JPH0281484A - Gallium nitride-based compound semiconductor light-emitting element - Google Patents
Gallium nitride-based compound semiconductor light-emitting elementInfo
- Publication number
- JPH0281484A JPH0281484A JP63232887A JP23288788A JPH0281484A JP H0281484 A JPH0281484 A JP H0281484A JP 63232887 A JP63232887 A JP 63232887A JP 23288788 A JP23288788 A JP 23288788A JP H0281484 A JPH0281484 A JP H0281484A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- sapphire substrate
- compound semiconductor
- grown
- type gan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 13
- 150000001875 compounds Chemical class 0.000 title claims abstract description 9
- 229910002601 GaN Inorganic materials 0.000 title claims description 21
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims 2
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 24
- 239000010980 sapphire Substances 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 150000004820 halides Chemical class 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000000927 vapour-phase epitaxy Methods 0.000 claims description 12
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 5
- -1 gallium nitride compound Chemical class 0.000 claims description 5
- 239000013078 crystal Substances 0.000 abstract description 5
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 abstract 3
- 239000010410 layer Substances 0.000 description 66
- 238000001451 molecular beam epitaxy Methods 0.000 description 5
- 239000012159 carrier gas Substances 0.000 description 3
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 2
- 238000002050 diffraction method Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
Description
本発明は青色発光の窒化ガリウム系化合物半導体発光素
子に関する。The present invention relates to a gallium nitride compound semiconductor light emitting device that emits blue light.
従来、青色の発光ダイオードとしてGaN系の化合物半
導体を用いたものが知られている。そのGaN系の化合
物半導体は直接遷移であることから発光効率が高いこと
、光の3原色の1つである青色を発光色とすること等か
ら注目されている。
このようなGaN系の化合物半導体を用いた発光ダイオ
ードは、サファイア基板上に、N導電型のGaN系の化
合物半導体から成るNF3を成長させ、そのN層の上に
1導電型のGaN系の化合物半導体から成る1層を成長
させた構造をとっている。そして、その成長方法には有
機全屈化合物気相成長法(MOVPE)とハライド気相
成長法とが採用されている。Conventionally, blue light emitting diodes using GaN-based compound semiconductors are known. The GaN-based compound semiconductor is attracting attention because it has high luminous efficiency due to direct transition, and because it emits blue light, which is one of the three primary colors of light. Such a light emitting diode using a GaN-based compound semiconductor is produced by growing NF3 made of an N-conductivity type GaN-based compound semiconductor on a sapphire substrate, and growing a single-conductivity type GaN-based compound on the N layer. It has a structure in which a single layer of semiconductor is grown. As the growth method, organic all-optical compound vapor phase epitaxy (MOVPE) and halide vapor phase epitaxy are adopted.
ところで、上記の発光ダイオードの発光輝度を向上させ
るためには、発光に寄与するキャリア数を多くするため
に、N層の厚さはできるだけ厚い方が望ましい。又、良
質な1層の結晶を得るためにもN層の厚さは厚い方が望
ましい。
一方、動作電圧を均一にするためには、1層の膜厚は薄
く均一に精度良く制御される必要がある。
ところが、従来のMOVPE法だけで結晶成長させると
、結晶成長速度が遅く、厚いN層を形成するのに時間が
かかるという間順がある。
一方、サファイア基板上に直接、順次N型GaN、I型
GaNをハライド気相成長法で成長させるという方法も
あるが、ハライド気相成長法では成長速度が速く1層の
膜厚を薄く均一にすることが困難であった。又、結晶性
の良い厚いNI・Δを得ることもできなかった。
本発明者らはGaNの結晶成長について研究を重ねてき
た結果、サファイア基板上に窒化アルミニウム(Aj!
N)から成るバッファ層を形成した上で、N層をハライ
ド気相成長法で成長させるとN層の結晶性が向上するこ
とを見出した。
本発明は、係る結論に基づいてなされたものであり、そ
の目的は、発光素子の製造速度及び発光特性を向上させ
ることである。By the way, in order to improve the luminance of the light emitting diode described above, it is desirable that the thickness of the N layer be as thick as possible in order to increase the number of carriers contributing to light emission. Further, in order to obtain a high-quality single-layer crystal, it is desirable that the N layer be thick. On the other hand, in order to make the operating voltage uniform, the thickness of one layer needs to be thin, uniform, and accurately controlled. However, when crystal growth is performed using only the conventional MOVPE method, the crystal growth rate is slow and it takes time to form a thick N layer. On the other hand, there is a method in which N-type GaN and I-type GaN are sequentially grown directly on a sapphire substrate by halide vapor phase epitaxy, but halide vapor phase epitaxy has a fast growth rate and allows the thickness of one layer to be thin and uniform. It was difficult to do so. Furthermore, it was not possible to obtain thick NI•Δ with good crystallinity. As a result of repeated research on GaN crystal growth, the present inventors have found that aluminum nitride (Aj!) is grown on a sapphire substrate.
It has been found that the crystallinity of the N layer can be improved by forming a buffer layer made of N) and then growing the N layer by halide vapor phase epitaxy. The present invention was made based on such a conclusion, and its purpose is to improve the manufacturing speed and light emitting characteristics of a light emitting device.
上記課題を解決するための発明の構成は、サファイア基
板と、N型の窒化ガリウム系化合物半導体(A 1 x
G a 1−XN ; X=0を含む)からなるN層
と、N層上に成長した■型の窒化ガリウム系化合物半導
体(A I2 X G a 1−XN ; X=0を含
む)からなる1層とを有し、
サファイア基板とN層間に窒化アルミニウム(A47N
)から成るバッファ層を成長させ、そのバッファ層上に
N層をハライド気相成長法により成長させたことを特徴
とする。The structure of the invention for solving the above problems includes a sapphire substrate and an N-type gallium nitride compound semiconductor (A 1 x
G a 1-XN ; including X=0), and a ■-type gallium nitride compound semiconductor grown on the N layer (A I2 X G a 1-XN ; including X=0). aluminum nitride (A47N) between the sapphire substrate and the N layer.
) is grown, and an N layer is grown on the buffer layer by halide vapor phase epitaxy.
サファイア基板上に窒化アルミニウムから成るバッファ
層を形成し、そのバッファ層の上にN型の窒化ガリウム
系化合物半導体から成るNZをハライド気相成長法で形
成したので、厚い結晶性の良いN層が高速度で得られた
。
このため、発光素子の製造時間が短縮されると共に結晶
性の良い厚いN層を作成できたので発光灯度を向上させ
ることができた。又、N層の結晶性が良いため1層の結
晶性も向上させることができた。A buffer layer made of aluminum nitride was formed on a sapphire substrate, and NZ made of an N-type gallium nitride compound semiconductor was formed on the buffer layer by halide vapor phase epitaxy, so a thick N layer with good crystallinity was formed. Obtained at high speed. Therefore, the manufacturing time of the light emitting element was shortened, and a thick N layer with good crystallinity could be created, so that the luminous intensity could be improved. Furthermore, since the N layer had good crystallinity, the crystallinity of the first layer could also be improved.
以下、本発明を具体的な実施例に基づいて説明する。
第1実施例
図は本発明の具体的な一実施例に係る発光ダイオード1
の構成を示した断面図である。
主面を0面((0001)面)とするサファイア基板2
を硝酸で洗浄した後、更にアセトンで洗浄した。
そして、洗浄後、窒素ガスを吹き付けて軟岩させた後、
そのサファイア基板2をMOVPE装置のサセプタに取
り付けた。その後、サファイア基板2を600℃に加熱
して、キャリアガスとしてH2を21!/分、N Hs
を1.517分、トリメチルアルミニウム(TMA)を
15献/分の割合で6分間供給し、AINから成るバッ
ファ層3を厚さ約014に形成した。
その後、そのサファイア基板2をMOVPE装置から取
り出し、ハライド気相成長装置のサセプタに取り付けた
。その後、反応室の温度を900℃として、ガス流の上
流側に載置された金属GaにHCA’ガスを流し、両者
の反応生成物として得られたGaCA’と、NH3と、
キャリアガスN、を1000℃に加熱されたサファイア
基板2に向かって流した。流速はGaC1が10rnI
!/分、NH,が1.01/分、N、が2.01/分と
した。サファイア基板2上に成長したN型のGaNから
成る第1N層4の厚さは2層mであり、その成長速度は
約1即/分であった。
次に、第1N層4が成長したサファイア基板2をハライ
ド気相成長装置から取り出し、MOVPE装置の反応室
のサセプタに載置した。そして、そして、サファイア基
板2を1000℃に加熱して、キャリアガスとしてHl
を2.511/分、NH,を1.51/分、トリメチル
ガリウム(TMG)を15d/分の割合で12分間供給
し、膜厚的27aのN型のGaNから成る第2N層8を
形成した。
次に、サファイア基板2を900℃にして、H2を2.
511/分、NH,を1.5I!/分、TMGを15d
/分、ジエチル亜鉛(DEZ)を10−’mff1/分
の割合で5分間供給して、■型のGaNから戊るI層5
を膜厚1. oAaに形成した。
次に、第1N層4及び第2N層8の側壁と1層5の上面
にアルミニウム電極6.7を蒸着して、発光ダイオード
を形成した。
このようにして得られた発光ダイオード1の第1Nat
4. 第2Na18及び1115(FIFi面(73S
fllfi鏡写真、高エネルギー電子線による反射回折
法(RII[!ED)により、それぞれ、良好な結晶性
が得られていることが分かった。
特に、バッファ層3上に第1N層4をハライド気相成長
法で成長させたので、結晶性の良い厚いN層を高速度で
得ることができた。
尚、上記実施例では、MOVPE法で成長された薄い第
2N層を設けているが、1層5の結晶性を多少犠牲にし
ても良い場合には、この第2N層は必ずしも必要ではな
い。
しかしながら、WIN層4の上に、MOVPE法で精密
に成長させた第2N層8を形成すると、1層5の結晶性
は、N層をハライド気相成長法だけで成長させたものに
比べて更に良くなった。
又、この発光ダイオード1の発光ピークのスペクトルは
480nmであり、発光強度(軸上輝度)は10市cd
であった。
第2実施例
本実施例は、第1実施例において、図のバッファ層3を
分子線エピタキシー法(MBE)により作成したもので
ある。
第1実施例と同様にして、主面を0面((0001)而
)とするサファイア基板2を洗浄した後、そのサファイ
ア基板2をMBE装置のサセプタに取り付けた。その後
、サファイア基板2を500℃に加熱して、窒素ガスプ
ラズマ中で、アルミニウムを蒸発させて、サファイア基
板2の主面上に窒化アルミニウム(AlN)から成るバ
ッファN3を約500人の厚さに形成した。
その後の第1N層4.第2N層8.I層5.電極6.7
の作成方法は、第1実施例と同様である。
このようにして得られた発光ダイオードの第1N層4.
第2N層8及び1層5の断面の顕微鏡写真、高エネルギ
ー電子線による反射回折法(RIIEIED)により、
良好な結晶性が得られていることが分かった。
又、この発光ダイオードlの発光ピークのスペクトルは
480nmであり、発光強度(軸上輝度)は10市cd
であった。
尚、本発明者らの考察によれば、MBEで形成されたバ
ッファ層3では、第1N層4のGaNの成長の核が、バ
ッファ層3をMOVPEで成長させたものと比べて、均
一に分散し、そのために、’JIN層4、第2N層8及
び1層5の単結晶性が良くなったと考えられる。
又、バッファ層3は、サファイア基板2を500℃にし
てMBEで形成したので、多結晶であった。
又、本発明者らは、バッファ層3は多結晶で成長させた
方が単結晶で成長させた方よりも、第1N層4、第2N
層8及び1層5の単結晶性が良いことも見出した。
このためにもMBEでバッファ層3を成長させることは
効果があり、多結晶とする成長温度は、室温〜500℃
が望ましい。
又、′MIN層4、第2N層8及び1層5の単結晶性を
良くするためには、バッファ層3の厚さは100〜10
00人が望ましい。
尚、上記実施例では、第1N層4、第2N層8及びIF
jI5をGaNで形成したが、A l x G aNで
形成しても良い。The present invention will be described below based on specific examples. A first embodiment diagram shows a light emitting diode 1 according to a specific embodiment of the present invention.
FIG. Sapphire substrate 2 whose main surface is the 0 plane ((0001) plane)
was washed with nitric acid and then further washed with acetone. After cleaning and blowing nitrogen gas to soften the rock,
The sapphire substrate 2 was attached to a susceptor of a MOVPE device. Thereafter, the sapphire substrate 2 is heated to 600°C, and H2 is added as a carrier gas to 21! /min, N Hs
was supplied for 1.517 minutes, and trimethylaluminum (TMA) was supplied for 6 minutes at a rate of 1.517 minutes to form a buffer layer 3 made of AIN to a thickness of approximately 0.14 mm. Thereafter, the sapphire substrate 2 was taken out from the MOVPE apparatus and attached to a susceptor of a halide vapor phase epitaxy apparatus. After that, the temperature of the reaction chamber was set to 900°C, and HCA' gas was flowed over the metal Ga placed on the upstream side of the gas flow, and GaCA' and NH3 obtained as reaction products between the two,
A carrier gas N was flowed toward the sapphire substrate 2 heated to 1000°C. The flow rate is 10rnI for GaCl.
! /min, NH, 1.01/min, and N, 2.01/min. The thickness of the first N layer 4 made of N-type GaN grown on the sapphire substrate 2 was 2 m, and the growth rate was about 1 m/min. Next, the sapphire substrate 2 on which the first N layer 4 had been grown was taken out from the halide vapor phase epitaxy apparatus and placed on a susceptor in the reaction chamber of the MOVPE apparatus. Then, the sapphire substrate 2 is heated to 1000°C, and Hl is used as a carrier gas.
was supplied at a rate of 2.511/min, NH at 1.51/min, and trimethyl gallium (TMG) at a rate of 15 d/min for 12 minutes to form a second N layer 8 made of N-type GaN with a film thickness of 27a. did. Next, the sapphire substrate 2 is heated to 900°C, and H2 is heated to 2.
511/min, NH, 1.5I! /min, TMG 15d
/min, diethylzinc (DEZ) was supplied at a rate of 10-'mff1/min for 5 minutes to form an I layer 5 formed from ■-type GaN.
The film thickness is 1. Formed at oAa. Next, aluminum electrodes 6.7 were deposited on the side walls of the first N layer 4 and the second N layer 8 and on the top surface of the first layer 5 to form a light emitting diode. The first Nat of the light emitting diode 1 thus obtained
4. 2nd Na18 and 1115 (FIFi surface (73S
It was found that good crystallinity was obtained by fllfi mirror photography and high-energy electron beam reflection diffraction method (RII[!ED). In particular, since the first N layer 4 was grown on the buffer layer 3 by halide vapor phase epitaxy, a thick N layer with good crystallinity could be obtained at high speed. In the above embodiment, a thin second N layer grown by the MOVPE method is provided, but this second N layer is not necessarily necessary if the crystallinity of the first layer 5 can be sacrificed to some extent. However, when the second N layer 8 is precisely grown using the MOVPE method on the WIN layer 4, the crystallinity of the first layer 5 is lower than that of the N layer grown only using the halide vapor phase epitaxy method. It got even better. Furthermore, the emission peak spectrum of this light emitting diode 1 is 480 nm, and the emission intensity (on-axis brightness) is 10 cd.
Met. Second Embodiment In this embodiment, the buffer layer 3 shown in the figure in the first embodiment was created by molecular beam epitaxy (MBE). In the same manner as in the first embodiment, a sapphire substrate 2 having a 0 (0001) principal surface was cleaned, and then the sapphire substrate 2 was attached to a susceptor of an MBE apparatus. Thereafter, the sapphire substrate 2 is heated to 500°C to evaporate aluminum in nitrogen gas plasma, and a buffer N3 made of aluminum nitride (AlN) is formed on the main surface of the sapphire substrate 2 to a thickness of approximately 500 mm. Formed. Subsequent 1N layer 4. 2nd N layer8. I layer 5. Electrode 6.7
The method for creating is the same as in the first embodiment. The first N layer 4 of the light emitting diode thus obtained.
Micrograph of the cross section of the second N layer 8 and the first layer 5, by reflection diffraction method using high energy electron beam (RIIEIED),
It was found that good crystallinity was obtained. The emission peak spectrum of this light emitting diode 1 is 480 nm, and the emission intensity (on-axis brightness) is 10 cd.
Met. According to the inventors' considerations, in the buffer layer 3 formed by MBE, the growth nuclei of GaN in the first N layer 4 are more uniform than in the buffer layer 3 grown by MOVPE. It is considered that the single crystallinity of the 'JIN layer 4, the second N layer 8, and the first layer 5 was improved because of the dispersion. Further, the buffer layer 3 was polycrystalline because it was formed by MBE at 500° C. on the sapphire substrate 2. In addition, the present inventors have found that when the buffer layer 3 is grown as a polycrystalline layer, the first N layer 4 and the second N layer 3 are
It was also found that layer 8 and layer 1 5 had good single crystallinity. For this reason, it is effective to grow the buffer layer 3 by MBE, and the growth temperature for making it polycrystalline is from room temperature to 500°C.
is desirable. Furthermore, in order to improve the single crystallinity of the MIN layer 4, the second N layer 8, and the first layer 5, the thickness of the buffer layer 3 should be 100 to 10
00 people is desirable. In the above embodiment, the first N layer 4, the second N layer 8 and the IF
Although jI5 is formed of GaN, it may be formed of Al x GaN.
図は本発明の具体的な一実施例に係る発光ダイオードの
構成を示した構成図である。
発光ダイオード 2 ・サファイア基板バッファN 4
第1N層 8−第2N層5・1層
特許出願人 豊田合成株式会社
同 名古屋大学長
同 新技術開発事業団The figure is a configuration diagram showing the configuration of a light emitting diode according to a specific example of the present invention. Light emitting diode 2 ・Sapphire substrate buffer N 4
1st N layer 8-2nd N layer 5/1 layer Patent applicant Toyoda Gosei Co., Ltd. Nagoya University President New Technology Development Corporation
Claims (1)
_−_xN;X=0を含む)からなるN層と、前記N層
上に成長したI型の窒化ガリウム系化合物半導体(Al
_xGa_1_−_xN;X=0を含む)からなるI層
とを有し、 前記サファイア基板と前記N層間に窒化アルミニウム(
AlN)から成るバッファ層を成長させ、そのバッファ
層上に前記N層をハライド気相成長法により成長させた
ことを特徴とする窒化ガリウム系化合物半導体発光素子
。[Claims] A sapphire substrate, an N-type gallium nitride compound semiconductor (Al_xGa_1
____xN;
_xGa_1_-_xN; including X=0), and aluminum nitride (
1. A gallium nitride-based compound semiconductor light emitting device, characterized in that a buffer layer made of (AlN) is grown, and the N layer is grown on the buffer layer by a halide vapor phase epitaxy method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63232887A JPH0281484A (en) | 1988-09-16 | 1988-09-16 | Gallium nitride-based compound semiconductor light-emitting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63232887A JPH0281484A (en) | 1988-09-16 | 1988-09-16 | Gallium nitride-based compound semiconductor light-emitting element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0281484A true JPH0281484A (en) | 1990-03-22 |
Family
ID=16946397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63232887A Pending JPH0281484A (en) | 1988-09-16 | 1988-09-16 | Gallium nitride-based compound semiconductor light-emitting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0281484A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192987A (en) * | 1991-05-17 | 1993-03-09 | Apa Optics, Inc. | High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions |
US5278433A (en) * | 1990-02-28 | 1994-01-11 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound with double layer structures for the n-layer and/or the i-layer |
US5408120A (en) * | 1992-07-23 | 1995-04-18 | Toyoda Gosei Co., Ltd. | Light-emitting device of gallium nitride compound semiconductor |
US5729029A (en) * | 1996-09-06 | 1998-03-17 | Hewlett-Packard Company | Maximizing electrical doping while reducing material cracking in III-V nitride semiconductor devices |
US5733796A (en) * | 1990-02-28 | 1998-03-31 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound |
US6362017B1 (en) | 1990-02-28 | 2002-03-26 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound |
US6489636B1 (en) | 2001-03-29 | 2002-12-03 | Lumileds Lighting U.S., Llc | Indium gallium nitride smoothing structures for III-nitride devices |
JP2002542624A (en) * | 1999-04-16 | 2002-12-10 | シービーエル テクノロジーズ インコーポレイテッド | Semiconductor heterostructure and manufacturing method by two-stage process |
US6635904B2 (en) | 2001-03-29 | 2003-10-21 | Lumileds Lighting U.S., Llc | Indium gallium nitride smoothing structures for III-nitride devices |
US6830992B1 (en) | 1990-02-28 | 2004-12-14 | Toyoda Gosei Co., Ltd. | Method for manufacturing a gallium nitride group compound semiconductor |
JP2005159035A (en) * | 2003-11-26 | 2005-06-16 | Sumitomo Electric Ind Ltd | Light emitting diode and light emitting device |
US7772599B2 (en) | 2004-05-27 | 2010-08-10 | Showa Denko K.K. | Gallium nitride-based semiconductor stacked structure, production method thereof, and compound semiconductor and light-emitting device each using the stacked structure |
US7829913B2 (en) | 2002-06-28 | 2010-11-09 | Hitachi Cable, Ltd. | Porous substrate and its manufacturing method, and gan semiconductor multilayer substrate and its manufacturing method |
-
1988
- 1988-09-16 JP JP63232887A patent/JPH0281484A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6472690B1 (en) | 1990-02-28 | 2002-10-29 | Toyoda Gosei Co., Ltd. | Gallium nitride group compound semiconductor |
US6593599B1 (en) | 1990-02-28 | 2003-07-15 | Japan Science And Technology Corporation | Light-emitting semiconductor device using gallium nitride group compound |
US6472689B1 (en) | 1990-02-28 | 2002-10-29 | Toyoda Gosei Co., Ltd. | Light emitting device |
US6984536B2 (en) | 1990-02-28 | 2006-01-10 | Toyoda Gosei Co., Ltd. | Method for manufacturing a gallium nitride group compound semiconductor |
US5733796A (en) * | 1990-02-28 | 1998-03-31 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound |
US5278433A (en) * | 1990-02-28 | 1994-01-11 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound with double layer structures for the n-layer and/or the i-layer |
US6249012B1 (en) | 1990-02-28 | 2001-06-19 | Toyoda Gosei Co., Ltd. | Light emitting semiconductor device using gallium nitride group compound |
US6830992B1 (en) | 1990-02-28 | 2004-12-14 | Toyoda Gosei Co., Ltd. | Method for manufacturing a gallium nitride group compound semiconductor |
US6362017B1 (en) | 1990-02-28 | 2002-03-26 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound |
US6607595B1 (en) | 1990-02-28 | 2003-08-19 | Toyoda Gosei Co., Ltd. | Method for producing a light-emitting semiconductor device |
US5192987A (en) * | 1991-05-17 | 1993-03-09 | Apa Optics, Inc. | High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions |
US5296395A (en) * | 1991-05-17 | 1994-03-22 | Apa Optics, Inc. | Method of making a high electron mobility transistor |
USRE36747E (en) * | 1992-07-23 | 2000-06-27 | Toyoda Gosei Co., Ltd | Light-emitting device of gallium nitride compound semiconductor |
US5408120A (en) * | 1992-07-23 | 1995-04-18 | Toyoda Gosei Co., Ltd. | Light-emitting device of gallium nitride compound semiconductor |
GB2317053B (en) * | 1996-09-06 | 2001-08-15 | Hewlett Packard Co | Doped semiconductor devices |
US5729029A (en) * | 1996-09-06 | 1998-03-17 | Hewlett-Packard Company | Maximizing electrical doping while reducing material cracking in III-V nitride semiconductor devices |
JP2002542624A (en) * | 1999-04-16 | 2002-12-10 | シービーエル テクノロジーズ インコーポレイテッド | Semiconductor heterostructure and manufacturing method by two-stage process |
US6635904B2 (en) | 2001-03-29 | 2003-10-21 | Lumileds Lighting U.S., Llc | Indium gallium nitride smoothing structures for III-nitride devices |
US6489636B1 (en) | 2001-03-29 | 2002-12-03 | Lumileds Lighting U.S., Llc | Indium gallium nitride smoothing structures for III-nitride devices |
US7829913B2 (en) | 2002-06-28 | 2010-11-09 | Hitachi Cable, Ltd. | Porous substrate and its manufacturing method, and gan semiconductor multilayer substrate and its manufacturing method |
JP2005159035A (en) * | 2003-11-26 | 2005-06-16 | Sumitomo Electric Ind Ltd | Light emitting diode and light emitting device |
US7772599B2 (en) | 2004-05-27 | 2010-08-10 | Showa Denko K.K. | Gallium nitride-based semiconductor stacked structure, production method thereof, and compound semiconductor and light-emitting device each using the stacked structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07202265A (en) | Manufacture of group iii nitride semiconductor | |
JP3140751B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JPH1084132A (en) | Semiconductor light emitting element | |
JPH03252175A (en) | Manufacture of gallium nitride compound semiconductor | |
JP2007227671A (en) | Light emitting element | |
JPH0281484A (en) | Gallium nitride-based compound semiconductor light-emitting element | |
JP2829319B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
US20180182916A1 (en) | Group iii nitride semiconductor light-emitting device and production method therefor | |
JPH07131068A (en) | Nitrogen-group-iii element compound semiconductor light emitting element | |
JPH03252177A (en) | Light emitting element of gallium nitride compound semiconductor | |
CN111244233B (en) | LED preparation process | |
CN111244241B (en) | Medical light-emitting diode | |
JP3402460B2 (en) | Gallium nitride based compound semiconductor growth method | |
JPH07283436A (en) | Iii-v compound semiconductor and light-emitting element | |
JPH09186362A (en) | Iii nitride semiconductor light emitting element | |
JPH06151962A (en) | Nitrogen-iii compound semiconductor luminous element and manufacture thereof | |
JP4556034B2 (en) | Method for manufacturing group III nitride semiconductor | |
JP3498185B2 (en) | Nitrogen-3 group compound semiconductor light emitting device and method of manufacturing the same | |
JP3883303B2 (en) | Method for producing p-type group III nitride semiconductor | |
JPH04163969A (en) | Light emitting element of gallium nitride compound semiconductor | |
JPH04321279A (en) | Gallium nitride base compound semiconductor light-emitting device | |
JP2000040843A (en) | Gallium nitride based compound semiconductor light emitting element | |
JP3613190B2 (en) | Gallium nitride compound semiconductor light emitting device and method for manufacturing the same | |
JP2000040842A (en) | Gallium nitride compound semiconductor light emitting element | |
JPH03252178A (en) | Light emitting element of gallium nitride compound semiconductor |