matched. It is an object of the present invention to provide a semiconductor device that can realize a brightness short wavelength semiconductor light emitting device.

【0007】[0007]

【課題を解決するための手段及び作用】上記課題を解決
するために本発明は、次のような構成を採用している。
即ち、本願の第1の発明は、単結晶基板上にバッファ層
を介してAlGaInN系材料からなる半導体層を積層
してなる半導体素子において、バッファ層が、AlGa
InN系材料からなり、基板表面に多孔質状に形成され
たことを特徴とする。
In order to solve the above problems, the present invention employs the following configurations.
That is, the first invention of the present application is a semiconductor device in which a semiconductor layer made of an AlGaInN-based material is laminated on a single crystal substrate with a buffer layer interposed therebetween, wherein the buffer layer is made of AlGa.
It is characterized in that it is made of an InN-based material and is formed in a porous state on the substrate surface.

【0008】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) バッファ層は、基板表面に極薄く疎らに形成され
(粒状であり)、平均膜厚が10nm未満であること。 (2) バッファ層は、AlNであること。 (3) 単結晶基板は、サファイア基板、好ましくはサファ
イア基板のc面であること。 (4) バッファ層上に形成する半導体層は、活性層をp型
及びn型のクラッド層で挟んだダブルヘテロ構造をなし
て発光ダイオードを構成すること。 (5) バッファ層の成長温度は、350〜800℃、より
望ましくは500〜700℃であること。 (6) バッファ層を形成した後に素子形成のための半導体
層を成長開始するまでの昇温過程を、アンモニアを含ま
ない水素雰囲気で行うこと。
Here, the following are preferred embodiments of the present invention. (1) The buffer layer is formed extremely thinly and sparsely on the substrate surface (granular), and the average film thickness is less than 10 nm. (2) The buffer layer should be AlN. (3) The single crystal substrate is a sapphire substrate, preferably the c-plane of the sapphire substrate. (4) The semiconductor layer formed on the buffer layer has a double hetero structure in which an active layer is sandwiched by p-type and n-type cladding layers to form a light emitting diode. (5) The growth temperature of the buffer layer is 350 to 800 ° C, more preferably 500 to 700 ° C. (6) The temperature rising process from the formation of the buffer layer to the start of growth of the semiconductor layer for device formation is performed in a hydrogen atmosphere containing no ammonia.

【0009】また、本願の第2の発明は、単結晶基板上
にバッファ層を介してAlGaInN系材料からなるの
半導体層を積層してなる半導体素子において、バッファ
層がAlGaInN系材料からなり、基板表面に多孔質
状に形成された第1バッファ層と、第1バッファ層より
もバンドギャップが狭く、かつ第1バッファ層よりも厚
く形成された第2バッファ層との積層構造から構成した
ことを特徴とする。
A second invention of the present application is a semiconductor device in which a semiconductor layer made of an AlGaInN-based material is laminated on a single crystal substrate via a buffer layer, and the buffer layer is made of an AlGaInN-based material. It has a laminated structure of a first buffer layer formed porous on the surface and a second buffer layer having a band gap narrower than that of the first buffer layer and thicker than that of the first buffer layer. Characterize.

【0010】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) 第1バッファ層は、基板表面に極薄く疎らに形成さ
れ(粒状であり)、平均膜厚が10nm未満であるこ
と。 (2) 第1バッファ層はAlNであり、第2バッファ層は
InN又はGaInNであること。 (3) 第2バッファ層上に、該バッファ層のInの蒸発を
防止するためのキャップ層を形成すること。 (4) 単結晶基板は、サファイア基板、好ましくはサファ
イア基板のc面であること。 (5) バッファ層の成長温度は、350〜800℃、より
望ましくは500〜700℃であること。 (6) バッファ層上に形成する半導体層は、活性層をp型
及びn型のクラッド層で挟んだダブルヘテロ構造をなし
て発光ダイオードを構成すること。 (7) バッファ層を形成した後に素子形成のための半導体
層を成長開始するまでの昇温過程を、アンモニアを含ま
ない水素雰囲気で行うこと。
Preferred embodiments of the present invention are as follows. (1) The first buffer layer is formed so as to be extremely thin and sparse on the surface of the substrate (is granular), and has an average film thickness of less than 10 nm. (2) The first buffer layer is AlN and the second buffer layer is InN or GaInN. (3) Forming a cap layer on the second buffer layer to prevent evaporation of In in the buffer layer. (4) The single crystal substrate is a sapphire substrate, preferably the c-plane of the sapphire substrate. (5) The growth temperature of the buffer layer is 350 to 800 ° C, more preferably 500 to 700 ° C. (6) The semiconductor layer formed on the buffer layer has a double hetero structure in which an active layer is sandwiched by p-type and n-type cladding layers to form a light emitting diode. (7) The temperature rising process from the formation of the buffer layer to the start of growth of the semiconductor layer for device formation is performed in a hydrogen atmosphere containing no ammonia.

【0011】本発明者らの研究によれば、バッファ層の
役割としては従来考えられてきた格子不整合緩和の他に
成長面の極性制御のための成長核形成が本質的に重要で
あることが判明した。即ち、バッファ層なしでサファイ
ア基板上にGaN層を直接成長した時には基板結晶と窒
素原料が反応し、サファイアは無極性の結晶構造を有し
ているため、生成物である窒化物の極性は乱れたものと
なる。
According to the research conducted by the present inventors, it is essential that the role of the buffer layer is the growth nucleation for controlling the polarity of the growth surface, in addition to the lattice mismatch relaxation conventionally considered. There was found. That is, when a GaN layer is directly grown on a sapphire substrate without a buffer layer, the substrate crystal and the nitrogen source react with each other, and sapphire has a nonpolar crystal structure, so the polarity of the product nitride is disturbed. It becomes a thing.

【0012】一方、基板温度が700℃以下の時には、
V族元素の窒素供給源として働く原料分子若しくはその
分解物が有効に表面に留まり最初にN原子面が形成され
るために、成長面は III族原子が出たA面に制御され
る。従って、例えばN原料に低分解率のアンモニアを使
用した場合、N原料不足のために不安定になるN原子面
(B面)の形成が抑制される。これが、低温成長バッフ
ァ層による結晶品質改善の大きな理由と考えられる。
On the other hand, when the substrate temperature is 700 ° C. or lower,
The growth plane is controlled to the A plane where the group III atoms are generated because the raw material molecule or its decomposition product that acts as the nitrogen supply source of the group V element effectively stays on the surface and the N atomic plane is first formed. Therefore, for example, when ammonia having a low decomposition rate is used as the N raw material, the formation of the N atomic plane (B plane), which becomes unstable due to the shortage of the N raw material, is suppressed. This is considered to be a major reason for the crystal quality improvement by the low temperature growth buffer layer.

【0013】従って、バッファ層の役割としては成長面
の極性制御のための成長核形成が重要であり、このよう
に働く成長核は膜として存在する必要はなく、むしろ基
板表面に疎らに形成される方がバッファ層の成長条件や
厚さ等によらず結晶品質が向上すると考えられる。これ
は、サファイア基板表面では通常800℃以上の基板温
度でGaNが成長核を形成しにくいために、GaNは予
め低温で形成された成長核から基板表面に沿って横方向
に成長し、結果的に一つの成長核から成長した領域では
格子不整合に起因する結晶欠陥が殆どないと考えられる
からである。
Therefore, the formation of growth nuclei for controlling the polarity of the growth surface is important as the role of the buffer layer, and the growth nuclei that act in this way do not have to exist as a film, but rather are formed sparsely on the substrate surface. It is considered that the crystal quality is improved by increasing the thickness of the buffer layer regardless of the growth conditions and thickness of the buffer layer. This is because GaN is unlikely to form growth nuclei on the surface of the sapphire substrate at a substrate temperature of usually 800 ° C. or higher, so that GaN grows laterally along the substrate surface from the growth nuclei formed in advance at a low temperature. It is considered that there are almost no crystal defects due to lattice mismatch in the region grown from one growth nucleus.

【0014】なお従来、バッファ層が薄い時に生じる急
激な結晶品質の劣化は、基板が窒素原料と直接反応して
極性の乱れた部分が形成されるのが原因と考えられる。
具体的には、サファイア基板上に例えばAlNバッファ
層を介して半導体素子形成のためのGaN層を成長する
場合、 III族原料(TMA)とV族原料(NH3 )の供
給によりバッファ層を成長した後、III 族原料を供給を
停止し、所定温度まで昇温した後に別の III族原料(T
MG)を供給してGaN層の成長を開始する。このと
き、V族原料は供給したままであるので、バッファ層が
薄いと昇温過程で基板がアンモニアと直接反応すること
になる。
Conventionally, it is considered that the rapid deterioration of crystal quality that occurs when the buffer layer is thin is caused by the fact that the substrate directly reacts with the nitrogen raw material to form a part with disordered polarity.
Specifically, when a GaN layer for forming a semiconductor element is grown on a sapphire substrate via an AlN buffer layer, the buffer layer is grown by supplying a group III source material (TMA) and a group V source material (NH 3 ). Then, the supply of the group III raw material is stopped, the temperature is raised to a predetermined temperature, and then another group III raw material (T
MG) is supplied to start the growth of the GaN layer. At this time, since the group V raw material is still being supplied, if the buffer layer is thin, the substrate directly reacts with ammonia during the temperature rising process.

【0015】これに対し、昇温をアンモニアを含まな
い、又は窒素元素の脱離を防ぐだけの微量の窒素原料の
みを含む雰囲気下で行えば、基板表面が窒化されること
なく核形成ができる。但しこの場合、温度が上昇してか
ら水素とアンモニア等の熱的性質の大きく異なるガスを
切り替えることになり、雰囲気ガスの熱的な性質が変わ
るため、基板の表面温度が変化するという問題が生じ
る。本発明者らは、これを抑えるためには、成長を気体
の熱伝導率が急激に減少する70Torr以下、望ましくは
40Torr以下の減圧下で行うことが重要であることを見
出した。
On the other hand, if the temperature is raised in an atmosphere containing no ammonia or containing only a trace amount of nitrogen raw material for preventing desorption of nitrogen element, nucleation can be performed without nitriding the substrate surface. . However, in this case, after the temperature rises, gases such as hydrogen and ammonia, which have greatly different thermal properties, are switched, and the thermal properties of the atmospheric gas change, which causes a problem that the surface temperature of the substrate changes. . In order to suppress this, the present inventors have found that it is important to carry out the growth under a reduced pressure of 70 Torr or less, preferably 40 Torr or less, at which the thermal conductivity of the gas sharply decreases.

【0016】図9は、水素中にて昇温した時のAlNバ
ッファ層厚とその上に成長したGaN層のX線回折半値
幅との関係を示す。バッファ層厚が10nmより薄い3
〜8nmの時に従来より大幅に高品質のエピタキシャル
層が得られている。このとき、バッファ層は完全な膜状
ではなく、AlNの微結晶が疎らに形成されて多孔質状
となっている。ここで、バッファ層厚が10nmより薄
くても高品質のエピタキシャル層が得られることは、バ
ッファ層の成長条件が緩やかになることを意味し、生産
性の向上につながる。
FIG. 9 shows the relationship between the AlN buffer layer thickness when the temperature is raised in hydrogen and the X-ray diffraction half width of the GaN layer grown thereon. Buffer layer thickness less than 10nm 3
When the thickness is up to 8 nm, a much higher quality epitaxial layer than the conventional one is obtained. At this time, the buffer layer does not have a perfect film shape, but has AlN fine crystals sparsely formed and has a porous shape. Here, obtaining a high-quality epitaxial layer even if the thickness of the buffer layer is thinner than 10 nm means that the growth conditions of the buffer layer are lenient, which leads to an improvement in productivity.

【0017】このように多孔質のバッファ層を形成した
場合、基板表面が露出した上に成長する層は小さな核か
ら成長するので、横方向の成長が促進され、欠陥の少な
い層が成長できると考えられる。横方向の結晶成長をよ
り促進するには、基板にはサファイアc面を用いること
が最も良い結果が得られる。また、面方位のバラツキや
表面欠陥のある基板を用いた場合には、c面からa面方
向に0.5°から10°(望ましくは1°から5°)傾
斜した基板が有効である。傾斜基板を用いることで、よ
り高品質な膜形成が可能となる。
When the porous buffer layer is formed in this way, the layer grown on the exposed substrate surface grows from small nuclei, so that lateral growth is promoted and a layer with few defects can be grown. Conceivable. In order to further promote the lateral crystal growth, it is best to use the sapphire c-plane for the substrate. When a substrate having a variation in plane orientation or a surface defect is used, a substrate inclined from the c-plane to the a-plane by 0.5 ° to 10 ° (preferably 1 ° to 5 °) is effective. By using the inclined substrate, it is possible to form a higher quality film.

【0018】ここで、成長核となるAlN微結晶の間隔
は、その成長温度で決まり温度が高いほど広くなる。横
方向の成長が疎外されないためには、成長核の間隔が広
くなる高温が望ましい。しかし、高温成長では成長核の
極性が乱れるため、バッファ層の成長温度は制限され
る。良好な結果が得られたのは、350℃から800℃
の範囲であり、望ましくは500℃から700℃であ
る。
Here, the interval between the AlN microcrystals serving as growth nuclei is determined by the growth temperature and becomes wider as the temperature rises. In order to prevent lateral growth from being alienated, it is desirable to use a high temperature at which the distance between the growth nuclei is wide. However, the growth temperature of the buffer layer is limited because the polarity of the growth nuclei is disturbed in high temperature growth. Good results were obtained from 350 ° C to 800 ° C
Range, and preferably 500 ° C to 700 ° C.

【0019】また、この方法を用いても、良質なGaN
層を成長するためにその膜厚を厚くすると、GaNの成
長温度が1000℃程度と高いため、サファイア基板と
GaN(又はAlGaInN)間の熱膨脹差により冷却
時に転位が増大したりひび割れが生じたりする。従っ
て、熱歪み緩和にはバッファ層を厚くして、同時に成長
温度を低温化して温度差による歪みを小さくする必要が
ある。しかし、成長核形成用の第1バッファ層を厚くす
ると成長核となる種結晶の方位が乱れるために結晶品質
が劣化する。そこで本発明においては、成長核形成用の
第1バッファ層上に熱歪み緩和用の第2バッファ層を積
層することが有効である。
Even if this method is used, good quality GaN is obtained.
When the film thickness is increased to grow the layer, the growth temperature of GaN is as high as about 1000 ° C., so dislocations increase or cracks occur during cooling due to the difference in thermal expansion between the sapphire substrate and GaN (or AlGaInN). . Therefore, in order to relax the thermal strain, it is necessary to thicken the buffer layer and simultaneously lower the growth temperature to reduce the strain due to the temperature difference. However, if the thickness of the first buffer layer for forming the growth nuclei is increased, the orientation of the seed crystal serving as the growth nuclei is disturbed, and the crystal quality is deteriorated. Therefore, in the present invention, it is effective to stack a second buffer layer for relaxing thermal strain on the first buffer layer for forming growth nuclei.

【0020】熱歪み緩和のためのバッファ層は必ずしも
アモルファス又は多結晶である必要はない。従って、結
晶化温度が低いため単結晶化しやすいと考えられてきた
Inを構成元素として含む材料を第2バッファ層として
用いることができる。即ち、InはNとの結合が弱くA
lNに対して柔軟性を有しているため、Inを構成元素
として含むバッファ層は歪みを有効に緩和できる。な
お、第2バッファ層には、Inを構成元素として含む材
料以外にも、第1バッファ層よりもバンドギャップの広
い材料であれば、一般に柔軟性が良好であるため、特に
限定されず用いることが可能である。この場合、単結晶
に近いバッファ層を用いられるので膜厚を厚くできるの
でさらに有効である。
The buffer layer for alleviating thermal strain does not necessarily have to be amorphous or polycrystalline. Therefore, a material containing In as a constituent element, which has been considered to be easily single-crystallized due to its low crystallization temperature, can be used as the second buffer layer. That is, In has a weak bond with N and A
Since it has flexibility with respect to 1N, the buffer layer containing In as a constituent element can effectively relax strain. In addition to the material containing In as a constituent element, a material having a wider bandgap than that of the first buffer layer is generally used for the second buffer layer, because the material generally has good flexibility, and thus is not particularly limited. Is possible. In this case, since a buffer layer close to a single crystal is used, the film thickness can be increased, which is more effective.

【0021】熱歪み緩和用の第2バッファ層の膜厚とし
ては、50nmから1000nmまでの広い範囲で有効
であり、成長しやすいのはIn組成が10%から90%
のときである。Inを構成元素として多量に含む材料を
バッファ層として成長するには、Inの表面移動度が大
きく300℃から1100℃までの広い温度範囲で形成
できるが、核形成がしにくいためにIn組成の少ない層
を予め成長することが望ましい。
The thickness of the second buffer layer for relaxing the thermal strain is effective in a wide range of 50 nm to 1000 nm, and the In composition is easy to grow from 10% to 90%.
It is time for In order to grow a material containing a large amount of In as a constituent element as a buffer layer, In has a large surface mobility and can be formed in a wide temperature range from 300 ° C. to 1100 ° C. It is desirable to pre-grow fewer layers.

【0022】以上のように、核形成用の第1バッファ層
には小さな成長核を形成するため、バンドギャップが広
い、例えばAl組成の大きい材料が有効であり、熱歪み
緩和用の第2バッファ層としてはバンドギャップが狭
い、例えばIn組成の大きい材料が有効である。また、
このような熱歪み緩和用の第2バッファ層上にGaN系
材料からなる素子構造を形成するときには、Inの脱離
を防ぐためにGaN,AlN,AlGaN等のInを含
まないキャップ層を、Inの脱離が急速ではない500
℃から800℃の基板温度範囲で予め形成するのが望ま
しい。このキャップ層の厚さは、50nmから1000
nmの範囲にあればよい。
As described above, since a small growth nucleus is formed in the first buffer layer for nucleation, a material having a wide band gap, for example, a large Al composition is effective, and the second buffer for relaxing thermal strain is effective. As the layer, a material having a narrow band gap, for example, a material having a large In composition is effective. Also,
When an element structure made of a GaN-based material is formed on the second buffer layer for relaxing the thermal strain, a cap layer containing no In, such as GaN, AlN, or AlGaN, is formed in order to prevent the desorption of In. Desorption is not rapid 500
It is desirable to pre-form it in the substrate temperature range of ℃ to 800 ℃. The thickness of this cap layer is 50 nm to 1000 nm.
It may be in the range of nm.

【0023】なお、本発明でバッファ層とは核形成、極
性制御、熱歪み緩和等の目的を持った膜状若しくは粒状
の結晶層のことを言う。このように本発明によれば、サ
ファイア等の単結晶基板上にAlN等の多孔質状のバッ
ファ層を形成することにより、基板上にAlNの微結晶
が疎らに形成される。これは、半導体層の横方向エピタ
キシャル成長の核となる。また、バッファ層を形成した
後に半導体素子作成のための複数の半導体層を成長開始
するまでの昇温を、アンモニアを含まない例えば水素雰
囲気を行うことにより、基板表面と窒素との反応を防止
して基板表面の極性の乱れを防止できる。従って、バッ
ファ層上に形成する複数の半導体層の結晶品質及び再現
性の向上をはかることができる、結果として、低欠陥の
AlGaInN層の成長が可能となり、高輝度短波長発
光素子の実現が可能となる。
In the present invention, the buffer layer means a film-like or granular crystal layer for the purpose of nucleation, polarity control, thermal strain relaxation and the like. As described above, according to the present invention, by forming a porous buffer layer such as AlN on a single crystal substrate such as sapphire, AlN microcrystals are sparsely formed on the substrate. This serves as a nucleus for lateral epitaxial growth of the semiconductor layer. In addition, the reaction between the substrate surface and nitrogen is prevented by increasing the temperature after the formation of the buffer layer until the start of growth of a plurality of semiconductor layers for semiconductor element formation, by performing, for example, a hydrogen atmosphere containing no ammonia. It is possible to prevent the disorder of the polarity on the substrate surface. Therefore, it is possible to improve the crystal quality and reproducibility of a plurality of semiconductor layers formed on the buffer layer. As a result, it is possible to grow a low-defect AlGaInN layer and realize a high-luminance short-wavelength light emitting device. Becomes

【0024】また、AlN等の第1バッファ層上にIn
NやGaInN等の第2バッファ層を形成することによ
り、第2バッファ層が熱歪み緩和層として機能すること
になり、バッファ層上に形成する複数の半導体層の結晶
品質向上により有効となる。
Further, In is formed on the first buffer layer of AlN or the like.
By forming the second buffer layer of N, GaInN, or the like, the second buffer layer functions as a thermal strain relaxation layer, which is more effective in improving the crystal quality of the plurality of semiconductor layers formed on the buffer layer.

【0025】[0025]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (実施例1)図1は、本発明の第1の実施例に係わる青
色発光ダイオードの素子構造を示す断面図である。即
ち、サファイア基板(単結晶基板)10のc面上に成長
核形成と極性制御用のAlN第1バッファ層11(9n
m)が580℃にて成長形成され、さらに熱歪み緩和用
のInN第2バッファ層12(0.5μm)が500℃
にて成長形成され、その上にIn蒸発防止用のGaNキ
ャップ層13(0.1μm)が成長形成されている。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a sectional view showing an element structure of a blue light emitting diode according to a first embodiment of the present invention. That is, the AlN first buffer layer 11 (9n) for forming growth nuclei and controlling the polarity on the c-plane of the sapphire substrate (single crystal substrate) 10.
m) is grown and formed at 580 ° C., and the InN second buffer layer 12 (0.5 μm) for thermal strain relaxation is further formed at 500 ° C.
The GaN cap layer 13 (0.1 μm) for preventing evaporation of In is grown and formed thereon.

【0026】これらの各層11〜13が形成された後
に、1050℃まで昇温され、結晶欠陥低減用のGa
0.7 In0.3 N欠陥低減層14(3.0μm)、素子と
して動作するSiドープのn型Al0.2 Ga0.5 In
0.35Nクラッド層(1.0μm)15、Ga0.7 In
0.3 N層活性層(0.5μm)16、Mgドープのp型
Al0.2 Ga0.5 In0.35Nクラッド層(1.0μm)
17、Mgドープのp型GaNコンタクト層(0.5μ
m)18が順次形成されている。
After each of these layers 11 to 13 is formed, the temperature is raised to 1050 ° C. and Ga for crystal defect reduction is formed.
0.7 In 0.3 N defect reduction layer 14 (3.0 μm), Si-doped n-type Al 0.2 Ga 0.5 In acting as an element
0.35 N clad layer (1.0 μm) 15, Ga 0.7 In
0.3 N active layer (0.5 μm) 16, Mg-doped p-type Al 0.2 Ga 0.5 In 0.35 N clad layer (1.0 μm)
17, Mg-doped p-type GaN contact layer (0.5 μ
m) 18 are sequentially formed.

【0027】そして、コンタクト層18上にはp側電極
21としてAu/Cr/Pdが形成され、欠陥低減層1
4上にはn側電極22としてAu/AuGeが形成され
ている。
Then, Au / Cr / Pd is formed as the p-side electrode 21 on the contact layer 18, and the defect reduction layer 1
Au / AuGe is formed as an n-side electrode 22 on the electrode 4.

【0028】このような構造では、AlN第1バッファ
層11は基板10上に疎らに粒状に形成されて多孔質状
となり、後続する素子作成のためのAlGaInN系半
導体層の成長の際の有効な成長核となる。さらに、In
N第2バッファ層12は熱歪み緩和層として働き、Al
GaInN系半導体層と基板10との熱膨脹差に起因す
る転位の発生やひび割れを未然に防止することができ
る。即ち、2つのバッファ層11,12の働きにより良
質のAlGaInN系半導体層を形成することができ、
高輝度短波長の発光ダイオードを実現することが可能と
なる。
In such a structure, the AlN first buffer layer 11 is sparsely and granularly formed on the substrate 10 and becomes porous, which is effective when the AlGaInN-based semiconductor layer is grown for subsequent device fabrication. Become a growth nucleus. Furthermore, In
The N second buffer layer 12 functions as a thermal strain relaxation layer, and Al
Generation of dislocations and cracks due to the difference in thermal expansion between the GaInN-based semiconductor layer and the substrate 10 can be prevented in advance. That is, a high-quality AlGaInN-based semiconductor layer can be formed by the action of the two buffer layers 11 and 12,
It is possible to realize a high-luminance short-wavelength light emitting diode.

【0029】図2は、活性層16のバンドギャップを変
えて発光波長を変えたものである。図2(a)は緑色発
光ダイオードの例であり、欠陥低減層14′の組成をG
0.5 In0.5 N、クラッド層15′,17′の組成を
Al0.2 Ga0.25In0.55N、活性層16′の組成をG
0.5 In0.5 Nとしている。図2(b)は赤色発光ダ
イオードの例であり、欠陥低減層14''の組成をGa
0.3 In0.7 N、クラッド層15'',17''の組成をA
0.2 Ga0.05In0.75N、活性層16''の組成をGa
0.3 In0.7 Nとしている。
In FIG. 2, the bandgap of the active layer 16 is changed to change the emission wavelength. FIG. 2A is an example of a green light emitting diode, and the composition of the defect reduction layer 14 'is G
a 0.5 In 0.5 N, the composition of the cladding layers 15 'and 17' is Al 0.2 Ga 0.25 In 0.55 N, and the composition of the active layer 16 'is G.
a 0.5 In 0.5 N. FIG. 2B is an example of a red light emitting diode, and the composition of the defect reduction layer 14 ″ is Ga.
0.3 In 0.7 N, the composition of the cladding layers 15 ″ and 17 ″ is A
l 0.2 Ga 0.05 In 0.75 N, the composition of the active layer 16 ″ is Ga
0.3 In 0.7 N.

【0030】図3(a)は、熱歪み緩和用の第2バッフ
ァ層32としてGa0.5 In0.5 N混晶を用いた例であ
り、キャップ層33としてはAlGaNを用いた。ま
た、この場合には核形成用の第1バッファ層11は省略
してもよく、図3(b)はそのような例である。熱歪み
緩和用のバッファ層32としてAl0.5 In0.5 N混晶
等の他の混晶も同様に使用できる。熱歪み緩和用の第2
バッファ層32として混晶を使用する場合には、Inの
蒸発は遅いのでIn蒸発防止用のキャップ層33は省略
してもよく、図3(c)はそのような例である。
FIG. 3A shows an example in which a Ga 0.5 In 0.5 N mixed crystal is used as the second buffer layer 32 for relaxing the thermal strain, and AlGaN is used as the cap layer 33. Further, in this case, the first buffer layer 11 for nucleation may be omitted, and FIG. 3B shows such an example. Other mixed crystals such as Al 0.5 In 0.5 N mixed crystal can be similarly used as the buffer layer 32 for relaxing the thermal strain. Second for thermal strain relief
When a mixed crystal is used as the buffer layer 32, the evaporation of In is slow, so the cap layer 33 for preventing In evaporation may be omitted. FIG. 3C shows such an example.

【0031】図4は、本実施例素子の製造に使用した成
長装置を示す概略構成図である。図中41は石英製の反
応管であり、この反応管41内にはガス導入口42から
原料混合ガスが導入される。そして、反応管41内のガ
スはガス排気口43から排気されるものとなっている。
FIG. 4 is a schematic configuration diagram showing a growth apparatus used for manufacturing the device of this embodiment. In the figure, reference numeral 41 is a quartz reaction tube, and a raw material mixed gas is introduced into the reaction tube 41 from a gas introduction port 42. The gas in the reaction tube 41 is exhausted from the gas exhaust port 43.

【0032】反応管41内には、カーボン製のサセプタ
44が配置されており、試料基板47はこのサセプタ4
4上に載置される。また、サセプタ44は高周波コイル
45により誘導加熱される。なお、基板47の温度は図
示の熱電対46によって測定され、別の装置により制御
されるようになっている。
A susceptor 44 made of carbon is arranged in the reaction tube 41, and the sample substrate 47 is the susceptor 4
4. Further, the susceptor 44 is induction-heated by the high frequency coil 45. The temperature of the substrate 47 is measured by the illustrated thermocouple 46 and controlled by another device.

【0033】次に、図4の成長装置を用いた発光ダイオ
ードの製造方法について説明する。まず、試料基板47
(サファイア基板10)をサセプタ44上に載置する。
ガス導入口42から高純度水素を毎分1l導入し、反応
管41内の大気を置換する。次いで、ガス排気口43を
ロータリーポンプに接続し、反応管41内を減圧し、内
部の圧力を20〜70Torrの範囲に設定する。
Next, a method of manufacturing a light emitting diode using the growth apparatus of FIG. 4 will be described. First, the sample substrate 47
The (sapphire substrate 10) is placed on the susceptor 44.
1 liter of high-purity hydrogen is introduced from the gas inlet 42 per minute to replace the atmosphere in the reaction tube 41. Next, the gas exhaust port 43 is connected to a rotary pump, the pressure inside the reaction tube 41 is reduced, and the internal pressure is set within the range of 20 to 70 Torr.

【0034】次いで、基板47を水素中で1100℃に
加熱し表面を清浄化する。次いで、基板温度を450〜
900℃に低下させた後、H2 ガスをNH3 ガス,N2
4ガス或いはNを含む有機化合物、例えば(CH32
22 に切り替えると共に、有機金属Ga化合物、
例えばGa(CH33 或いはGa(C253 を導
入して成長を行う。同時に有機金属Al化合物、例えば
Al(CH33 或いはAl(C253 、有機金属
In化合物、例えばIn(CH33 或いはIn(C2
53 を導入してAl,Inの添加を行う。
Next, the substrate 47 is heated in hydrogen at 1100 ° C. to clean the surface. Next, the substrate temperature is set to 450-
After the temperature was lowered to 900 ° C., H 2 gas was replaced with NH 3 gas and N 2 gas.
Organic compounds containing H 4 gas or N, for example (CH 3 ) 2
While switching to N 2 H 2 , an organometallic Ga compound,
For example, Ga (CH 3 ) 3 or Ga (C 2 H 5 ) 3 is introduced to grow. At the same time, organometallic Al compounds such as Al (CH 3 ) 3 or Al (C 2 H 5 ) 3 and organometallic In compounds such as In (CH 3 ) 3 or In (C 2
H 5 ) 3 is introduced to add Al and In.

【0035】ドーピングを行う場合にはドーピング用原
料も同時に導入する。ドーピング用原料としては、n型
用としてSi水素化物、例えばSiH4 又は有機金属S
i化合物、例えばSi(CH34 、p型用として有機
金属Mg化合物、例えばCp2 Mg或いは有機金属Zn
(CH32 等を使用する。Inの取り込まれ率を改善
するためにInを含む層を形成するときには、窒素,A
r等の水素を含まない雰囲気下にて成長し、原料として
アンモニアより分解率の高い(CH3222 を用
いる。
When doping is performed, a doping raw material is also introduced at the same time. As the doping raw material, Si hydride for n-type, for example, SiH 4 or organometallic S
i compounds such as Si (CH 3 ) 4 and organometallic Mg compounds for p-type such as Cp 2 Mg or organometallic Zn
(CH 3 ) 2 etc. are used. When forming a layer containing In to improve the rate of incorporation of In, nitrogen, A
(CH 3 ) 2 N 2 H 2 having a higher decomposition rate than ammonia is used as a raw material, which is grown in an atmosphere containing no hydrogen such as r.

【0036】なお、p型ドーパントの活性化率を上げる
ためには、結晶中への水素の混入を抑制することが重要
である。そこで、成長温度から850℃から700℃ま
では窒素の解離を抑えるためにアンモニア中で冷却し、
それ以下の温度では冷却過程での水素の混入を抑制する
ため不活性ガス中で冷却する。さらに、p型ドーパント
の活性化率を上げる必要があるときにはRFプラズマに
より生成した窒素ラジカル中にて熱処理する。これは、
結晶中からの窒素原子の脱離が完全に防止でき900℃
から1200℃の高温での熱処理が可能であるだけでな
く、窒素空孔等の結晶欠陥を除去できることによる。
In order to increase the activation rate of the p-type dopant, it is important to suppress the incorporation of hydrogen into the crystal. Therefore, from the growth temperature to 850 ° C to 700 ° C, cooling is performed in ammonia in order to suppress dissociation of nitrogen,
If the temperature is lower than that, cooling is performed in an inert gas in order to prevent hydrogen from being mixed in the cooling process. Further, when it is necessary to increase the activation rate of the p-type dopant, heat treatment is performed in nitrogen radicals generated by RF plasma. this is,
Desorption of nitrogen atoms from the crystal can be completely prevented 900 ° C
This is because not only the heat treatment at a high temperature of 1 to 1200 ° C. is possible, but also crystal defects such as nitrogen vacancies can be removed.

【0037】具体的には、原料としてNH3 を1×10
-3 mol/min、Ga(CH33 を11×10-5 mol/mi
n、Al(CH33 を1×10-6 mol/min導入して成
長を行う。基板温度は1050℃、圧力38Torr、原料
ガスの総流量は1l/min 、ドーパントにはn型にS
i,p型にMgを用いる。原料としてはSi(CH3
4,Cp2 Mgを使用する。
Specifically, 1 × 10 3 of NH 3 is used as a raw material.
-3 mol / min, Ga (CH 3 ) 3 11 × 10 -5 mol / mi
Growth is performed by introducing n and Al (CH 3 ) 3 at 1 × 10 -6 mol / min. Substrate temperature is 1050 ° C., pressure is 38 Torr, total flow rate of source gas is 1 l / min, and n-type S is used as dopant.
Mg is used for the i and p types. Si (CH 3 ) as raw material
4 , Cp 2 Mg is used.

【0038】かくして得られたウェハをX線回折で評価
したところ、結晶欠陥が飛躍的に減少し、高輝度短波長
発光素子の実現が期待できた。また、ウェハを窒素ラジ
カル中で400〜1100℃(好ましくは700〜10
00℃)でアニールすることにより、アニール中のNの
抜けを抑え、p型層をより低抵抗化することが可能であ
る。図10にアニール用の装置の概略図を示す。なお、
図中91は反応管、92はウェハ、93はヒータを兼ね
たサセプタ、94はガスを活性化するための高周波コイ
ル、95は高周波電源を示している。
When the wafer thus obtained was evaluated by X-ray diffraction, crystal defects were dramatically reduced, and it was expected that a high-luminance short-wavelength light-emitting device could be realized. In addition, the wafer is heated to 400 to 1100 ° C. (preferably 700 to 10) in a nitrogen radical.
By annealing at 00 ° C., it is possible to suppress the escape of N during annealing and further reduce the resistance of the p-type layer. FIG. 10 shows a schematic view of an annealing device. In addition,
In the figure, 91 is a reaction tube, 92 is a wafer, 93 is a susceptor also serving as a heater, 94 is a high frequency coil for activating gas, and 95 is a high frequency power supply.

【0039】なお、アニールは活性水素を放出しない窒
素含有化合物で行うのも効果的である。具体的には、ア
ジド基を有する有機化合物、例えばエチルアジド中のア
ニールもアニール中のNの抜けを抑え、Hの取り込まれ
がないためp型層をより低抵抗化することが可能とな
る。 (実施例2)図5は、本発明の第2の実施例に係わる発
光ダイオードの素子構造を示す断面図である。この実施
例は、コンタクト層をp側だけではなくn側にも設ける
ことにより、効率をさらに向上させたものである。
It is also effective to perform annealing with a nitrogen-containing compound that does not release active hydrogen. Specifically, annealing in an organic compound having an azide group, for example, ethyl azide also suppresses escape of N during annealing, and since H is not taken in, the p-type layer can have a lower resistance. (Embodiment 2) FIG. 5 is a sectional view showing an element structure of a light emitting diode according to a second embodiment of the present invention. In this embodiment, the efficiency is further improved by providing the contact layer not only on the p side but also on the n side.

【0040】サファイア基板50のc面上に成長核形成
と極性制御用のAlN第1バッファ層51(9nm)が
350℃にて成長形成され、さらに熱歪み緩和用のGa
0.5In0.5 N第2バッファ層52(0.5μm)が5
50℃にて成長形成され、その上にIn蒸発防止用のG
aNキャップ層53(0.1μm)が650℃にて成長
形成されている。
An AlN first buffer layer 51 (9 nm) for growth nucleation and polarity control is grown and formed at 350 ° C. on the c-plane of the sapphire substrate 50, and Ga for thermal strain relaxation is further formed.
0.5 In 0.5 N Second buffer layer 52 (0.5 μm) is 5
It is grown and formed at 50 ℃, and on top of it G
The aN cap layer 53 (0.1 μm) is grown and formed at 650 ° C.

【0041】これらの各層51〜53が形成された後
に、1050℃まで昇温され、Se若しくはSドープの
n型GaNコンタクト層54(2.0μm)、格子不整
合緩和用のSe若しくはSドープGaInN(GaN〜
Ga0.7 In0.3 N)組成グレーディング層55(1.
0μm)、さらに結晶欠陥低減用のSe若しくはSドー
プGa0.7 In0.3 N欠陥低減層56(4.0μm)、
素子として動作するSe若しくはSドープ(1×1018
cm-3)のn型Al0.1 Ga0.55In0.35Nクラッド層
57(1.0μm)、Ga0.7 In0.3 N活性層58
(0.5μm)、Mg若しくはZnドープ(1×1018
cm-3)のp型Al0.1 Ga0.55In0.35Nクラッド層
59(1.0μm)、Mg若しくはZnドープ(5×1
18cm-3)のp型GaNコンタクト層60(0.5μ
m)が順次成長形成されている。
After these layers 51 to 53 are formed, the temperature is raised to 1050 ° C., the Se or S-doped n-type GaN contact layer 54 (2.0 μm), and the Se or S-doped GaInN for lattice mismatch relaxation. (GaN ~
Ga 0.7 In 0.3 N) composition grading layer 55 (1.
0 μm), and further Se or S-doped Ga 0.7 In 0.3 N defect reduction layer 56 (4.0 μm) for crystal defect reduction,
Se or S-doped (1 × 10 18
cm −3 ) n-type Al 0.1 Ga 0.55 In 0.35 N cladding layer 57 (1.0 μm), Ga 0.7 In 0.3 N active layer 58
(0.5 μm), Mg or Zn doped (1 × 10 18
cm −3 ) p-type Al 0.1 Ga 0.55 In 0.35 N cladding layer 59 (1.0 μm), Mg or Zn doped (5 × 1)
0 18 cm −3 ) p-type GaN contact layer 60 (0.5 μm )
m) are sequentially grown and formed.

【0042】そして、コンタクト層60上にはPd:5
00nm,Cr:100nm,Au:500nmが、コ
ンタクト層54上にはAuGe:100nm,Au:5
00nmが形成されたのち、不活性ガス若しくはN2
で400〜800℃で熱処理されオーミック電極(p側
電極61,n側電極62)が形成されている。
Then, Pd: 5 is formed on the contact layer 60.
00 nm, Cr: 100 nm, Au: 500 nm, and AuGe: 100 nm, Au: 5 on the contact layer 54.
After the thickness of 00 nm is formed, it is heat-treated at 400 to 800 ° C. in an inert gas or N 2 to form ohmic electrodes (p-side electrode 61, n-side electrode 62).

【0043】このような構造であっても、AlN第1バ
ッファ層51とGaInN第2バッファ層12の働きに
より、良質のAlGaInN系半導体層を形成すること
が可能となり、第1の実施例と同様の効果が得られる。
また本実施例で、活性層58とクラッド層57,59の
間で0.3%の格子不整合があるので、発光波長が長波
長化し、吸収を低減することができる。
Even with such a structure, the AlN first buffer layer 51 and the GaInN second buffer layer 12 serve to form a high-quality AlGaInN semiconductor layer, which is the same as in the first embodiment. The effect of is obtained.
Further, in this embodiment, since the lattice mismatch between the active layer 58 and the cladding layers 57 and 59 is 0.3%, the emission wavelength becomes longer and the absorption can be reduced.

【0044】なお、本実施例では、格子不整合緩和のた
めの組成グレーディング層55を設けたが、必ずしもグ
レーディングにする必要はない。また、熱歪み緩和層と
してはGaInNに限らずGaNを用いることもでき、
図6はそのような例である。ここではサファイア基板5
0のc面上に成長核形成と極性制御用のAlN第1バッ
ファ層51(9nm)が350℃にて成長形成され、さ
らに熱歪み緩和用のGaN第2バッファ層72(0.5
μm)が550℃にて成長形成されている。そして、こ
の上に図5と同様に各層54〜60が成長形成されてい
る。
In the present embodiment, the composition grading layer 55 is provided to alleviate the lattice mismatch, but it is not always necessary to use grading. In addition, not only GaInN but also GaN can be used as the thermal strain relaxation layer,
FIG. 6 is such an example. Here, the sapphire substrate 5
An AlN first buffer layer 51 (9 nm) for growth nucleus formation and polarity control was grown and formed on the c-plane of 0 at 350 ° C., and a GaN second buffer layer 72 (0.5) for thermal strain relaxation was formed.
μm) is grown and formed at 550 ° C. Then, the respective layers 54 to 60 are grown and formed thereon similarly to FIG.

【0045】さらに、熱歪み緩和用のバッファ層はなく
てもよく、図7はそのような例である。サファイアのc
面からa方向に5°オフした基板50上に成長核形成と
極性制御用の粒状AlN第1バッファ層51(平均膜厚
5nm)が400℃にて形成されている。そして、この
上に図5と同様に各層54〜60が成長形成されてい
る。
Further, the buffer layer for alleviating the thermal strain may be omitted, and FIG. 7 shows such an example. Sapphire c
A granular AlN first buffer layer 51 (average film thickness: 5 nm) for growth nucleus formation and polarity control is formed at 400 ° C. on a substrate 50 which is off by 5 ° in the a direction from the surface. Then, the respective layers 54 to 60 are grown and formed thereon similarly to FIG.

【0046】成長核形成のためにはできるだけ小さな粒
が疎らに形成されている方が横方向の成長が促進され高
品質の層ができる。また、a面上に成長した場合には成
長表面に縞模様が観測されることが多かったが、粒状バ
ッファ層の採用により、鏡面成長が可能になった。さら
に、成長核形成のためのバッファ層としてはGaNを使
用してもよく、その場合は、GaNが成長する限界まで
極微量のアンモニアを導入することにより窒素の解離を
抑えることができる。
In order to form growth nuclei, it is preferable that the grains are formed as sparsely as possible so that lateral growth is promoted and a high quality layer is formed. In addition, when growing on the a-plane, a stripe pattern was often observed on the growth surface, but by adopting the granular buffer layer, mirror growth became possible. Further, GaN may be used as the buffer layer for forming the growth nuclei, and in this case, nitrogen dissociation can be suppressed by introducing an extremely small amount of ammonia to the limit of GaN growth.

【0047】図8はGaNを成長する際のアンモニア流
量と成長速度の関係であり、総流量(1l/min )の2
00分の1までアンモニアを減少してもGaNは成長
し、総流量の50分の1程度の時に膜厚が最大になる。
そこで、総流量の1/50〜1/200程度のアンモニ
アを導入した場合に窒素の解離が最も抑えられ、そのよ
うな条件下では成長核形成のためのバッファ層としてG
aNを使用できる。
FIG. 8 shows the relationship between the ammonia flow rate and the growth rate during the growth of GaN, which is 2% of the total flow rate (1 l / min).
Even if the amount of ammonia is reduced to 1/00, GaN grows, and the film thickness becomes maximum at about 1/50 of the total flow rate.
Therefore, when 1/50 to 1/200 of the total flow rate of ammonia is introduced, the dissociation of nitrogen is most suppressed, and under such conditions, G is used as a buffer layer for forming growth nuclei.
aN can be used.

【0048】なお、本発明は上述した各実施例に限定さ
れるものではない。素子構造は実施例で述べたものに何
等限定されるものではなく、適宜変更可能である。要
は、単結晶基板上にAlGaInN系材料からなる半導
体層を形成して発光素子等を作成するものに適用するこ
とができる。また、基板は必ずしもサファイア基板に限
るものではなく、SiC、その他の単結晶を用いること
もできる。また、本発明は必ずしも発光素子に限るもの
ではなく、例えば高温動作半導体素子にも適用すること
が可能である。その他、本発明の要旨を逸脱しない範囲
で、種々変形して実施することができる。
The present invention is not limited to the above embodiments. The element structure is not limited to those described in the embodiments, and can be changed as appropriate. In short, the present invention can be applied to a case where a semiconductor layer made of an AlGaInN-based material is formed on a single crystal substrate to form a light emitting element or the like. Further, the substrate is not necessarily limited to the sapphire substrate, and SiC or other single crystal can be used. Further, the present invention is not necessarily limited to the light emitting element, and can be applied to, for example, a high temperature operating semiconductor element. In addition, various modifications can be made without departing from the scope of the present invention.

【0049】[0049]

【発明の効果】以上詳述したように本発明によれば、A
lGaInN系材料からなる素子形成のための半導体層
の結晶品質及び再現性の向上をはかることができ、結果
的に低欠陥のAlGaInN系半導体層の成長が可能と
なり、高輝度短波長発光素子等の実現が可能となる。
As described above in detail, according to the present invention, A
It is possible to improve the crystal quality and reproducibility of a semiconductor layer for forming a device made of a 1GaInN-based material, and as a result, it is possible to grow a low-defect AlGaInN-based semiconductor layer, which is suitable for high-luminance short-wavelength light-emitting devices and the like. Realization is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例に係わる青色発光ダイオードの素
子構造を示す断面図。
FIG. 1 is a sectional view showing an element structure of a blue light emitting diode according to a first embodiment.

【図2】第1の実施例の変形例を示す断面図。FIG. 2 is a sectional view showing a modification of the first embodiment.

【図3】第1の実施例の別の変形例を示す断面図。FIG. 3 is a sectional view showing another modification of the first embodiment.

【図4】実施例素子の製造に使用した成長装置を示す概
略構成図。
FIG. 4 is a schematic configuration diagram showing a growth apparatus used for manufacturing the device of the example.

【図5】第2の実施例に係わる発光ダイオードの素子構
造を示す断面図。
FIG. 5 is a sectional view showing an element structure of a light emitting diode according to a second embodiment.

【図6】第2の実施例の変形例を示す断面図。FIG. 6 is a sectional view showing a modification of the second embodiment.

【図7】第2の実施例の変形例を示す断面図。FIG. 7 is a sectional view showing a modification of the second embodiment.

【図8】GaNを成長する際のアンモニア流量と成長速
度の関係を示す特性図。
FIG. 8 is a characteristic diagram showing the relationship between the ammonia flow rate and the growth rate when growing GaN.

【図9】AlNバッファ層厚とGaN層のX線回折半値
幅の関係を示す特性図。
FIG. 9 is a characteristic diagram showing the relationship between the AlN buffer layer thickness and the X-ray diffraction half-value width of the GaN layer.

【図10】実施例に使用したアニール装置を示す概略構
成図。
FIG. 10 is a schematic configuration diagram showing an annealing device used in Examples.

【符号の説明】[Explanation of symbols]

10,50…サファイア基板(単結晶基板) 11,51…AlN第1バッファ層 12…InN第2バッファ層 13,53…GaNキャップ層 14,56…GaInN欠陥低減層 15,57…n型AlGaInNクラッド層 16,58…n型GaInN活性層 17,59…p型AlGaInNクラッド層 18,60…p型GaNコンタクト層 21,22,61,62…電極 32…GaInNバッファ層 33…AlGaNキャップ層 52…GaInN第2バッファ層 54…n型GaNコンタクト層 55…n型GaInN組成グレーディング層 72…GaN第2バッファ層 10, 50 ... Sapphire substrate (single crystal substrate) 11, 51 ... AlN first buffer layer 12 ... InN second buffer layer 13, 53 ... GaN cap layer 14, 56 ... GaInN defect reduction layer 15, 57 ... n-type AlGaInN clad Layers 16, 58 ... n-type GaInN active layer 17, 59 ... p-type AlGaInN cladding layer 18, 60 ... p-type GaN contact layer 21, 22, 61, 62 ... electrode 32 ... GaInN buffer layer 33 ... AlGaN cap layer 52 ... GaInN Second buffer layer 54 ... n-type GaN contact layer 55 ... n-type GaInN composition grading layer 72 ... GaN second buffer layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】単結晶基板上にバッファ層を介してAlG
aInN系材料からなる複数の半導体層を積層してなる
半導体素子において、 前記バッファ層は、AlGaInN系材料からなり、極
性制御及び核形成のために前記基板表面に多孔質状に形
成されたものであることを特徴とする半導体素子。
1. AlG on a single crystal substrate via a buffer layer.
In a semiconductor device formed by stacking a plurality of semiconductor layers made of aInN-based material, the buffer layer is made of AlGaInN-based material and is formed on the surface of the substrate in a porous form for polarity control and nucleation. A semiconductor device characterized by being present.
【請求項2】単結晶基板上にバッファ層を介してAlG
aInN系材料からなる複数の半導体層を積層してなる
半導体素子において、 前記バッファ層は、AlGaInN系材料からなり前記
基板表面に多孔質状に形成された極性制御及び核形成用
の第1バッファ層と、AlGaInN系材料からなり第
1バッファ層上に該バッファ層よりも厚く形成された熱
歪み緩和用の第2バッファ層とからなるものであること
を特徴とする半導体素子。
2. AlG on a single crystal substrate via a buffer layer.
In a semiconductor device formed by stacking a plurality of semiconductor layers made of an aInN-based material, the buffer layer is made of an AlGaInN-based material and is formed on the surface of the substrate in a porous form to provide a first buffer layer for polarity control and nucleation. And a second buffer layer made of AlGaInN-based material and formed on the first buffer layer to be thicker than the buffer layer for relaxing thermal strain.
JP3815794A 1994-03-09 1994-03-09 Semiconductor light emitting device and method of manufacturing the same Expired - Lifetime JP3325380B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3815794A JP3325380B2 (en) 1994-03-09 1994-03-09 Semiconductor light emitting device and method of manufacturing the same
US08/400,865 US5656832A (en) 1994-03-09 1995-03-08 Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
US08/866,056 US5909040A (en) 1994-03-09 1997-05-30 Semiconductor device including quaternary buffer layer with pinholes
US08/874,299 US5929466A (en) 1994-03-09 1997-06-13 Semiconductor device and method of fabricating the same
US09/915,710 USRE38805E1 (en) 1994-03-09 2001-07-27 Semiconductor device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3815794A JP3325380B2 (en) 1994-03-09 1994-03-09 Semiconductor light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07249795A true JPH07249795A (en) 1995-09-26
JP3325380B2 JP3325380B2 (en) 2002-09-17

Family

ID=12517581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3815794A Expired - Lifetime JP3325380B2 (en) 1994-03-09 1994-03-09 Semiconductor light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3325380B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263749A (en) * 1994-03-22 1995-10-13 Toyoda Gosei Co Ltd Manufacture of iii group nitride semiconductor
JPH08115880A (en) * 1994-10-17 1996-05-07 Matsushita Electric Ind Co Ltd Manufacture of p-type gan semiconductor
WO1997026680A1 (en) * 1996-01-19 1997-07-24 Matsushita Electric Industrial Co., Ltd. Gallium nitride compound semiconductor light emitting device and process for producing gallium nitride compound semiconductor
EP0800214A1 (en) * 1996-04-02 1997-10-08 Siemens Aktiengesellschaft Device in nitrogen containing semiconductor material
EP0803916A2 (en) * 1996-04-26 1997-10-29 Sanyo Electric Co. Ltd Light emitting device and manufacturing method thereof
EP0805500A1 (en) * 1995-08-31 1997-11-05 Kabushiki Kaisha Toshiba Blue light emitting device and production method thereof
EP0845818A2 (en) * 1996-11-29 1998-06-03 Toyoda Gosei Co., Ltd. GaN related compound semiconductor device and process for producing the same
WO1999046822A1 (en) * 1998-03-12 1999-09-16 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JP2000058920A (en) * 1998-07-31 2000-02-25 Xerox Corp Semiconductor and its manufacture
JP2000133841A (en) * 1998-10-23 2000-05-12 Xerox Corp Semiconductor device and manufacture of semiconductor light-emitting device
JP2000252591A (en) * 1999-02-26 2000-09-14 Sanyo Electric Co Ltd Nitride system semiconductor element and its manufacturing method
US6242764B1 (en) * 1997-07-17 2001-06-05 Kabushiki Kaisha Toshiba III-N semiconductor light-emitting element having strain-moderating crystalline buffer layers
KR100304881B1 (en) * 1998-10-15 2001-10-12 구자홍 GaN system compound semiconductor and method for growing crystal thereof
JP2002134787A (en) * 1996-04-26 2002-05-10 Sanyo Electric Co Ltd Light-emitting element and manufacturing method therefor
JP2003086520A (en) * 2001-09-11 2003-03-20 Shin Etsu Handotai Co Ltd Semiconductor multilayer structure
US6580099B2 (en) 1994-12-02 2003-06-17 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting devices
JP2003527745A (en) * 1999-12-02 2003-09-16 クリー・ライティング・カンパニー Highly efficient optical emitter with reduced polarization induced charge
WO2004027950A1 (en) * 2002-09-20 2004-04-01 Mitsubishi Chemical Corporation Semiconductor laser
US6838705B1 (en) 1999-03-29 2005-01-04 Nichia Corporation Nitride semiconductor device
US6900465B2 (en) 1994-12-02 2005-05-31 Nichia Corporation Nitride semiconductor light-emitting device
JP2005158889A (en) * 2003-11-21 2005-06-16 Sanken Electric Co Ltd Plate-shaped substrate for forming semiconductor element, its manufacturing method, and semiconductor element using it
JP2006179959A (en) * 2006-03-24 2006-07-06 Nichia Chem Ind Ltd Nitride semiconductor light emitting device
JP2006190778A (en) * 2005-01-05 2006-07-20 Stanley Electric Co Ltd Semiconductor light-emitting device
US7166874B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
JP2007096331A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Substrate for growing group iii-v light-emitting device
JP2007096330A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Group iii-v light-emitting device
CN1333471C (en) * 2004-03-12 2007-08-22 广镓光电股份有限公司 Buffer layer for light emitting semiconductor device
US7345297B2 (en) 2004-02-09 2008-03-18 Nichia Corporation Nitride semiconductor device
JP2008526012A (en) * 2004-12-23 2008-07-17 エルジー イノテック カンパニー リミテッド Nitride semiconductor light emitting device and manufacturing method thereof
CN100426545C (en) * 1998-03-12 2008-10-15 日亚化学工业株式会社 Nitride semiconductor device
JP2009124166A (en) * 2009-01-19 2009-06-04 Toshiba Corp Semiconductor device
DE19648955B4 (en) * 1995-11-27 2010-06-02 Sumitomo Chemical Co. Ltd. III-V compound semiconductor device
US7792170B2 (en) 2002-09-20 2010-09-07 Mitsubishi Chemical Corporation Semiconductor laser
KR101384071B1 (en) * 2009-03-20 2014-04-10 주식회사 엘지실트론 Nitride semiconductor substrate, method for fabricating the substrate and light emitting diode including the substrate
JP2018073998A (en) * 2016-10-28 2018-05-10 国立大学法人名古屋大学 Group iii nitride semiconductor element
JP2023519983A (en) * 2020-03-30 2023-05-15 プレッシー・セミコンダクターズ・リミテッド LED precursor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623580B (en) * 2011-01-27 2015-05-06 晶元光电股份有限公司 Photoelectric element and manufacturing method thereof

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263749A (en) * 1994-03-22 1995-10-13 Toyoda Gosei Co Ltd Manufacture of iii group nitride semiconductor
JPH08115880A (en) * 1994-10-17 1996-05-07 Matsushita Electric Ind Co Ltd Manufacture of p-type gan semiconductor
US6580099B2 (en) 1994-12-02 2003-06-17 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting devices
US6900465B2 (en) 1994-12-02 2005-05-31 Nichia Corporation Nitride semiconductor light-emitting device
EP0805500A1 (en) * 1995-08-31 1997-11-05 Kabushiki Kaisha Toshiba Blue light emitting device and production method thereof
EP0805500A4 (en) * 1995-08-31 2001-10-24 Toshiba Kk Blue light emitting device and production method thereof
US7166869B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US7166874B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US8304790B2 (en) 1995-11-06 2012-11-06 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
DE19648955B4 (en) * 1995-11-27 2010-06-02 Sumitomo Chemical Co. Ltd. III-V compound semiconductor device
WO1997026680A1 (en) * 1996-01-19 1997-07-24 Matsushita Electric Industrial Co., Ltd. Gallium nitride compound semiconductor light emitting device and process for producing gallium nitride compound semiconductor
US6165812A (en) * 1996-01-19 2000-12-26 Matsushita Electric Industrial Co., Ltd. Gallium nitride compound semiconductor light emitting device and process for producing gallium nitride compound semiconductor
EP0800214A1 (en) * 1996-04-02 1997-10-08 Siemens Aktiengesellschaft Device in nitrogen containing semiconductor material
JPH1041230A (en) * 1996-04-02 1998-02-13 Siemens Ag Device of nitrogen-containing semiconductor material
EP0803916A3 (en) * 1996-04-26 2000-03-08 Sanyo Electric Co. Ltd Light emitting device and manufacturing method thereof
EP2383846A3 (en) * 1996-04-26 2014-10-29 Future Light Limited Liability Company Light emitting device and manufacturing method thereof
JP2009010432A (en) * 1996-04-26 2009-01-15 Sanyo Electric Co Ltd Method for manufacturing light emitting device
EP0803916A2 (en) * 1996-04-26 1997-10-29 Sanyo Electric Co. Ltd Light emitting device and manufacturing method thereof
USRE42074E1 (en) 1996-04-26 2011-01-25 Sanyo Electric Co., Ltd. Manufacturing method of light emitting device
JP2012165011A (en) * 1996-04-26 2012-08-30 Sanyo Electric Co Ltd Light-emitting device manufacturing method
JP2002134787A (en) * 1996-04-26 2002-05-10 Sanyo Electric Co Ltd Light-emitting element and manufacturing method therefor
KR100500331B1 (en) * 1996-04-26 2005-09-30 산요덴키가부시키가이샤 Light emitting element and its manufacturing method
JP2013141025A (en) * 1996-04-26 2013-07-18 Future Light Limited Liability Company Light-emitting element manufacturing method
US6162656A (en) * 1996-04-26 2000-12-19 Sanyo Electric Co., Ltd. Manufacturing method of light emitting device
EP1453112A1 (en) * 1996-04-26 2004-09-01 Sanyo Electric Co., Ltd. Light emitting device and manufacturing method thereof
US6573117B2 (en) 1996-11-29 2003-06-03 Toyoda Gosei Co., Ltd. GaN related compound semiconductor and process for producing the same
US6500689B2 (en) 1996-11-29 2002-12-31 Toyoda Gosei Co., Ltd. Process for producing GaN related compound semiconductor
US6291840B1 (en) 1996-11-29 2001-09-18 Toyoda Gosei Co., Ltd. GaN related compound semiconductor light-emitting device
EP0845818A2 (en) * 1996-11-29 1998-06-03 Toyoda Gosei Co., Ltd. GaN related compound semiconductor device and process for producing the same
EP0845818A3 (en) * 1996-11-29 1998-10-07 Toyoda Gosei Co., Ltd. GaN related compound semiconductor device and process for producing the same
US6242764B1 (en) * 1997-07-17 2001-06-05 Kabushiki Kaisha Toshiba III-N semiconductor light-emitting element having strain-moderating crystalline buffer layers
US7193246B1 (en) 1998-03-12 2007-03-20 Nichia Corporation Nitride semiconductor device
US7947994B2 (en) 1998-03-12 2011-05-24 Nichia Corporation Nitride semiconductor device
WO1999046822A1 (en) * 1998-03-12 1999-09-16 Nichia Chemical Industries, Ltd. Nitride semiconductor device
CN100446289C (en) * 1998-03-12 2008-12-24 日亚化学工业株式会社 Nitride semiconductor device
CN100426545C (en) * 1998-03-12 2008-10-15 日亚化学工业株式会社 Nitride semiconductor device
US7402838B2 (en) 1998-03-12 2008-07-22 Nichia Corporation Nitride semiconductor device
JP2000058920A (en) * 1998-07-31 2000-02-25 Xerox Corp Semiconductor and its manufacture
JP2011082563A (en) * 1998-07-31 2011-04-21 Thomson Licensing Llc Semiconductor device and method for manufacturing the same
KR100304881B1 (en) * 1998-10-15 2001-10-12 구자홍 GaN system compound semiconductor and method for growing crystal thereof
JP2000133841A (en) * 1998-10-23 2000-05-12 Xerox Corp Semiconductor device and manufacture of semiconductor light-emitting device
JP2000252591A (en) * 1999-02-26 2000-09-14 Sanyo Electric Co Ltd Nitride system semiconductor element and its manufacturing method
US7348602B2 (en) 1999-03-29 2008-03-25 Nichia Corporation Nitride semiconductor device
US6838705B1 (en) 1999-03-29 2005-01-04 Nichia Corporation Nitride semiconductor device
JP2003527745A (en) * 1999-12-02 2003-09-16 クリー・ライティング・カンパニー Highly efficient optical emitter with reduced polarization induced charge
JP2012256952A (en) * 1999-12-02 2012-12-27 Cree Inc High efficiency light emitter with reduced polarization induced charge
JP2003086520A (en) * 2001-09-11 2003-03-20 Shin Etsu Handotai Co Ltd Semiconductor multilayer structure
US7792170B2 (en) 2002-09-20 2010-09-07 Mitsubishi Chemical Corporation Semiconductor laser
WO2004027950A1 (en) * 2002-09-20 2004-04-01 Mitsubishi Chemical Corporation Semiconductor laser
JP2005158889A (en) * 2003-11-21 2005-06-16 Sanken Electric Co Ltd Plate-shaped substrate for forming semiconductor element, its manufacturing method, and semiconductor element using it
US7345297B2 (en) 2004-02-09 2008-03-18 Nichia Corporation Nitride semiconductor device
CN1333471C (en) * 2004-03-12 2007-08-22 广镓光电股份有限公司 Buffer layer for light emitting semiconductor device
JP2008526012A (en) * 2004-12-23 2008-07-17 エルジー イノテック カンパニー リミテッド Nitride semiconductor light emitting device and manufacturing method thereof
US8030639B2 (en) 2004-12-23 2011-10-04 Lg Innotek Co., Ltd. Nitride semiconductor light emitting device and fabrication method thereof
JP2006190778A (en) * 2005-01-05 2006-07-20 Stanley Electric Co Ltd Semiconductor light-emitting device
JP4699764B2 (en) * 2005-01-05 2011-06-15 スタンレー電気株式会社 Semiconductor light emitting device
JP2007096331A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Substrate for growing group iii-v light-emitting device
JP2007096330A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Group iii-v light-emitting device
JP2006179959A (en) * 2006-03-24 2006-07-06 Nichia Chem Ind Ltd Nitride semiconductor light emitting device
JP2009124166A (en) * 2009-01-19 2009-06-04 Toshiba Corp Semiconductor device
JP4581014B2 (en) * 2009-01-19 2010-11-17 株式会社東芝 Semiconductor element
KR101384071B1 (en) * 2009-03-20 2014-04-10 주식회사 엘지실트론 Nitride semiconductor substrate, method for fabricating the substrate and light emitting diode including the substrate
JP2018073998A (en) * 2016-10-28 2018-05-10 国立大学法人名古屋大学 Group iii nitride semiconductor element
JP2023519983A (en) * 2020-03-30 2023-05-15 プレッシー・セミコンダクターズ・リミテッド LED precursor

Also Published As

Publication number Publication date
JP3325380B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
JP3325380B2 (en) Semiconductor light emitting device and method of manufacturing the same
US5656832A (en) Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
US5990495A (en) Semiconductor light-emitting element and method for manufacturing the same
JP3866540B2 (en) Nitride semiconductor device and manufacturing method thereof
JP3822318B2 (en) Semiconductor light emitting device and manufacturing method thereof
US5909040A (en) Semiconductor device including quaternary buffer layer with pinholes
US7951617B2 (en) Group III nitride semiconductor stacked structure and production method thereof
JPH0415200B2 (en)
US5923950A (en) Method of manufacturing a semiconductor light-emitting device
JP3243111B2 (en) Compound semiconductor device
JP5073624B2 (en) Method for growing zinc oxide based semiconductor and method for manufacturing semiconductor light emitting device
JP3100644B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3244980B2 (en) Method for manufacturing semiconductor device
JPH11340147A (en) Manufacture of nitride semiconductor wafer and element
TWI295483B (en) 3-5 group compound semiconductor, process for producing the same, and compound semiconductor element using the same
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JP4284944B2 (en) Method for manufacturing gallium nitride based semiconductor laser device
JP3174257B2 (en) Method for producing nitride-based compound semiconductor
JP2005210091A (en) Group iii nitride semiconductor element and light emitting element
JP3478287B2 (en) Crystal growth method of gallium nitride based compound semiconductor and gallium nitride based compound semiconductor
JPH06216409A (en) Growth method of single-crystal semiconductor nitride
JP3340415B2 (en) Compound semiconductor device and method of manufacturing the same
JP3203282B2 (en) Indium gallium nitride semiconductor for light emitting devices
JP3984365B2 (en) Compound semiconductor manufacturing method and semiconductor light emitting device
JP2004146525A (en) METHOD OF MANUFACTURING P-TYPE GaN COMPOUND SEMICONDUCTOR

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

EXPY Cancellation because of completion of term