JPH0281447A - Flexible pin carrier and semiconductor device employing the same - Google Patents

Flexible pin carrier and semiconductor device employing the same

Info

Publication number
JPH0281447A
JPH0281447A JP63231829A JP23182988A JPH0281447A JP H0281447 A JPH0281447 A JP H0281447A JP 63231829 A JP63231829 A JP 63231829A JP 23182988 A JP23182988 A JP 23182988A JP H0281447 A JPH0281447 A JP H0281447A
Authority
JP
Japan
Prior art keywords
pin carrier
flexible pin
semiconductor element
substrates
conductive elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63231829A
Other languages
Japanese (ja)
Other versions
JP2581592B2 (en
Inventor
Takashi Hosokawa
細川 隆
Tadao Kushima
九嶋 忠雄
Tasao Soga
太佐男 曽我
Kazuji Yamada
一二 山田
Masahiro Aida
合田 正広
Mamoru Sawahata
沢畠 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63231829A priority Critical patent/JP2581592B2/en
Publication of JPH0281447A publication Critical patent/JPH0281447A/en
Application granted granted Critical
Publication of JP2581592B2 publication Critical patent/JP2581592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/141One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Wire Bonding (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To avoid adhesion of solder along a conductive elastic fine wire which is soldered to a semiconductor element or a printed board even if the solder adheres to the parts other than the bonding part of the fine wire and avoid the degradation of the elasticity of the fine wire by a method wherein a board which also holds the end parts of the fine wires is provided on the end parts of the fine wires. CONSTITUTION:Two boards 1 and 2 made of different materials are linked with each other by bonding a large number of conductive elastic fine wires 3. Connection pads 5 connected to the fine wires 3 are provided outside both the boards 1 and 2. The board 1 is placed on the side of a semiconductor element or a semiconductor element mounting part and made of material such as ceramics which has a thermal expansion coefficient equivalent to that of the material of the semiconductor element. The board 2 is placed on the side of a multilayer printed board side and made of material such as ceramics or resin which has a thermal expansion coefficient equivalent to that of the material of the multilayer printed board. Further, the fine wire 3 is required to have an elasticity sufficient to absorb the difference in thermal expansion coefficient between the boards 1 and 2 and to have a resistance as small as possible. Kovar, copper, copper alloy or the like may be employed as the material of the fine wire 3. Thermosetting resin is used as the resin 4 fixing the fine wires 3 to the boards 1 and 2. The connection pads 5 are made of copper and connect the boards 1 and 2 to each other.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高密度接続パッドを有する半導体装置に係り
、特に半導体素子と多層プリント基板の間のはんだバン
プに負荷される熱応力並びに冷却装置から該素子への負
荷外力を緩和するのに好適なフレキシブルピンキャリア
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor device having high-density connection pads, and particularly to a cooling device and thermal stress applied to solder bumps between a semiconductor element and a multilayer printed circuit board. The present invention relates to a flexible pin carrier suitable for alleviating external load forces applied to the element.

[従来の技術] 従来のチップキャリアの実装方法は、特開昭59−21
8795に記載のように、チップキャリアの外面に形成
されたバンプ等の接続手段を、プリント基板等のチップ
キャリア搭載面上に形成されたパッド等の接続手段には
んだ付は接続する際に、前記チップキャリアの接続手段
と前記基板の搭載面上の接続手段の間に、金属等の弾性
導電体を材料とする中間接続子を植設した接続板より構
成された中間接続板を介在させて互いに対応する前記面
接続手段同志をそれぞれ電気的に接続していた。
[Prior art] A conventional chip carrier mounting method is disclosed in Japanese Patent Application Laid-Open No. 59-21.
As described in 8795, when connecting the connection means such as bumps formed on the outer surface of the chip carrier to the connection means such as pads formed on the chip carrier mounting surface such as a printed circuit board, soldering is performed using the above-mentioned method. Between the connection means of the chip carrier and the connection means on the mounting surface of the board, an intermediate connection plate composed of a connection plate in which intermediate connectors made of an elastic conductor such as metal are implanted is interposed so that they can be connected to each other. The corresponding surface connecting means were electrically connected to each other.

すなわち、第12図(a)に示すように、プリント基板
41とチップ基板34との間にそれぞれのパッド39、
バンプ40間を接続する中間接続子36をその中間部に
て位置保持する接続板37を介在させたものである。ま
た、第12図(b)に示すように、前記中間接続子36
は、バンプ40等に対応させず、比較的数置に配設させ
たものも知られている。
That is, as shown in FIG. 12(a), pads 39,
A connecting plate 37 is interposed to hold an intermediate connector 36 connecting between the bumps 40 at an intermediate portion thereof. Further, as shown in FIG. 12(b), the intermediate connector 36
It is also known that the bumps do not correspond to the bumps 40 and the like, but are arranged at relatively few positions.

[発明が解決しようとする課題] 上記従来技術では、第12図(a)に示すように接続板
37上下に突出した弾性導電体からなる中間接続子36
を介してチップキャリアとプリント基板を接続していた
が、その方法では一度接続してから外した場合に中間接
続子36にはんだが付着し中間接続子36の弾性を低下
させる恐れがある。また第12図(b)に示すように中
間接続子36のピッチを小さくした場合、はんだ溶融時
に毛細管現象により中間接続子36間にはんだを吸い上
げてしまう点について配慮がされておらず、弾性導電体
の弾性を低下させるという問題があった。
[Problems to be Solved by the Invention] In the above-mentioned prior art, as shown in FIG.
The chip carrier and the printed circuit board have been connected through a wire, but in this method, if the connection is made once and then removed, there is a risk that solder may adhere to the intermediate connector 36 and reduce the elasticity of the intermediate connector 36. Furthermore, when the pitch of the intermediate connectors 36 is reduced as shown in FIG. 12(b), no consideration is given to the fact that the solder may be sucked up between the intermediate connectors 36 due to capillary action when the solder melts, and the elastic conductivity There was a problem that it reduced the elasticity of the body.

更に接続板37の上下に中間接続子36を突出させる構
造であるため、実装高さに制限がある場合中間接続子3
6の接続板37からの突出量が小さくなり、中間接続子
36のフレキシビリティが低下する事も考えられる。
Furthermore, since the intermediate connector 36 is structured to protrude above and below the connection plate 37, if there is a limit to the mounting height, the intermediate connector 3
It is also conceivable that the amount of protrusion of the intermediate connector 6 from the connecting plate 37 becomes smaller, and the flexibility of the intermediate connector 36 decreases.

本発明の目的は、このような事情に基づいてなされたも
のであり、弾性導体にはんだが付着することが全くなり
、これにより前記弾性導体における弾性の劣化を防止し
て、基板とこれに搭載される半導体素子等の熱膨張係数
の相違による熱応力並びに該素子等にかかる出力を緩和
できるようにしたフレキシブルピンキャリアを提供する
ものである。
The object of the present invention has been made based on the above circumstances, and it is possible to completely prevent solder from adhering to the elastic conductor, thereby preventing deterioration of the elasticity of the elastic conductor, and improving the bond between the board and the board mounted thereon. The present invention provides a flexible pin carrier that can alleviate thermal stress due to differences in thermal expansion coefficients of semiconductor elements and the like as well as outputs applied to the elements.

[問題点を解決するための手段] このような目的を達成するために1本発明は、多数の導
電性弾性体細線の両端のうち片方は半導体素子もしくは
半導体素子実装部と同等の熱膨張係数を持つ基板に固着
し、もう片方は多層プリント基板と同等の熱膨張係数を
持つ基板に固着することにより両基板間の熱膨張の差を
緩和し、外力に対する変形能を向上させることを特徴と
するものである。
[Means for Solving the Problems] In order to achieve such an object, one of the present invention provides that one of both ends of a large number of conductive elastic thin wires has a coefficient of thermal expansion equivalent to that of a semiconductor element or a semiconductor element mounting part. The other side is fixed to a board with a coefficient of thermal expansion equivalent to that of a multilayer printed circuit board, thereby alleviating the difference in thermal expansion between the two boards and improving deformability against external forces. It is something to do.

また、多数の導電性弾性体細線の一端を、多層プリント
基板と同等の熱膨張係数を持つ単一基板に開けた多数の
スルーホールに挿入固着してなることを特徴とするもの
である。
Further, one end of a large number of conductive elastic thin wires is inserted and fixed into a large number of through holes formed in a single board having a coefficient of thermal expansion equivalent to that of a multilayer printed board.

なお、後者の場合は、半導体素子もしくは半導体素子実
装部を下側にして、前記導電性弾性体細線の他端をはん
だ付けするようにするものである。
In the latter case, the other end of the thin conductive elastic wire is soldered with the semiconductor element or the semiconductor element mounting portion facing downward.

[作用] 上記構成の実装構造で、半導体素子もしくは半導体素子
実装部側に配置した基板は該素子もしくは該素子実装部
の熱膨張係数に近い材料を用いているため、稼動時に生
ずる熱による熱膨張差を小さくでき、そのため両者を接
続するはんだバンプに負荷される熱応力を小さくできる
。同様に多層プリント基板側に配置した基板も該多層基
本の熱膨張係数に近い材料を使用しているため、両者を
接続するはんだバンプに負荷される熱応力を小さくでき
る。更に、基本的に熱膨張係数が大きく異なる該素子も
しくは該素子実装部側基板と該多層基板側基板との間に
生じる熱膨張差による横方向の変位は、2枚の基板間を
接続する導電性弾性体細線の弾性より吸収できる。また
該素子もしくは該素子実装部にかかる負荷外力も全導電
性弾性体細線が横方向に弾性変形することにより吸収で
きる。
[Function] In the mounting structure with the above configuration, the substrate placed on the side of the semiconductor element or the semiconductor element mounting part uses a material with a coefficient of thermal expansion close to that of the element or the element mounting part, so thermal expansion due to heat generated during operation is avoided. The difference can be reduced, and therefore the thermal stress applied to the solder bumps that connect the two can be reduced. Similarly, since the substrate disposed on the multilayer printed circuit board side is made of a material with a coefficient of thermal expansion close to that of the multilayer base, the thermal stress applied to the solder bumps connecting the two can be reduced. Furthermore, the lateral displacement caused by the difference in thermal expansion that occurs between the element or element mounting part side substrate and the multilayer substrate side substrate, which have largely different coefficients of thermal expansion, is caused by the conduction between the two substrates. It can be absorbed by the elasticity of thin elastic wire. Further, external load force applied to the element or the element mounting portion can be absorbed by elastically deforming the entirely conductive elastic thin wire in the lateral direction.

そして、前記はんだは、その溶融等ではんだ固着部分以
外に付着するようなことがあっても基板によって導電性
弾性体細線に沿っての付着は防止できるから該細線の弾
線が劣化するようなことはなくなる。
Even if the solder adheres to areas other than the solder-fixed parts due to its melting, the substrate can prevent the solder from adhering along the conductive elastic thin wire, so that the trajectory of the thin wire will not deteriorate. That will no longer be the case.

そして、前記基板は必ずしも半導体素子等側に設けずし
てプリントを基板側にのみ設けるようにしてもよいが、
この場合、半導体素子等を下側にして細線とのはんだ付
けをするようにすればはんだの細線に沿って流れること
はなくなり、該細線の弾性劣化を惹き越こすことはなく
なる。
The substrate may not necessarily be provided on the semiconductor element side, but the print may be provided only on the substrate side.
In this case, if the semiconductor element or the like is soldered to the thin wire, the solder will not flow along the thin wire, and the elastic deterioration of the thin wire will not be caused.

[実施例] 以下図面を参照しながら本発明を詳述する。[Example] The present invention will be described in detail below with reference to the drawings.

第1図はフレキシブルピンキャリアの代表実施例を示す
縦断面図である。
FIG. 1 is a longitudinal sectional view showing a representative embodiment of a flexible pin carrier.

本発明によるフレキシブルピンキャリアは、材質の異な
る2種類の基板(A)1、(B)2を持ち、また導電性
弾性体細線3を持つ、2枚の基板(A)1、(B)2は
多数の該細線3を挿入固着することにより連結される。
The flexible pin carrier according to the present invention has two types of substrates (A) 1 and (B) 2 made of different materials, and also has two substrates (A) 1 and (B) 2 having conductive elastic thin wires 3. are connected by inserting and fixing a large number of the thin wires 3.

更に周基板(A)1、(B)2の外側には前記細線3と
接続された接続パッド5を設ける構造とする。
Further, a connection pad 5 connected to the thin wire 3 is provided on the outside of the peripheral substrates (A) 1 and (B) 2.

ここで基板(A)1は半導体素子もしくは半導体素子実
装部側に配置され、それを構成する材料と同等の熱膨張
係数を持つ材料例えばセラミックスを使用する。また基
板(B)2は多層プリント基板側とし、それと同等の熱
膨張係数を持つ材料例えばセラミックスもしくは樹脂を
使用する。このことは、プリント基板として誘電率の低
いものを特定せざるを得ない場合、半導体素子実装部と
の間で熱膨張係数に大きな差異が生ずるからである。更
に該細線3は、基板(A)1及び基板(B)2間の熱膨
張差を吸収できるだけの弾性が有り、抵抗が出来るだけ
小さいことが必要なので金属細線例えばコバール、銅及
び銅系合金またはそれらの複合材を用いる。該細線を基
板(A)1及び基板(B)2に固着するための樹脂4は
熱硬化性樹脂を用いる。また接続パッド5には銅を用い
、基板(A)1と基板(B)2を連結させ、両基板表面
を研磨した後に形成するものとする。
Here, the substrate (A) 1 is disposed on the side of the semiconductor element or the semiconductor element mounting part, and is made of a material such as ceramics having the same coefficient of thermal expansion as the material constituting it. Further, the substrate (B) 2 is on the side of the multilayer printed circuit board, and is made of a material having a thermal expansion coefficient equivalent to that of the multilayer printed circuit board, such as ceramics or resin. This is because if it is necessary to specify a printed circuit board with a low dielectric constant, there will be a large difference in coefficient of thermal expansion between the printed circuit board and the semiconductor element mounting section. Furthermore, it is necessary that the thin wire 3 has enough elasticity to absorb the difference in thermal expansion between the substrate (A) 1 and the substrate (B) 2, and that the resistance is as small as possible. Use those composite materials. A thermosetting resin is used as the resin 4 for fixing the thin wire to the substrate (A) 1 and the substrate (B) 2. Further, the connection pad 5 is made of copper and is formed after connecting the substrate (A) 1 and the substrate (B) 2 and polishing the surfaces of both substrates.

第2図(a)及び(b)はフレキシブルピンキャリアを
用いて半導体素子実装部16及び半導体素子21を多層
プリント基板14上に実装した構造の縦断面図である。
FIGS. 2(a) and 2(b) are longitudinal sectional views of a structure in which the semiconductor element mounting portion 16 and the semiconductor element 21 are mounted on the multilayer printed circuit board 14 using a flexible pin carrier.

また第3図(a)及び(b)はフレキシブルピンキャリ
アの作用を説明する断面図である。なお本発明では被実
装物として半導体素子21及び半導体素子実装部16の
両方を考えてたものであるが説明を判り易くするため以
後半休素子実装部16についてのみ説明する。
Further, FIGS. 3(a) and 3(b) are cross-sectional views illustrating the function of the flexible pin carrier. In the present invention, both the semiconductor element 21 and the semiconductor element mounting section 16 are considered as the object to be mounted, but in order to make the explanation easier to understand, only the half-half element mounting section 16 will be described below.

この構造とすることにより、第3図(a)に示すように
該素子実装部16とフレキシブルピンキャリアの間を接
続するはんだバンプ(A)11゜及び該多層基板14と
フレキシブルピンキャリアの間を接続するはんだバンプ
(B)12にかかる熱膨張の差による応力は緩和され、
また最も熱膨張差の大きい基板(A)1と基板(B)2
の間の熱応力は該細線3の弾性変形によって吸収される
With this structure, as shown in FIG. 3(a), the solder bumps (A) 11° connecting between the element mounting part 16 and the flexible pin carrier and the connection between the multilayer board 14 and the flexible pin carrier are formed. The stress due to the difference in thermal expansion applied to the solder bumps (B) 12 to be connected is relaxed,
Also, substrate (A) 1 and substrate (B) 2 with the largest difference in thermal expansion
The thermal stress during this period is absorbed by the elastic deformation of the thin wire 3.

更に第3図(b)に示すように冷却構造体19から該素
子実装部16が受ける負荷外力20も該細線3の弾性変
形により吸収されるため、より信頼性の高い実装構造と
することができる。
Furthermore, as shown in FIG. 3(b), the load external force 20 applied to the element mounting portion 16 from the cooling structure 19 is also absorbed by the elastic deformation of the thin wires 3, so that a more reliable mounting structure can be achieved. can.

第4図(a)は他の1実施例を示す縦断面図である。こ
のキャリアは単一基板2a及び該細線3を持ち、単一基
板2aに多数の該細線3の一端を樹脂4を用いて挿入固
着した構造である。
FIG. 4(a) is a longitudinal sectional view showing another embodiment. This carrier has a single substrate 2a and the thin wires 3, and has a structure in which one end of a large number of the thin wires 3 is inserted and fixed to the single substrate 2a using a resin 4.

第4図(b)にこの場合の実装構造の断面図を示す。こ
の構造においては該細線3の単一基板2aに固着されて
いない側に該素子実装部16を接続し、単一基板2a側
を該多層基板15に接続するものとする。
FIG. 4(b) shows a sectional view of the mounting structure in this case. In this structure, the element mounting portion 16 is connected to the side of the thin wire 3 that is not fixed to the single substrate 2a, and the side of the single substrate 2a is connected to the multilayer substrate 15.

この場合において、素子実装部16と細線3を接続する
場合、前記素子実装部16を下側に位置づけて行なうこ
とにより、はんだが前記細線3に沿って溶は落ちるのを
防止することができる。単一基板2aは上記第一の実施
例における基板(B)2と同様に該多層基板15と同等
の熱膨張係数を持つ材料例えばセラミックスもしくは樹
脂が使用される。また樹脂4としては熱硬化性樹脂を用
いる。これにより該多層基板15と単一基板2aを接続
しているはんだバンプ(B)12にかかる熱応力を緩和
することができる。また該細線3は上記第一の実施例と
同じものを用い、該軸m3の弾性により該素子実装部1
6と該細線3を接続するはんだバンプ(A)11にかか
る応力を緩和する構造とした。
In this case, when connecting the element mounting part 16 and the thin wire 3, by positioning the element mounting part 16 on the lower side, it is possible to prevent the solder from melting down along the thin wire 3. As with the substrate (B) 2 in the first embodiment, the single substrate 2a is made of a material having the same coefficient of thermal expansion as the multilayer substrate 15, such as ceramics or resin. Further, as the resin 4, a thermosetting resin is used. Thereby, the thermal stress applied to the solder bumps (B) 12 connecting the multilayer substrate 15 and the single substrate 2a can be alleviated. Further, the thin wire 3 is the same as in the first embodiment, and the elasticity of the axis m3 allows the element mounting portion to
The solder bump (A) 11 that connects the thin wire 3 to the solder bump 6 is structured to relieve the stress applied thereto.

このキャリアを使用して該素子実装部16を該多層基板
15に実装する場合、該素子実装部16とこのキャリア
の接続は該細線3を直接該素子実装部16の接続パッド
13にはんだ付けするため、強度的には上記第1の実施
例に多少劣るが、上側の基板(A)1が無い分だけキャ
リアの高さを低くできるので実装構造の高さに制約があ
る場合に有効になると言える。
When mounting the element mounting part 16 on the multilayer board 15 using this carrier, the connection between the element mounting part 16 and this carrier is made by directly soldering the thin wire 3 to the connection pad 13 of the element mounting part 16. Therefore, in terms of strength, it is somewhat inferior to the first embodiment, but since the height of the carrier can be lowered by the absence of the upper substrate (A) 1, it is effective when there is a restriction on the height of the mounting structure. I can say it.

第5図(a)に別の実施例の縦断面図を示す。FIG. 5(a) shows a longitudinal sectional view of another embodiment.

この特徴は第4図(a)に示した該細線3の一端を釘型
形状としたことで、この細線を以後釘型細線6とする。
This feature is that one end of the thin wire 3 shown in FIG. 4(a) is shaped like a nail, and this thin wire will hereinafter be referred to as a nail-shaped thin wire 6.

第5図(b)に釘型細線6を使用するキャリアを用いた
実装構造の縦断面図を示す。
FIG. 5(b) shows a longitudinal cross-sectional view of a mounting structure using a carrier using nail-shaped thin wires 6.

この構造においては該釘型細線6の頭部が接続パッドの
役をして、はんだが該釘型細線6の頭部以外に付着する
のを防止する。またはんだ接続部の面積を増加させるこ
とができるため、はんだバンプ(A)11にかかる応力
を緩和するのにより適した方法である。更に細線6をこ
のような形状とすることにより該素子実装部16とのは
んだ付は作業を容易にする作用も持つ。
In this structure, the head of the nail-shaped thin wire 6 serves as a connection pad to prevent solder from adhering to areas other than the nail-shaped thin wire 6. This method is more suitable for alleviating the stress applied to the solder bumps (A) 11 because the area of the solder connection portion can be increased. Further, by forming the thin wire 6 into such a shape, the soldering operation with the element mounting portion 16 is facilitated.

なお細線6の一端を釘型にする方法の説明図を第6図(
a)〜(c)に示す、まず第6図(a)に示すように細
線保持部30先端より該細線3を一定長さ突出させ、第
6図(b)に示すように該保持部30先端より一定の距
離にタングステン電極31を配置し、該保持部30との
間に電流を流しアーク32を飛ばして細線先端を溶解さ
せ球状化させる。その直後、タングステン電極31を取
り去り、第6図(c)に示すように平板33に押しつけ
先端を釘型にした後、細線を一定長さに切断する方法で
容易に製造できる。
An explanatory diagram of how to make one end of the thin wire 6 into a nail shape is shown in Figure 6 (
As shown in a) to (c), first, as shown in FIG. 6(a), the thin wire 3 is made to protrude a certain length from the tip of the thin wire holding portion 30, and as shown in FIG. 6(b), the thin wire 3 is A tungsten electrode 31 is placed at a certain distance from the tip, and a current is passed between the tungsten electrode 31 and the holding portion 30 to blow an arc 32 to melt the tip of the thin wire and make it spherical. Immediately after that, the tungsten electrode 31 is removed, pressed against a flat plate 33 to form a nail-shaped tip as shown in FIG. 6(c), and then the thin wire is cut into a predetermined length. This can be easily manufactured.

他の1実施例の縦断面図を第7図に示す。2枚の基板(
A)1.(B)2に予め導体(A)7、(B)8例えば
タングステンを埋め込んでおいてから焼結し、基板表面
に設けた接続パッド5aに該細線3を配列し接合するこ
とによって2枚の基板(A)1、(B)2を接続する構
造が考えられる。
A longitudinal sectional view of another embodiment is shown in FIG. Two boards (
A)1. Conductors (A) 7 and (B) 8, for example, are embedded in (B) 2 in advance and sintered, and the thin wires 3 are arranged and bonded to connection pads 5a provided on the surface of the substrate. A structure in which substrates (A) 1 and (B) 2 are connected is conceivable.

導体(A)7、(B)8としては基板(A)1、(B)
2の両方ともセラミック基板の場合は予めグリーンシー
トに開けたスルーホールに埋め込んでおきそれを焼結す
るため、焼結時に温度に耐えられる材料例えばタングス
テンを用いる。また基板(B)2に樹脂基板を使用する
場合は焼結する必要がないので導電性を上げるために導
体(B)8として綱を用いる。
As conductors (A) 7 and (B) 8, substrates (A) 1 and (B)
If both of the above two are ceramic substrates, they are embedded in through holes drilled in the green sheet in advance and then sintered, so a material that can withstand the temperature during sintering, such as tungsten, is used. Further, when a resin substrate is used as the substrate (B) 2, there is no need for sintering, so a wire is used as the conductor (B) 8 to improve conductivity.

各部の主な作用は上記第1の実施例と同じであるが、基
板(A)1及び基板(B)2の表面にある接続パッド5
aと該細線3の接続部にはより大きな応力がかかる事と
なるため、接続パッド5aに該細線3を接続する際に、
はんだより融点が高く強度も高い銀ろう9を用いる。こ
れによりキャリアと該素子実装部16間、及びキャリア
と該多層基板15間をはんだ付けする際、または加熱し
て着脱する際にキャリアが分解するのを防止することが
でき、さらに熱膨張及び負荷外力により接続パッド5a
と該細線3の接続部にかかる応力を支えることができる
The main functions of each part are the same as in the first embodiment, except for the connection pads 5 on the surfaces of the substrate (A) 1 and the substrate (B) 2.
Since a larger stress will be applied to the connection part between a and the thin wire 3, when connecting the thin wire 3 to the connection pad 5a,
Silver solder 9 is used which has a higher melting point and strength than solder. This can prevent the carrier from decomposing when soldering between the carrier and the element mounting section 16, between the carrier and the multilayer board 15, or when attaching and detaching by heating, and furthermore prevents thermal expansion and load. Connecting pad 5a due to external force
The stress applied to the connecting portion of the thin wire 3 can be supported.

また他の1実施例としては第8図に示すように2枚の基
板(A)1、(B)2間にそれらの基板に接して熱硬化
性のゴム系樹脂例えばシリコンゴム10を設けることに
より、熱応力並びに外力負荷時に該細線3の基板(A)
1及び基板(B)2との接点に集中する応力をシリコン
ゴム10等の弾性により緩和する構造が考えられる。
As another embodiment, as shown in FIG. 8, a thermosetting rubber-based resin such as silicone rubber 10 is provided between two substrates (A) 1 and (B) 2 in contact with the substrates. Therefore, when thermal stress and external force are applied, the substrate (A) of the thin wire 3
A structure is conceivable in which the stress concentrated at the contact point with the substrate (B) 1 and the substrate (B) 2 is alleviated by the elasticity of the silicone rubber 10 or the like.

この構造とする場合、シリコンゴム10を各基板表面に
薄く均一に塗布する必要がある。その方法としては、ま
ず硬化前の流動状態のシリコンゴム10を片面に塗布す
るのに必要な量だけ基板間に流し込み、遠心力を利用し
て片面に均一に塗布し硬化させる。そしてキャリアを反
転させ、もう片面の分の該シリコンゴム10を注入し前
回同様遠心力を用いて均一に塗布し硬化させる。この方
法によると該細線3にも多少のシリコンゴム10が付着
する可能性があるが、表面に薄膜程度に付着するだけで
あるので変形機能に影響はないものである。
When adopting this structure, it is necessary to apply the silicone rubber 10 thinly and uniformly to the surface of each substrate. As a method, first, silicone rubber 10 in a fluid state before hardening is poured between the substrates in an amount necessary to coat one side, and centrifugal force is used to uniformly coat the silicone rubber 10 on one side and harden it. Then, the carrier is turned over, and the silicone rubber 10 for the other side is injected, uniformly coated and cured using centrifugal force as before. According to this method, there is a possibility that some silicone rubber 10 may adhere to the thin wire 3, but since only a thin film is attached to the surface, the deformation function is not affected.

またこの場合、第8図(b)に示す断面図のように2枚
の基板(A)1.(B)2の間をシリコンゴム10で充
填する構造でも機能的に有効である。すなわち、熱応力
並びに外力負荷時に該細線3の基板(A)1及び基板(
B)2との接点に集中する応力をシリコンゴム10の柔
軟性により緩和する作用のほかに該細線3の耐食性を向
上させ。
Further, in this case, two substrates (A) 1. (B) A structure in which the space between the parts 2 and 2 is filled with silicone rubber 10 is also functionally effective. That is, when thermal stress and external force are applied, the substrate (A) 1 and the substrate (A) of the thin wire 3
B) The flexibility of the silicone rubber 10 alleviates the stress concentrated at the contact point with the wire 2, and also improves the corrosion resistance of the thin wire 3.

更に該細線3を保護する作用も持たせることができるの
で高信頼性化が図れる。
Furthermore, since the thin wire 3 can be protected, high reliability can be achieved.

第9図(a)〜(f)はフレキシブルピンキャリアの製
法の1例を説明する断面図である。まず第9図(、)に
示すように2枚の基板(A)1、(B)2それぞれに半
導体素子実装部の接続用パッドのピッチ例えば250〜
300μmに合わせてスルーホール29例えば直径12
0μmをあける。そして基板(A)1及び(B)2をス
ルーホール29の位置合わせして重ね、基板(B)2を
基板保持構造体26に固定する0次に第9図(b)に示
すようにそこに適当な長さ例えば基板(A)1、(B)
2の厚さを0.7mm、基板(A)1゜(B)2の間隔
を0.6mmとした場合、長さ2mmに切断した直径1
00μmの該細線3を細線挿入装置23を用いて挿入す
る。そして第9ri!I(c)に示すように、基板(A
)1を基板保持用治具22でつかみ、該細線3が動かな
いように上部から細線押さえ治具24を当ててから基板
(A)1を引き上げる。引き上げる量は基板(A)1゜
(B)2の間隔である0、6mmに調整する。その後第
9図(d)に示すようにスルーホール29に樹脂4を圧
入して固着する。この場合上部は細線押さえ治具24を
取り除いて樹脂注入ノズル25を位置合わせし、下部は
基板保持用治具板26aをスライドさせて樹脂注入ノズ
ル25を位置合わせした後、樹脂を注入固着させ、基板
(A)L、(B)2を接続する。そして基板(A)1、
(B)2の外面を研磨し、第9図(e)に示す構造体を
作製する。最後に第9図(f)に示すように接続パッド
5を形成することで製作できる。
FIGS. 9(a) to 9(f) are cross-sectional views illustrating one example of a method for manufacturing a flexible pin carrier. First, as shown in FIG. 9(, ), the pitch of the connection pads of the semiconductor element mounting portion on each of the two substrates (A) 1 and (B) 2 is, for example, 250 to 250.
Through hole 29 for example diameter 12 to match 300μm
Leave a gap of 0 μm. Then, the substrates (A) 1 and (B) 2 are aligned with the through holes 29 and overlapped, and the substrate (B) 2 is fixed to the substrate holding structure 26 as shown in FIG. 9(b). For example, the substrate (A) 1, (B)
When the thickness of 2 is 0.7 mm and the distance between substrates (A) 1° and (B) 2 is 0.6 mm, the diameter of 1 cut to a length of 2 mm is
The thin wire 3 of 00 μm is inserted using the thin wire insertion device 23. And the 9th ri! As shown in I(c), the substrate (A
) 1 with the substrate holding jig 22, apply the thin wire holding jig 24 from above so that the thin wire 3 does not move, and then pull up the substrate (A) 1. The amount of lifting is adjusted to 0.6 mm, which is a distance of 1° for the substrate (A) and 2° for the substrate (B). Thereafter, as shown in FIG. 9(d), the resin 4 is press-fitted into the through-hole 29 and fixed. In this case, for the upper part, remove the thin wire holding jig 24 and align the resin injection nozzle 25, and for the lower part, slide the substrate holding jig plate 26a to align the resin injection nozzle 25, and then inject and fix the resin. Connect the substrates (A)L and (B)2. And substrate (A) 1,
(B) The outer surface of 2 is polished to produce the structure shown in FIG. 9(e). Finally, it can be manufactured by forming connection pads 5 as shown in FIG. 9(f).

さらに別の製法としては、第10図(a)〜(d)に示
すように、基板(A)1、(B)2にセラミックスを用
い、該細線3に高融点金属例えばタングステンを用いる
場合を考える。まず基板(A)1、(B)2のグリーン
シートに該素子もしくは該素子実装部の接続用パッドの
ピッチに合わせた間隔でスルーホール29を開ける。次
に第10図(a)に示すように、基板(B)2を基板保
持構造体26に固定した後、スルーホール29に該細線
3を細線挿入装置23を用いて圧入する。
Still another manufacturing method is to use ceramics for the substrates (A) 1 and (B) 2 and to use a high melting point metal such as tungsten for the thin wire 3, as shown in FIGS. 10(a) to (d). think. First, through holes 29 are made in the green sheets of substrates (A) 1 and (B) 2 at intervals corresponding to the pitch of the connection pads of the element or the element mounting portion. Next, as shown in FIG. 10(a), after fixing the substrate (B) 2 to the substrate holding structure 26, the thin wire 3 is press-fitted into the through hole 29 using the thin wire insertion device 23.

そして第10図(b)に示すように基板(A)1を基板
保持用治具22で保持し、基板(B)2に挿入されてい
る該細線3と基板(A)1のスルーホール29の位置を
合わせた後基板(A)1を下げて両基板(A)1、(B
)2を結合させる。その際に基板(A)1が曲がらない
ように基板押さえ治具24aで押さえる。なお第10図
(c)に示すように焼結中に基板間隔が変化しないよう
に厚さQ、6mmのタングステン製スペーサ42を挿入
しておいてから構造体を加熱して焼結し、スペーサ42
を外して外面を研磨した後接続パッドを形成することに
より第10図(d)に示すフレキシブルピンキャリアが
容易に製作できる。
Then, as shown in FIG. 10(b), the substrate (A) 1 is held by a substrate holding jig 22, and the thin wire 3 inserted into the substrate (B) 2 and the through hole 29 of the substrate (A) 1 are After aligning the positions, lower the board (A) 1 and place both boards (A) 1 and (B).
)2 are combined. At this time, the substrate (A) 1 is held down with a substrate holding jig 24a so that it does not bend. As shown in FIG. 10(c), a tungsten spacer 42 with a thickness Q of 6 mm is inserted so that the spacing between the substrates does not change during sintering, and then the structure is heated and sintered. 42
The flexible pin carrier shown in FIG. 10(d) can be easily manufactured by removing the pin carrier, polishing the outer surface, and then forming connection pads.

第11図(a)、(b)は導電性弾性体細線3の形状を
説明する部分断面図である。該細線3には金属細線例え
ばコバール、銅及び銅系合金またはそれらの複合材ある
いはタングステンを用いる。
FIGS. 11(a) and 11(b) are partial cross-sectional views illustrating the shape of the conductive elastic thin wire 3. FIG. The thin wire 3 is made of a metal thin wire such as Kovar, copper, a copper alloy, a composite thereof, or tungsten.

その線径は弾性機能を最大限に持たせるため、第11図
(a)に示すように、基板(A)1、(B)2間の間隔
寸法より小さくする必要がある。しかし細線の強度面を
考慮して細線径と基板間隙寸法の比は例えば1:2から
1=12の範囲が望ましい。
In order to maximize the elastic function, the wire diameter needs to be smaller than the distance between the substrates (A) 1 and (B) 2, as shown in FIG. 11(a). However, in consideration of the strength of the thin wire, the ratio of the thin wire diameter to the substrate gap size is preferably in the range of, for example, 1:2 to 1=12.

また第11図(b)に示すように該細線3の基板(A)
1、(B)2の間に露出している部分をエツチングして
線径を減少させ、該細線3の剛性を減衰させる方法も有
効である。
In addition, as shown in FIG. 11(b), the substrate (A) of the thin wire 3
It is also effective to reduce the stiffness of the thin wire 3 by etching the exposed portion between the wires 1 and 2 to reduce the wire diameter.

フレキシブルピンキャリアの実装構造としては、第3図
(a)に示すように、該素子実装部16とそれを搭載す
る該多層基板15間に該ピンキャリアを仲介させ接続す
る構造がある。
As a mounting structure of the flexible pin carrier, as shown in FIG. 3(a), there is a structure in which the pin carrier is interposed and connected between the element mounting portion 16 and the multilayer substrate 15 on which it is mounted.

この実装構造を用いる事により、基板(A)1の熱膨張
係数は該素子実装部16の熱膨張係数と同等であるから
稼働時に生ずる熱のために該素子実装部16と基板(A
)1の間に生ずる熱膨張の差を小さくすることができ、
はんだバンブ(A)11にかかる熱応力を減少させるこ
とができる。
By using this mounting structure, the thermal expansion coefficient of the board (A) 1 is equal to that of the element mounting part 16, so that the element mounting part 16 and the board (A)
) can reduce the difference in thermal expansion that occurs between
Thermal stress applied to the solder bump (A) 11 can be reduced.

同様にして該多層基板15と基板(B)2の間のはんだ
バンプ(B)12にかかる熱応力も減少させることがで
きる。更に基板(A)1と基板(B)2の間の熱膨張の
差は該細線3の弾性により吸収できる。その上、該素子
実装部16に外部よりかかる力も該細線3の弾性により
吸収できるため、より信頼性の高い半導体装置を得るこ
とができる。
Similarly, thermal stress applied to the solder bumps (B) 12 between the multilayer substrate 15 and the substrate (B) 2 can also be reduced. Furthermore, the difference in thermal expansion between the substrate (A) 1 and the substrate (B) 2 can be absorbed by the elasticity of the thin wire 3. Moreover, since the elasticity of the thin wires 3 can absorb the force applied from the outside to the element mounting portion 16, a more reliable semiconductor device can be obtained.

更に該ピンキャリアと該素子実装部16との間を接続す
るはんだバンプ(A)11、及び該ピンキャリアと該多
層基板15との間を接続するはんだバンブ(B)12に
、それぞれ融点の異なるはんだを使用することにより、
該素子実装部16側あるいは該多層基板15側を、加熱
する温度により選択的に着脱でき、より実用性に富んだ
半導体装置を得ることができる。
Furthermore, solder bumps (A) 11 connecting between the pin carrier and the element mounting section 16 and solder bumps (B) 12 connecting between the pin carrier and the multilayer board 15 have different melting points. By using solder,
The element mounting portion 16 side or the multilayer substrate 15 side can be selectively attached or detached depending on the heating temperature, and a more practical semiconductor device can be obtained.

尚、該ピンキャリアの使用法の応用例としては、該素子
実装部と冷却構造体の間に該ピンキャリアを設置し、冷
却構造体との間の熱応力及び負荷外力を緩和させるとい
う方法も考えられる。
Furthermore, as an example of how to use the pin carrier, there is also a method in which the pin carrier is installed between the element mounting part and the cooling structure to alleviate thermal stress and external load force between the element mounting part and the cooling structure. Conceivable.

[発明の効果] 以上説明したことから明らかなように、本発明によるフ
レキシブルピンキャリアによれば、半導体素子等あるい
はプリント基板とはんだ付けされる導電性弾性体細線の
端部には、この部分を保持することを兼ねる基板が設け
られているので、前記はんだはその溶融等ではんだ固着
部分以外に付着するようなことがあっても、前記基板に
よって、導電性弾性体細線に沿っての付着は防止できる
ことから、該細線の弾性が劣化することはなくなる。
[Effects of the Invention] As is clear from the above explanation, according to the flexible pin carrier according to the present invention, this portion is attached to the end of the conductive elastic thin wire to be soldered to a semiconductor element or a printed circuit board. Since a substrate is provided that also serves as a holding member, even if the solder adheres to areas other than the solder-fixed areas due to melting, etc., the substrate prevents the solder from adhering along the conductive elastic thin wires. Since this can be prevented, the elasticity of the thin wire will not deteriorate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるフレキシブルピンキャ
リアの断面構造図、第2図(a)、(b)は前記フレキ
シブルピンキャリアを使用した実装構造の断面図、第3
図(a)、(b)は前記フレキシブルピンキャリアを使
用した実装構造の変形を表す断面図、第4図(a)、(
b)及び第5図(a)、(b)は本発明による他の実施
例を示す断面図、第6図(a)ないしくe)は釘型細線
の製作方法を表す断面図、第7図、第8図(a)。 (b)はそれぞれ他の実施例を示す断面図、第9図(a
)ないしくf)は第1図に示すフレキシブルピンキャリ
アの製作方法を表す断面図、第10図(a)ないしくd
)は他の製作方法を表す断面図、第11図(a)、(b
)は導電性弾性体細線の形状を説明する断面図、第12
図(a)、(b)は従来のフレキシブルピンキャリアの
一例を示す側面図である。 1・・・基板(A) 、2・・・基板(B)、2a・・
・単一基板、3・・・導電性弾性体細線、4・・・樹脂
、5・・・接続パッド、5a・・・内部接続パッド、6
・・・釘型細線、7・・・導体(A)、8・・・導体(
B)、9・・・銀ろう、10・・・シリコンゴム、11
・・・はんだバンプ(A)、12・・・はんだバンプ(
B)、13・・・半導体素子実装部側接続パッド、14
・・・多層プリント基板側接続パッド、15・・・多層
プリント基板、16・・・半導体素子実装部、17・・
・基板(A)の膨張量、18・・・基板(B)の膨張量
、19・・・冷却構造体、20・・・冷却構造体からか
かる外力、21・・・半導体素子。 22・・・基板保持用治具、23・・・細線挿入装置、
24・・・細線押さえ治具、24a・・・基板押さえ治
具。 25・・・樹脂注入ノズル、26・・・基板保持構造体
、26a・・・基板保持用治具板、27・・・細線挿入
方向、28・・・基板(A)引き上げ方向、29・・・
スルーホール、30・・・細線保持部、31・・・タン
グステン電極、32・・・アーク、33・・・平板、3
4・・・チップ基板、35・・・ビア、36・・・中間
接続子、37・・・接続板、38・・・中間接続板、3
9・・・パッド、40・・・バンプ、41・・・プリン
ト基板、42・・・スペーサ。 代理人  鵜  沼  辰  之 第2図 (a) 第 図 (C1) (b) 第5図 (a) (b) 第 図 (Q) (b) 第6図 (a) 第7図 第8図 第11図 (C) 第 (b) (d) ら
FIG. 1 is a sectional view of a flexible pin carrier according to an embodiment of the present invention, FIGS. 2(a) and 2(b) are sectional views of a mounting structure using the flexible pin carrier, and FIG.
Figures (a) and (b) are cross-sectional views showing modifications of the mounting structure using the flexible pin carrier;
b) and FIGS. 5(a) and 5(b) are cross-sectional views showing other embodiments of the present invention, FIGS. 6(a) to e) are cross-sectional views showing a method for manufacturing a nail-shaped thin wire, and FIG. Figure 8(a). (b) is a sectional view showing other embodiments, and FIG.
) or f) is a sectional view showing the manufacturing method of the flexible pin carrier shown in FIG. 1, and FIGS. 10(a) to d
) are cross-sectional views showing other manufacturing methods, and FIGS. 11(a) and (b)
) is a cross-sectional view illustrating the shape of the conductive elastic thin wire, 12th
Figures (a) and (b) are side views showing an example of a conventional flexible pin carrier. 1...Substrate (A), 2...Substrate (B), 2a...
・Single board, 3... Conductive elastic thin wire, 4... Resin, 5... Connection pad, 5a... Internal connection pad, 6
...Nail-shaped thin wire, 7...Conductor (A), 8...Conductor (
B), 9...Silver solder, 10...Silicone rubber, 11
...Solder bump (A), 12...Solder bump (
B), 13... Semiconductor element mounting part side connection pad, 14
...Multilayer printed board side connection pad, 15...Multilayer printed board, 16...Semiconductor element mounting part, 17...
- Amount of expansion of substrate (A), 18... Amount of expansion of substrate (B), 19... Cooling structure, 20... External force applied from cooling structure, 21... Semiconductor element. 22... Board holding jig, 23... Thin wire insertion device,
24... Thin wire holding jig, 24a... Board holding jig. 25... Resin injection nozzle, 26... Substrate holding structure, 26a... Substrate holding jig plate, 27... Thin wire insertion direction, 28... Substrate (A) lifting direction, 29...・
Through hole, 30... Thin wire holding part, 31... Tungsten electrode, 32... Arc, 33... Flat plate, 3
4... Chip board, 35... Via, 36... Intermediate connector, 37... Connection plate, 38... Intermediate connection plate, 3
9... Pad, 40... Bump, 41... Printed circuit board, 42... Spacer. Agent Tatsuyuki Unuma Figure 2 (a) Figure (C1) (b) Figure 5 (a) (b) Figure (Q) (b) Figure 6 (a) Figure 7 Figure 8 Figure 11 (C) (b) (d) et al.

Claims (13)

【特許請求の範囲】[Claims] 1.多数の導電性弾性体細線の両端のうち片方は半導体
素子もしくは半導体素子実装部と同等の熱膨張係数を持
つ基板に固着し、もう片方はプリント基板と同等の熱膨
張係数を持つ基板に固着することにより両基板間の熱膨
張の差を緩和し、外力に対する変形能を向上させること
を特徴とするフレキシブルピンキャリア。
1. One of the two ends of a large number of thin conductive elastic wires is fixed to a substrate with a coefficient of thermal expansion equivalent to that of the semiconductor element or the semiconductor element mounting area, and the other is fixed to a substrate with a coefficient of thermal expansion equivalent to that of a printed circuit board. A flexible pin carrier characterized by reducing the difference in thermal expansion between both substrates and improving deformability against external forces.
2.多数の導電性弾性体細線の一端を、プリント基板と
同等の熱膨張係数を持つ単一基板に開けた多数のスルー
ホールに挿入固着してなることを特徴とするフレキシブ
ルピンキャリア。
2. A flexible pin carrier characterized by inserting and fixing one end of a large number of conductive elastic thin wires into a large number of through holes drilled in a single board having a coefficient of thermal expansion equivalent to that of a printed circuit board.
3.多数の釘型導電性弾性体細線の一端を、プリント基
板と同等の熱膨張係数を持つ単一基板に開けた多数のス
ルーホールに挿入固着してなることを特徴とするフレキ
シブルピンキャリア。
3. A flexible pin carrier characterized by inserting and fixing one end of a large number of nail-shaped conductive elastic thin wires into a large number of through holes drilled in a single board having a coefficient of thermal expansion equivalent to that of a printed circuit board.
4.請求項第3もしくは第4記載において、半導体素子
もしくは半導体素子実装部を下側にして、前記導電性弾
性体細線の他端をはんだ付けするフレキシブルピンキャ
リアの取付方法。
4. 4. The method for attaching a flexible pin carrier according to claim 3, wherein the other end of the thin conductive elastic wire is soldered with the semiconductor element or the semiconductor element mounting portion facing downward.
5.異なる基板は、内部に表裏を貫通した導体構造を有
し、多数の導電性弾性体細線は両基板の導体ピッチに合
わせて固着配列し、両基板に接合されている請求項第1
記載のフレキシブルピンキャリア。
5. Claim 1: The different substrates each have a conductor structure penetrating the front and back sides thereof, and a large number of thin conductive elastic wires are fixedly arranged in accordance with the conductor pitch of both substrates and bonded to both substrates.
Flexible pin carrier as described.
6.2枚の基板間に両基板に接してそれぞれシリコンゴ
ムを配置することにより導電性弾性体細線に集中する応
力を緩和する構造を有する請求項第1記載のフレキシブ
ルピンキャリア。
6. The flexible pin carrier according to claim 1, wherein the flexible pin carrier has a structure that relieves stress concentrated on the conductive elastic thin wire by disposing silicone rubber between the two substrates in contact with both substrates.
7.2枚の基板の間をシリコンゴムで充填することによ
り導電性弾性体細線の耐食性を向上させ、また細線を保
護する作用を持たせた請求項第1記載のフレキシブルピ
ンキャリア。
7. The flexible pin carrier according to claim 1, wherein the space between the two substrates is filled with silicone rubber to improve the corrosion resistance of the conductive elastic thin wire and to protect the thin wire.
8.2枚の基板に、半導体素子もしくは半導体素子実装
部の接続用パッドのピッチに合わせて多数のスルーホー
ルをあけ、そこに多数の導電性弾性体細線を挿入固着し
て2枚の基板を接続することにより製作される請求項第
1記載のフレキシブルピンキャリアの製法。
8. Drill a large number of through holes in the two substrates according to the pitch of the semiconductor elements or the connection pads of the semiconductor element mounting area, and insert and secure a large number of conductive elastic thin wires into the holes to connect the two substrates. The method for manufacturing a flexible pin carrier according to claim 1, wherein the flexible pin carrier is manufactured by connecting.
9.焼結する前のセラミックス基板のグリーンシートに
あらかじめ接続部の導体ピッチに導電性弾性体細線を植
え込んでおき、それを焼結することにより製作される請
求項第1,第2,第3いずれか記載のフレキシブルピン
キャリアの製法。
9. Any one of claims 1, 2, and 3, which is manufactured by implanting thin conductive elastic wires in advance at the conductor pitch of the connection part in the green sheet of the ceramic substrate before sintering, and then sintering the wires. The method for manufacturing the flexible pin carrier described.
10.導電性弾性体細線の線径が基板間隙寸法より小さ
いことを特徴とする請求項第1,第2,第3いずれか記
載のフレキシブルピンキャリア。
10. The flexible pin carrier according to any one of claims 1, 2, and 3, wherein the conductive elastic thin wire has a wire diameter smaller than a gap between the substrates.
11.2枚の基板の間に露出している導電性弾性体細線
の線径を減少させ細線の剛性を下げるようにした請求項
第1記載のフレキシブルピンキャリア。
11. The flexible pin carrier according to claim 1, wherein the diameter of the conductive elastic thin wire exposed between the two substrates is reduced to lower the rigidity of the thin wire.
12.半導体素子もしくは半導体素子実装部とプリント
基板との間に第1,第2,第3いずれか記載のフレキシ
ブルピンキャリアを仲介させ接続することを特徴とする
半導体装置。
12. 1. A semiconductor device, characterized in that a semiconductor element or a semiconductor element mounting part and a printed circuit board are connected to each other through a flexible pin carrier according to any one of the first, second, and third embodiments.
13.フレキシブルピンキャリアと半導体素子もしくは
半導体素子実装部との間、及びフレキシブルピンキャリ
アとプリント基板との間を、融点の異なるはんだを用い
て接続することを特徴とする請求項第12記載の半導体
装置。
13. 13. The semiconductor device according to claim 12, wherein the flexible pin carrier and the semiconductor element or the semiconductor element mounting part and the flexible pin carrier and the printed circuit board are connected using solders having different melting points.
JP63231829A 1988-09-16 1988-09-16 Flexible pin carrier and semiconductor device using the same Expired - Lifetime JP2581592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63231829A JP2581592B2 (en) 1988-09-16 1988-09-16 Flexible pin carrier and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63231829A JP2581592B2 (en) 1988-09-16 1988-09-16 Flexible pin carrier and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JPH0281447A true JPH0281447A (en) 1990-03-22
JP2581592B2 JP2581592B2 (en) 1997-02-12

Family

ID=16929673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63231829A Expired - Lifetime JP2581592B2 (en) 1988-09-16 1988-09-16 Flexible pin carrier and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2581592B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152662A (en) * 1990-10-17 1992-05-26 Nec Corp Integrated circuit package
JPH07147299A (en) * 1993-11-26 1995-06-06 Nec Corp Semiconductor integrated circuit device and mounting method thereof
JPH07297560A (en) * 1994-04-28 1995-11-10 Hitachi Ltd Multilayer printed wiring board and its mounting structure
JPH08153821A (en) * 1994-11-29 1996-06-11 Shin Etsu Polymer Co Ltd Semiconductor element connecting wiring substrate and semiconductor element connecting structure
US6080936A (en) * 1996-04-26 2000-06-27 Ngk Spark Plug Co., Ltd. Connecting board with oval-shaped protrusions
US6115913A (en) * 1996-04-26 2000-09-12 Ngk Spark Plug Co., Ltd. Connecting board
JP2013004881A (en) * 2011-06-21 2013-01-07 Shinko Electric Ind Co Ltd Interposer, manufacturing method of interposer, and semiconductor device
JP2013058570A (en) * 2011-09-07 2013-03-28 Shinko Electric Ind Co Ltd Wiring board, method of manufacturing the same, and semiconductor package

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646408B1 (en) 2014-12-11 2016-08-05 현대자동차주식회사 Hydrogen exhaust apparatus for fuel cell car

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152662A (en) * 1990-10-17 1992-05-26 Nec Corp Integrated circuit package
JPH07147299A (en) * 1993-11-26 1995-06-06 Nec Corp Semiconductor integrated circuit device and mounting method thereof
JPH07297560A (en) * 1994-04-28 1995-11-10 Hitachi Ltd Multilayer printed wiring board and its mounting structure
JPH08153821A (en) * 1994-11-29 1996-06-11 Shin Etsu Polymer Co Ltd Semiconductor element connecting wiring substrate and semiconductor element connecting structure
US6080936A (en) * 1996-04-26 2000-06-27 Ngk Spark Plug Co., Ltd. Connecting board with oval-shaped protrusions
US6115913A (en) * 1996-04-26 2000-09-12 Ngk Spark Plug Co., Ltd. Connecting board
US6148900A (en) * 1996-04-26 2000-11-21 Ngk Spark Plug Co., Ltd. Connecting board for connection between base plate and mounting board
JP2013004881A (en) * 2011-06-21 2013-01-07 Shinko Electric Ind Co Ltd Interposer, manufacturing method of interposer, and semiconductor device
JP2013058570A (en) * 2011-09-07 2013-03-28 Shinko Electric Ind Co Ltd Wiring board, method of manufacturing the same, and semiconductor package

Also Published As

Publication number Publication date
JP2581592B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
KR100203030B1 (en) Semiconductor device and method for manufacturing the same, and flexible film for mounting semiconductor chip
EP0844657A1 (en) Method for mounting semiconductor chip
US20020014350A1 (en) Methods of making connections to a microelectronic unit
US6509631B2 (en) Semiconductor device and liquid crystal module
KR20010024320A (en) Method for mounting semiconductor element to circuit board, and semiconductor device
US5896276A (en) Electronic assembly package including connecting member between first and second substrates
JP3832334B2 (en) Semiconductor chip mounting substrate and manufacturing method thereof
US6528889B1 (en) Electronic circuit device having adhesion-reinforcing pattern on a circuit board for flip-chip mounting an IC chip
KR100376336B1 (en) Semiconductor device and method for manufacturing same
JP2581592B2 (en) Flexible pin carrier and semiconductor device using the same
JP3333300B2 (en) Method for forming bumps having uneven surface, method for mounting semiconductor device having bumps, and semiconductor unit
JPH0521523A (en) Semiconductor device mounting substrate
KR20020044577A (en) Advanced flip-chip join package
JP4151136B2 (en) Substrate, semiconductor device and manufacturing method thereof
JP3243684B2 (en) Device mounting structure
JPH08222599A (en) Method of mounting electronic component
JP3585806B2 (en) Wiring board with pins
JP2004247621A (en) Semiconductor device and its manufacturing method
JP3719806B2 (en) Wiring board
JP3450838B2 (en) Manufacturing method of electronic component package
JPH10116927A (en) Connecting terminal and method for its formation
JP2002050717A (en) Semiconductor device and manufacturing method thereof
JPH05152303A (en) Semiconductor device with protruding electrode, protruding electrode forming method and the semiconductor device mounting body
JP4031899B2 (en) Manufacturing method of film carrier tape for mounting electronic components
JP2001127102A (en) Semiconductor device and manufacturing method thereof