JP3719806B2 - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP3719806B2
JP3719806B2 JP2203397A JP2203397A JP3719806B2 JP 3719806 B2 JP3719806 B2 JP 3719806B2 JP 2203397 A JP2203397 A JP 2203397A JP 2203397 A JP2203397 A JP 2203397A JP 3719806 B2 JP3719806 B2 JP 3719806B2
Authority
JP
Japan
Prior art keywords
solder
pad
protrusion
connection
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2203397A
Other languages
Japanese (ja)
Other versions
JPH10209592A (en
Inventor
一 斉木
耕三 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2203397A priority Critical patent/JP3719806B2/en
Publication of JPH10209592A publication Critical patent/JPH10209592A/en
Application granted granted Critical
Publication of JP3719806B2 publication Critical patent/JP3719806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps

Landscapes

  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ICパッケージ等に用いられるBGA(ボール・グリッド・アレイ)パッケージ用基板やこのような配線基板を実装する樹脂製プリント基板(マザーボード)等として使用される配線基板に関する。
【0002】
【従来の技術】
従来のBGAパッケージ用基板は、アルミナセラミックや樹脂等の電気絶縁材料からなる基板の主面に、多数の接続端子を備えており、その端子の構造例としては図15に示したものがある。このものは、パッケージ用基板1の主面2にメタライズされた各接続パッド(群)3に、所定のメッキを施し、その表面にPb−Sn共晶ハンダ等の鉛組成分の小なるハンダ(以下、低融点ハンダともいう)5を介し、接続パッド間の間隙保持手段としてPb90−Sn10など鉛組成分の大なる比較的高融点のハンダ(以下、高融点ハンダともいう)からなるハンダボール6などの金属ボール(球体)をハンダ付けし、これを接続端子(バンプ)7としている。このような接続端子7をもつ配線基板1は、その配置に対応するように配置、形成された接続パッドを有するプリント基板に対し、両配線基板の接続パッドを位置決めして重ね、両接続パッド間でハンダ付けすることにより電気的接続がなされる。図16は、そのようなプリント基板21に図15に示した接続端子7を有するBGAパッケージ用基板1を両者のパッド間でハンダ接合した構造である。
【0003】
【発明が解決しようとする課題】
ところが、このような接合構造においては次のような問題があった。すなわち、セラミック製のパッケージ用基板のように熱膨張係数の小さいものが、それが大きい樹脂製プリント基板に両者の接続パッド(以下、単にパッドともいう)間でハンダ付けされて一体化されたものでは、その後の温度変化によって、図17に示したように、各配線基板1,21材料の熱膨張係数の違いに起因する伸縮量の相違により、接続パッド3,23間のハンダ接合部(以下、BGA接合部ともいう)に亀裂Kが生じ、断線を生じるといったことがあった。これは、低融点ハンダが相対的に低強度であり、両基板1,21間でその主面に沿って作用する熱応力(せん断応力)に抗しきれないためであり、この応力は各接続パッド間の低融点ハンダの接続パッドの界面近傍で最大となる。
【0004】
さらに、低融点ハンダは高融点ハンダに比べて比較的もろく粘りがないために塑性変形し難い性質を有する。加えて、低融点ハンダと接続パッドとの接合界面には、接続パッド上のAuメッキ又はNiメッキとハンダ中のSnとの拡散によってAu−Sn、又はNi−Snの硬くて脆い金属間化合物が形成される。こうしたことから、接合後に大きな温度変化があると、図18に示したように、両配線基板1,21のパッド3,23間の低融点ハンダは、パッド3,23上面に微小厚さT1,T2の低融点ハンダ層、すなわち低融点ハンダ薄皮1枚を残すようにして、その外周縁を起点として各配線基板1,21の主面2,22に沿う方向(図示矢印方向)にクラック(亀裂)Kが発生し、進展しがちであった。そして、こうしたクラックKは、容易には発生しないものの一度発生するとその起点から反対側に向けて一気に進展(進行)しやすく、その結果パッド3,23間の導通不良(断線)を招いてしまうといったことがあった。
【0005】
こうした問題は、接続端子が上記のように金属ボールを用いないで低融点ハンダだけからなるハンダバンプの場合でも同様である。また、樹脂製のICパッケージ基板を樹脂製のプリント基板に接続する場合など、樹脂製の配線基板同士を接続する場合でも両者の熱膨張係数が異なる場合や、搭載するICと樹脂との熱膨張係数の違いなどに起因して生ずるICパッケージ基板の変形のある場合などに発生する危険性がある。そして両配線基板材料の熱膨張係数の差が大きいほど、また、配線基板のサイズが大きいほど顕著に現れ、サイズによっては樹脂製プリント基板にセラミック製のパッケージ用基板は搭載できないといった問題があり、さらに一方の配線基板の材質によっては他方の配線基板の材質が制限されたり、サイズを大きくできないといった問題を招いていた。
【0006】
なお、パッド間のハンダのクラックは、図17,18に示したように、パッケージ用基板1側だけでなくプリント基板21側のパッド23近傍でも本来同様に発生するといえるが、例えばセラミック製パッケージ用基板(以下、セラミック基板ともいう)と樹脂製プリント基板との接合の場合には、実際にはセラミック基板側のパッドとハンダとの界面近傍でハンダにクラックが生じがちであり、樹脂製プリント基板側のパッドとハンダとの界面近傍ではほとんど生じない。その理由は次のようである。すなわち、セラミック基板の接続端子をなすパッドは、タングステン等のメタライズ層の上に、数ミクロンのメッキ層が形成されてなるものである一方、プリント基板のそれは、樹脂板上に形成されたパッドが通常、銅で20〜30μmと極めて厚く、しかも銅はタングステンに比べると極めて柔らかい。
【0007】
したがって、この両配線基板の各パッド間をハンダで接合した場合には、プリント基板側ではパッド自体が厚くしかも柔らい分、変形し易いため、温度差によって発生する前記の熱応力を吸収しやすいのに対し、セラミック基板側ではパッドが硬くて薄いためにこのような吸収作用はほとんど期待できない。このため、多くの場合にはセラミック基板側のパッドとハンダとの界面近傍でそれにクラックが生じている。
【0008】
本発明は、アルミナセラミック製のパッケージ用基板を樹脂製プリント基板などにBGA接合した場合のように、熱膨張係数の大きく異なる配線基板同士をBGA接合した後、温度変化によって生じる接続パッド間のハンダのクラックの発生や進展を防ぎ、もって接続パッド間の断線(接続不良)を解消し、信頼性の高いBGA接合を得ることのできる配線基板を提供することをその目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、請求項1に記載の本発明は、ハンダ付け可能な表面からなる接続パッドを主面に複数有する配線基板であって、その接続パッドの上面にはその外周縁より内側に一又は複数の突起部(凸部)が形成されるとともに、該突起部は少くともその側面がハンダ付け不能に形成されてなる一方、該突起部の上面の少くとも一部がハンダ付け可能にされてなり、
前記接続パッドに、接続端子としてハンダ付け可能の金属ボールが該金属ボールの融点 より低融点のハンダでハンダ付けされており、しかも、該ハンダと前記突起部のハンダ付け不能の側面との間に空隙が形成されていることを特徴とする。
そして、請求項2に記載の本発明は、ハンダ付け可能な表面からなる接続パッドを主面に複数有する配線基板であって、その接続パッドの上面にはその外周縁より内側に一又は複数の突起部が形成されるとともに、該突起部は少くともその側面がハンダ付け不能に形成されてなる一方、 該突起部の上面の少くとも一部がハンダ付け可能にされてなり、
前記接続パッドに、接続端子としてハンダバンプが形成されているとともに、該ハンダと前記突起部の側面との間に空隙が形成されていることを特徴とする。
【0010】
前記各手段は、各接続パッド上に、低融点ハンダペーストを印刷または塗布し、さらにその上にそれより高融点のハンダボールなどのハンダ付け可能の金属ボールを搭載し、その低融点ハンダでハンダ付けすることによって、或いは各接続パッド上にハンダペーストを印刷又は塗布してリフローすることによって形成される。そして、このように形成された各接続端子は、各接続パッドにおいて突起部の側面のハンダ付け不能の部位(ハンダが濡れない面)ではハンダがはじかれているため、その側面には微小な空隙(空間)が形成されている。
【0011】
このような配線基板は、その各接続端子の配置に対応するように配置、形成された低融点ハンダ付き接続パッドを有する例えば樹脂製プリント基板に、両配線基板の各接続パッドを位置決めして重ね、その相互間の低融点ハンダを溶融して両接続パッド間でハンダ付けされる。そして、そのハンダ付け後においても突起部の側面のハンダ付け不能の部位はハンダが濡れないために微小な空隙(空間)を保持したままである。
【0012】
したがって、このようなBGA接合構造部分に温度変化があり、両配線基板(材料)の熱膨張係数の相違により、その主面に沿って作用する応力が各接続端子における低融点ハンダにかかる場合には次のような作用がある。すなわち、このような応力がかかったときに空隙があるため、従来よりもクラックが発生し難くなる。さらに、たとえ本発明に係る配線基板側の各パッドと低融点ハンダとの界面近傍のハンダの外周縁にクラックが発生し、パッド面に沿って進展しても突起部の側面側に存在する空隙に至ればその進展はとまる。
【0013】
なお、ハンダは、鉛−すずを主成分とする合金(Pb−Sn)などから適宜のものを用いれば良く、また金属ボールのハンダ付けに使用されるハンダは、共晶ハンダなど、鉛−すずを主成分とする合金(Pb−Sn)のうちPb成分比率が低いもの(Sn成分比率が高いもの)から適宜選択して用いればよい。
【0014】
なお、セラミック製基板のパッド近傍のハンダにクラックの発生がなくなれば、逆に樹脂製プリント基板のパッド近傍でそれが発生する危険があるが、前記したようにそのパッドは通常セラミック基板側のパッドに比べて柔らかくて厚い銅であり、それ自体が変形して応力を吸収することができるので、クラックの発生に至ることは少ない。もっとも、接合されるべき両配線基板側のパッドで本発明を具体化すれば、さらに断線の危険が防止され、信頼性の向上が図られる。
【0015】
また前記突起部は、配線基板の種類、材質、平面(主面)形状及びその大きさなどに応じて適宜の構造、形状のものとすればよい。すなわち、突起部の平面形状(横断面形状)、又は平面の大きさ(径)、高さ、数、パッド上の位置などは、配線基板やそのパッド、或いは突起部の材質に応じて適宜に設定すればよい。なお、突起部の材質は、配線基板の材質などに応じて適宜に設計すればよい。例えば、配線基板がセラミック製である場合にパッドがタングステン、モリブデン等の高融点金属からなる場合、突起部全体もセラミックとし、同時焼成で形成すればよい。すなわち、セラミック基板では、それが未焼成セラミックの段階で、パッド用の高融点金属ペーストを印刷ないし塗布し、その上にセラミックからなる突起部を接着などにより形成して同時焼成すればよい。また、セラミック基板を焼成後にパッド上にセラミックやガラスペーストを塗布し焼き付けて形成してもよい。また、樹脂製などの配線基板では、突起部(全体)をハンダ付け不能の樹脂で形成してもよい。例えば銅メッキでパッドを形成する際に、そのパッドの形成後、その上に樹脂で突起部を形成すればよい。
【0016】
本発明における突起部は、少くともその側面がハンダ付け不能に形成されていると共に、該突起部はその上面の少くとも一部がハンダ付け可能とされているため、この上面がハンダ付け不能とされている場合に比べると、ハンダ付けされる面積が増えるのでハンダバンプの引張り強度が向上する。例えばセラミック基板では、セラミックからなる突起部の上面にさらにハンダ付け可能な金属層を設ればよい。また樹脂製などの配線基板では銅メッキでパッド上に突起を作り、その側面を樹脂で囲んで全体として突起部の上面をハンダ付け可能としてもよい。
【0017】
なお、金属ボールを用いることなくハンダバンプを形成する場合には、鉛成分比率の高い高融点ハンダを用いるのが好ましい。ハンダは融点が高くなるほど、すなわちPb成分の割合が高くなるほど、柔軟で展延性に富むようになるとともに再結晶する温度が常温に近付き、熱膨張係数の相違に起因する応力を吸収しやすく、たとえクラックの発生があってもハンダが変形しやすく、したがってその進展を防ぐことができるからである。
【0018】
【発明の実施の形態】
本発明に係る実施形態例について説明する前に本発明の基礎となる参考例について、図1〜3を参照しながら詳細に説明する。図中、1は、アルミナセラミック製のBGAパッケージ用基板であって、その一主面2には平面視略円形に形成され、表面がハンダに濡れる金属からなるパッド3,3が縦横に多数形成されており、その各パッド3に、縦断面視が凸形をなすようにその上面3aの略中央にセラミックからなる所定高さの円柱状(円板状)の突起部4が隆起状に形成されている。因みに本例ではパッド3の直径D1が860μmであり、その突起部4は直径D2が430μmで、高さHが40〜49μmに設定されている。なお、本例の各パッド3は基板1中の図示しない複数の内部回路配線に各々接続されており、その突起部4の全表面(上面4aと側面4b)を除き、パッド3の全表面にNiメッキ及びAuメッキが施されている。
【0019】
そして、図4に示されるように、このようなパッド3及び突起部4の上には低融点ハンダ(Pb−Sn共晶ハンダ)5を介して、それより高融点の例えばPb90%−Sn10%からなるハンダボール(単にハンダボールともいう)6を搭載、載置し、パッド3の上面3aにその低融点ハンダ5にてハンダ付けし、図4,5に示したように、それぞれ接続端子(バンプ)7を備えたセラミック基板1をなすように形成されている。かくして本例では、各接続パッド3にハンダボール6がハンダ付けされて各接続端子(バンプ)7をなすBGAパッケージ用基板1が形成されるが、突起部4の表面はハンダに濡れないことから、低融点ハンダ5は突起部4の表面とは縁切状態にあり、その間に微小な空隙Gが形成されている。
【0020】
しかして、このようなセラミック基板1は、図5中、2点鎖線で示すようにその接続端子7の配置に対応するように配置、形成された低融点ハンダ25付き接続(銅製)パッド23を有する従来と同様のプリント基板(例えばガラス−エポキシ樹脂製プリント基板)21に対し、各パッド3,23が対面するようにして位置決めして重ね(図5,6参照)、低融点ハンダ5,25を溶融する。すると図7に示したように、両接続パッド3,23間が低融点ハンダ5,25及びハンダボール6を介してハンダ付けされるが、このときもハンダ付け前と同様に低融点ハンダ5は突起部4の表面に濡れることなくその間に空隙Gを保持してパッド3の上面3aに接着されている(図8参照)。
【0021】
その後、この接続状態の下で温度変化を受けると、両配線基板1,21の熱膨張係数の相違により、同図中の矢印方向にその主面2に沿って応力Sが作用する。このとき空隙Gがあるため低融点ハンダ5が比較的容易に変形する。したがって、従来よりも空隙Gの存在によりクラックKの発生が困難となり、結果としてクラックの発生を遅らせることができる。
【0022】
さて、次にこの様な配線基板1ないし接続端子7の製法について図10を参照して説明する。まず、アルミナを主成分とするセラミックグリーンシート11を成形し(図10−A参照)、その所定位置に、すなわち各接続パッドをなす位置にタングステン等の高融点金属からなるメタライズペースト13をパッド形状にあわせて印刷などにより塗布する(図10−B参照)。そして、その各パッド13の上面中央に、突起部4の高さを備えた円柱状(板状)の未焼成セラミック体14を載置し(図10−C参照)、そして、これらを同時(一括)焼成する。すると、セラミックからなる突起部が上面に隆起状に存在する接続パッド(群)3bが一主面に存在するセラミック基板が形成される。
【0023】
そして、その接続パッド3bの表面に、Niメッキ15及びAuメッキ16を施すことで、ハンダ付け不能の突起部4を備えた所望とする接続パッド3が形成される(図10−D参照)。そして、その接続パッド3の表面に低融点ハンダ(ペースト)17を印刷などにより塗布する(図10−E参照)。さらに、この上に高融点ハンダボールを載置し、例えば220℃に加熱して低融点ハンダ17のみを溶融させると、図4に示したように、各接続パッド(以下、単にパッドともいう)3に同ボール6がハンダ付けされてなる接続端子7を備えた配線基板1となるのである。
【0024】
なお上記の参考例では、接続端子(ハンダバンプ)7として高融点ハンダボール6を用い、これを低融点ハンダ5でハンダ付けすることで形成した場合を説明したが、金属ボールを用いる場合には高融点ハンダボール6に代えてCuボールを用いてもよい。ただしCuボールを用いる場合にはハンダの濡れ性を高めるためその表面に低融点ハンダをコーティングしておくとよい。
【0025】
もっとも、上記の参考例では、接続パッド3にこのような金属ボール6を用いることなく、一種類のハンダのみを略半球状乃至略球状に形成したものとしておいてもよい。例えば、低融点ハンダを用いることなく高融点ハンダのみを印刷法やメッキ法により略半球状ないし略球状に搭載(融着、形成)してもよい。ただし、このように、金属ボールを用いることなく接続パッドの表面に接続端子(ハンダバンプ)を形成する場合には、パッド間の接合時に別の間隙保持手段を用いることになる。
【0026】
上記の参考例においては突起部4の全表面4a,4bがハンダ付けされないように形成したが、本発明では、突起部4は少くともその側面がハンダ付け不能に形成されてなる一方、該突起部4の上面の少くとも一部がハンダ付け可能にされていればよい。したがって、例えば、図11に示したように、上記の参考例における突起部4の上面4aにハンダ付け可能の金属層4mを形成しておけばよい。この様にしておけば、同図に示したように例えば全体が高融点ハンダからなるハンダバンプ7を形成すると、ハンダはパッド3の上面3aと突起部4の上面4aに付き、その側面4b側にのみ空隙Gが形成される。すなわちBGA接合において突起部4の上面4aにもハンダが付くことから、その分、配線基板同士の接合強度が向上する。
【0027】
なお、上記において突起部は、円柱(円板)形としたが、その形は四角などの角柱状(角板状)、或いは円筒状(リング状)などの筒状としても、少くとも側面がハンダ付け不能な表面からなり、上面の少くとも一部がハンダ付け可能にされていればよい。もっとも、筒状とする場合には、外周の側面のみがハンダ付け不能であればよい。また、突起部は一としたが、接続パッドの上面でその外周縁より内側にあり、少くとも側面がハンダ付け不能な表面からなり、上面の少くとも一部がハンダ付け可能にされているものであれば、その数、平面的配列、立体的配列、組合わせは、配線基板に応じて適宜に設計すればよい。また、突起部の高さは、大きめに設定するのが好ましいが、一般的には、30〜100μmの範囲が適切である。さらに、突起部の配置は1つの場合には中央に設けるのが適切であるが、その平面的大きさは、パッド上面のハンダ付け面積等を考慮して適宜に設計すればよい。
【0028】
図12は、突起部34が平面視、リング状でパッド33の上面中央にて隆起状に形成されて円筒状をなすものを示す。また、図13は、各パッド43部の上面中央において突起部44が四角柱状に形成されてなるものを示す。そして図14は、各パッド53の上面に突起部54を複数設けた場合を例示したもので、各突起部54は円柱状をなしパッド53の中心に対して等角度間隔で4か所配置したものを例示している。いずれも、少くともその側面がハンダ付け不能に形成されていれば、BGA接合後にはハンダとその側面との間に空隙が形成されることから、熱膨張係数の相違によるせん断力でクラックが発生したとしても端子間が断線に至るような進展が防止される。
【0029】
また、上記においては、セラミック製のパッケージ用基板に本発明を具体化し、これをプラチック製のプリント基板に搭載した場合で説明したが、本発明はプラチック製のプリント基板にも具体化できる。このようなプリント基板に前例のセラミック基板を搭載、接続した場合には、両配線基板のパッド相互間の断線がさらに有効に防止される。すなわち、本発明は、パッケージ基板やプリント基板など配線基板の種類、或いはその材質にかかわらず、熱膨張係数の異なる配線基板や変形を生ずる配線基板などをBGA接合する場合に極めて効果的である。
【0030】
なお、ガラス−エポキシ樹脂等からなる樹脂製の配線基板において上記参考例を具体化する場合には次のような形成手法が例示される。すなわち、図1〜4のパッド3を樹脂製の配線基板において上記参考例を具体化する場合には、例えば、樹脂基板1のパッド部位に、無電解Cuメッキや電解Cuメッキを用いたアディティブ法によって、或いはサブトラクティブ法によって所定厚さの銅パターン(パッド3)を形成し、その後、ハンダ不濡れ材として例えば感光性エポキシ樹脂を印刷し、平面視、突起部が形成されるように露光・現像し硬化させる。これにより、ハンダ濡れ性のある接続パッド(群)3にその樹脂の厚さを高さとするハンダ濡れ性のない突起部4を有する配線基板1が形成される。
【0031】
なお、こうした樹脂製の基板のパッドの表面にNiメッキ、Auメッキをかけ、その後、そのパッドに低融点ハンダペーストを印刷し、金属ボールを搭載してリフローし、或いは共晶ハンダペーストを印刷してリフローすれば、上記したセラミック製の配線基板の参考例と同様、金属ボールをハンダ付けしてなるもの或いはハンダバンプを備えてなる配線基板の参考例を得ることができる。
【0032】
上記においては、セラミック製パッケージ用基板又は樹脂製プリント基板にて具体化した場合を説明したが、本発明はこのような配線基板の種類や材質のものに限定されるものではなく、BGA接合される配線基板であれば、互いに熱膨張係数の大きく相違する各種のものに広く適用できる。
【0033】
【発明の効果】
以上の説明から明らかなように、本発明に係る配線基板においては、その各接続パッドに接続端子として、ハンダバンプが形成され若しくはハンダ付け可能の金属ボールがハンダ付けされる際には、ハンダは突起部の側面ではじかれてパッドの表面に接合される。
【0034】
そして、このような配線基板でBGA接合した際には、その各接続パッドでは、ハンダは突起部の側面ではじかれて空隙を保持しているから、このような状態の下で熱応力(剪断力)が作用し、その応力によって各パッドの上面と低融点ハンダとの界面近傍のハンダの外周縁にクラックが発生し難く、クラックが発生しその面に沿って進展した場合でも、その進展は突起部の側面に至ってそこに存在する空隙で止まる。このように本発明によれば断線に至るまでの時間が延長されるので、その分BGA接合の信頼性を高めることができる。
【図面の簡単な説明】
【図1】 本発明の基礎となる参考例に係るBGAパッケージ用基板の実施形態の概略構成正面図。
【図2】 図1の接続パッドを説明する拡大図。
【図3】 図2の平面図。
【図4】 図2の接続パッドに低融点ハンダを介してハンダボールをハンダ付けした図。
【図5】 接続パッドにハンダボールがハンダ付けされたBGAパッケージ用基板の概略構成正面図。
【図6】 BGAパッケージ用基板をプリント基板に重ね合わせた際における両配線基板の接続端子部分の部分断面拡大図。
【図7】 図6においてハンダ付けした図。
【図8】 図7におけるX−X断面図。
【図9】 クラックが発生後しその進展が止まる状態の説明用断面図。
【図10】 配線基板ないし接続パッドの製造工程図。
【図11】 突起部の上面をハンダ付け可能にした接続パッドの拡大断面図およびそれにハンダバンプを形成した図。
【図12】 突起部の別例を示す斜視図。
【図13】 突起部の別例を示す斜視図。
【図14】 突起部の別例を示す斜視図。
【図15】 従来のBGA配線基板の接続端子を説明する図。
【図16】 従来のBGA配線基板をプリント基板に重ねて接続端子をBGA接合した状態の説明用断面図。
【図17】 図16において温度変化により両配線基板の伸縮で、ハンダにクラックが生じる状態の説明用断面図。
【図18】 図17の部分拡大図。
【符号の説明】
1 セラミック基板
2 セラミック基板の主面
3 セラミック基板の接続パッド
4 セラミック基板の接続パッドの突起部
5 低融点ハンダ
6 ハンダボール
7 接続端子
21 プリント基板
22 プリント基板の主面
23 プリント基板の接続パッド
24 プリント基板の接続パッドの突起部
33,43,53 配線基板の接続パッド
34,44,54 配線基板の接続パッドの突起部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a BGA (ball grid array) package substrate used for an IC package or the like, a printed circuit board (motherboard) for mounting such a wiring substrate, and the like.
[0002]
[Prior art]
A conventional BGA package substrate has a large number of connection terminals on the main surface of a substrate made of an electrically insulating material such as alumina ceramic or resin. An example of the structure of the terminals is shown in FIG. In this method, a predetermined plating is applied to each connection pad (group) 3 metallized on the main surface 2 of the package substrate 1, and a solder having a small lead composition such as Pb—Sn eutectic solder ( (Hereinafter also referred to as “low melting point solder”) 5, solder balls 6 made of relatively high melting point solder (hereinafter also referred to as “high melting point solder”) having a large lead composition, such as Pb90-Sn10, as a gap holding means between the connection pads. A metal ball (sphere) such as the above is soldered, and this is used as a connection terminal (bump) 7. The wiring board 1 having the connection terminals 7 is positioned and overlapped with the connection pads of both wiring boards on the printed board having the connection pads arranged and formed so as to correspond to the arrangement. Electrical connection is made by soldering. FIG. 16 shows a structure in which the BGA package substrate 1 having the connection terminals 7 shown in FIG.
[0003]
[Problems to be solved by the invention]
However, such a joint structure has the following problems. That is, a ceramic package substrate having a small thermal expansion coefficient is integrated with a large printed circuit board made of resin by soldering between both connection pads (hereinafter also simply referred to as pads). Then, due to the subsequent temperature change, as shown in FIG. 17, due to the difference in expansion / contraction due to the difference in the thermal expansion coefficient of each wiring board 1, 21 material, , Also referred to as a BGA joint portion), there was a case in which a crack K occurred and a disconnection occurred. This is because the low melting point solder has a relatively low strength and cannot withstand the thermal stress (shear stress) acting along the main surface between the substrates 1 and 21, and this stress is applied to each connection. It becomes maximum near the interface of the connection pad of the low melting point solder between the pads.
[0004]
Further, the low melting point solder is relatively brittle and not sticky as compared with the high melting point solder, and therefore has the property of being difficult to be plastically deformed. In addition, a hard and brittle intermetallic compound of Au—Sn or Ni—Sn is formed at the bonding interface between the low melting point solder and the connection pad by diffusion of Au plating or Ni plating on the connection pad and Sn in the solder. It is formed. Therefore, when there is a large temperature change after bonding, as shown in FIG. 18, the low melting point solder between the pads 3 and 23 of the both wiring boards 1 and 21 has a small thickness T1, on the upper surface of the pads 3 and 23. A low melting point solder layer of T2, that is, one low melting point solder thin film is left, and cracks (cracks) occur in the direction along the main surfaces 2 and 22 of the wiring boards 1 and 21 (in the direction of the arrows in the figure) starting from the outer peripheral edge. ) K was generated and tended to progress. And although such a crack K does not occur easily, once it occurs, it tends to progress (advance) from the starting point to the opposite side at a stretch, resulting in poor conduction (disconnection) between the pads 3 and 23. There was a thing.
[0005]
Such a problem is the same even in the case where the connection terminal is a solder bump made of only a low melting point solder without using a metal ball as described above. Also, when connecting resin wiring boards to each other, such as when connecting a resin IC package board to a resin printed board, the thermal expansion coefficient between the mounted IC and the resin may be different. There is a risk that the IC package substrate may be deformed due to a difference in coefficients. And the larger the difference between the thermal expansion coefficients of both wiring board materials, the more noticeable the larger the wiring board size, and there is a problem that depending on the size, the ceramic package board cannot be mounted on the resin printed board, Furthermore, depending on the material of one of the wiring boards, the material of the other wiring board is limited, or the size cannot be increased.
[0006]
As shown in FIGS. 17 and 18, it can be said that the solder crack between the pads occurs not only in the package substrate 1 side but also in the vicinity of the pad 23 on the printed circuit board 21 side. In the case of bonding between a substrate (hereinafter also referred to as a ceramic substrate) and a resin printed substrate, the solder tends to crack in the vicinity of the interface between the pad and the solder on the ceramic substrate side. It hardly occurs near the interface between the pad on the side and the solder. The reason is as follows. That is, the pads forming the connection terminals of the ceramic substrate are formed by forming a plating layer of several microns on the metallized layer such as tungsten, while the pads formed on the resin plate are those of the printed circuit board. Usually, copper is very thick, 20-30 μm, and copper is very soft compared to tungsten.
[0007]
Therefore, when the pads of both wiring boards are joined by soldering, the pads themselves are thick and soft on the printed circuit board side, and are easily deformed. Therefore, the thermal stress generated by the temperature difference is easily absorbed. On the other hand, since the pad is hard and thin on the ceramic substrate side, such an absorption effect can hardly be expected. For this reason, in many cases, cracks are generated in the vicinity of the interface between the pad and the solder on the ceramic substrate side.
[0008]
The present invention provides a soldering between connection pads caused by a temperature change after BGA bonding of wiring boards having greatly different thermal expansion coefficients as in the case of BGA bonding of an alumina ceramic package substrate to a resin printed circuit board or the like. It is an object of the present invention to provide a wiring board capable of preventing the occurrence and progress of cracks, eliminating the disconnection (connection failure) between connection pads, and obtaining a highly reliable BGA junction.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention according to claim 1 is a wiring board having a plurality of connection pads each having a solderable surface on the main surface, the upper surface of the connection pads being formed from the outer periphery thereof. One or more protrusions (projections) are formed on the inner side, and at least the side surfaces of the protrusions are not solderable, while at least a part of the upper surface of the protrusions is soldered. Made possible and
A metal ball that can be soldered as a connection terminal is soldered to the connection pad with a solder having a melting point lower than the melting point of the metal ball , and between the solder and the non-solderable side surface of the protrusion. A void is formed .
According to a second aspect of the present invention, there is provided a wiring board having a plurality of connection pads each having a solderable surface on the main surface, the upper surface of the connection pads having one or more inner sides than the outer peripheral edge thereof. A protrusion is formed, and at least a side surface of the protrusion is made non-solderable, while at least a part of the upper surface of the protrusion is solderable.
A solder bump is formed as a connection terminal on the connection pad, and a gap is formed between the solder and the side surface of the protrusion.
[0010]
Each means prints or applies a low-melting-point solder paste on each connection pad, and further mounts a solderable metal ball such as a higher-melting-point solder ball thereon, and solders with the low-melting-point solder. by attaching, or thus formed to reflow by printing or applying a solder paste on each connection pad. Each connection terminal formed in this manner has a small gap on the side surface because the solder is repelled at the non-solderable portion (surface where the solder does not get wet) on the side surface of the protrusion in each connection pad. (Space) is formed.
[0011]
Such a wiring board is positioned and overlapped with, for example, a resin printed board having a low melting point soldered connection pad arranged and formed corresponding to the arrangement of each connection terminal. The low melting point solder between them is melted and soldered between both connection pads. And even after the soldering, the solder-incapable parts on the side surfaces of the protrusions retain minute gaps (spaces) because the solder does not get wet.
[0012]
Therefore, there is a temperature change in such a BGA joint structure portion, and when the stress acting along the main surface is applied to the low melting point solder at each connection terminal due to the difference in thermal expansion coefficient between both wiring boards (materials). Has the following effects. That is, since there is a gap when such stress is applied, cracks are less likely to occur than in the past . Furthermore, even if cracks occur on the outer peripheral edge of the solder near the interface between each pad on the wiring board side according to the present invention and the low-melting-point solder, and the gap exists on the side surface side of the protrusion even if it propagates along the pad surface If it reaches, the progress will stop.
[0013]
The solder may be an appropriate one selected from an alloy mainly composed of lead-tin (Pb-Sn), and the solder used for soldering the metal ball is lead-tin such as eutectic solder. An alloy containing Pb as a main component (Pb—Sn) may be appropriately selected from those having a low Pb component ratio (high Sn component ratio).
[0014]
If there is no crack in the solder near the pads on the ceramic substrate, there is a risk that it will occur in the vicinity of the pads on the resin printed substrate. However, as described above, the pads are usually pads on the ceramic substrate side. Since it is softer and thicker than copper and can deform itself and absorb stress, it rarely causes cracks. However, if the present invention is embodied with pads on both wiring board sides to be joined, the risk of disconnection is further prevented, and reliability is improved.
[0015]
The protrusions may have an appropriate structure and shape according to the type, material, plane (main surface) shape and size of the wiring board. That is, the planar shape (cross-sectional shape) of the protrusion, or the size (diameter), height, number, position on the pad, etc. of the plane are appropriately determined according to the wiring board, its pad, or the material of the protrusion. You only have to set it. In addition, what is necessary is just to design the material of a projection part suitably according to the material etc. of a wiring board . For example, when the wiring board is made of ceramic and the pad is made of a refractory metal such as tungsten or molybdenum, the entire protrusion may be made of ceramic and formed by simultaneous firing. That is, in the ceramic substrate, when it is an unfired ceramic, a refractory metal paste for a pad is printed or applied, and a protrusion made of ceramic is formed thereon by adhesion or the like and fired simultaneously. Alternatively, the ceramic substrate may be formed by baking a ceramic or glass paste on the pad after firing. Further, in a wiring board made of resin or the like, the protrusion (entire) may be formed of a resin that cannot be soldered. For example, when a pad is formed by copper plating, a protrusion may be formed on the pad after the pad is formed.
[0016]
The protrusion in the present invention is formed such that at least the side surface thereof cannot be soldered, and at least a part of the upper surface of the protrusion can be soldered. Compared with the case where the soldering is performed, the soldering area is increased, so that the tensile strength of the solder bumps is improved . For example, in a ceramic substrate, a solderable metal layer may be provided on the upper surface of a projecting portion made of ceramic. Further, in a wiring board made of resin or the like, a protrusion may be formed on the pad by copper plating, and the upper surface of the protrusion may be soldered as a whole by surrounding the side surface with resin.
[0017]
When forming solder bumps without using metal balls, it is preferable to use high melting point solder having a high lead component ratio. The higher the melting point, that is, the higher the proportion of the Pb component, the more flexible and malleable the solder becomes, and the recrystallization temperature approaches normal temperature, and the stress caused by the difference in thermal expansion coefficient is more likely to be absorbed. This is because the solder is likely to be deformed even if the occurrence of this occurs, and thus the progress can be prevented.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Before describing an embodiment according to the present invention, a reference example serving as a basis of the present invention will be described in detail with reference to FIGS. In the figure, reference numeral 1 denotes an alumina ceramic substrate for a BGA package, and one main surface 2 is formed in a substantially circular shape in plan view, and a large number of pads 3 and 3 made of metal whose surface gets wet with solder are formed vertically and horizontally. Each of the pads 3 has a cylindrical (disk-shaped) protruding portion 4 having a predetermined height made of ceramic at a substantially center of the upper surface 3a so as to form a convex shape in a longitudinal sectional view. Has been. Incidentally, in this example, the diameter D1 of the pad 3 is 860 μm, and the protrusion 4 has a diameter D2 of 430 μm and a height H of 40 to 49 μm. In addition, each pad 3 of this example is connected to a plurality of internal circuit wirings (not shown) in the substrate 1, and the entire surface of the pad 3 except for the entire surface (upper surface 4 a and side surface 4 b) of the protrusion 4. Ni plating and Au plating are applied.
[0019]
Then, as shown in FIG. 4, a low melting point solder (Pb—Sn eutectic solder) 5 is provided on the pad 3 and the protrusion 4, for example, Pb 90% -Sn 10%. A solder ball (simply referred to as a solder ball) 6 is mounted and placed, and soldered to the upper surface 3a of the pad 3 with its low melting point solder 5, and as shown in FIGS. Bump) 7 is formed so as to form a ceramic substrate 1. Thus, in this example, the solder ball 6 is soldered to each connection pad 3 to form the BGA package substrate 1 that forms each connection terminal (bump) 7, but the surface of the protrusion 4 is not wetted by the solder. The low melting point solder 5 is cut off from the surface of the protrusion 4 and a minute gap G is formed between them.
[0020]
Therefore, the ceramic substrate 1 has the connection (copper) pad 23 with the low melting point solder 25 arranged and formed so as to correspond to the arrangement of the connection terminal 7 as shown by a two-dot chain line in FIG. A conventional printed circuit board (for example, a glass-epoxy resin printed circuit board) 21 is positioned and overlapped so that the pads 3 and 23 face each other (see FIGS. 5 and 6), and low melting point solder 5 and 25. Melt. Then, as shown in FIG. 7, the connection pads 3 and 23 are soldered via the low melting point solders 5 and 25 and the solder balls 6. At this time, the low melting point solder 5 is the same as before soldering. The gap G is held between the surfaces of the protrusions 4 without getting wet, and is adhered to the upper surface 3a of the pad 3 (see FIG. 8).
[0021]
Thereafter, when a temperature change is received under this connection state, a stress S acts along the main surface 2 in the direction of the arrow in FIG. At this time, since there is a gap G, the low melting point solder 5 is deformed relatively easily . Therefore, the occurrence of cracks K becomes more difficult due to the presence of the gap G than before, and as a result, the generation of cracks can be delayed .
[0022]
Next, a method for manufacturing such a wiring board 1 or connecting terminal 7 will be described with reference to FIG. First, a ceramic green sheet 11 containing alumina as a main component is formed (see FIG. 10A), and a metallized paste 13 made of a refractory metal such as tungsten is formed in a pad shape at a predetermined position, that is, at each connection pad. In accordance with this, it is applied by printing or the like (see FIG. 10-B). Then, a cylindrical (plate-like) unfired ceramic body 14 having the height of the protrusion 4 is placed in the center of the upper surface of each pad 13 (see FIG. 10-C), and these are simultaneously ( Bake). As a result, a ceramic substrate is formed in which the connection pads (groups) 3b having protruding portions made of ceramic on the upper surface are present on one main surface.
[0023]
Then, by applying Ni plating 15 and Au plating 16 to the surface of the connection pad 3b, a desired connection pad 3 having a protrusion 4 that cannot be soldered is formed (see FIG. 10-D). Then, a low melting point solder (paste) 17 is applied to the surface of the connection pad 3 by printing or the like (see FIG. 10-E). Further, when a high melting point solder ball is placed thereon and heated to, for example, 220 ° C. to melt only the low melting point solder 17, as shown in FIG. 4, each connection pad (hereinafter also simply referred to as a pad). The wiring board 1 is provided with a connection terminal 7 in which the ball 6 is soldered to 3.
[0024]
In the above reference example, the case where the high melting point solder ball 6 is used as the connection terminal (solder bump) 7 and this is formed by soldering with the low melting point solder 5 is described. A Cu ball may be used in place of the melting point solder ball 6. However, when Cu balls are used, it is preferable to coat the surface with low melting point solder in order to improve the wettability of the solder.
[0025]
However, in the above-described reference example, only one type of solder may be formed in a substantially hemispherical shape or a substantially spherical shape without using such a metal ball 6 for the connection pad 3. For example, only the high melting point solder may be mounted (fused or formed) in a substantially hemispherical shape or a substantially spherical shape by a printing method or a plating method without using the low melting point solder. However, when the connection terminals (solder bumps) are formed on the surface of the connection pads without using metal balls as described above, another gap holding means is used at the time of bonding between the pads.
[0026]
In the above reference example, the entire surface 4a, 4b of the protrusion 4 is formed so as not to be soldered . However, in the present invention, at least the side surface of the protrusion 4 is formed so as not to be soldered. It is only necessary that at least a part of the upper surface of the portion 4 be solderable. Therefore, for example, as shown in FIG. 11, a solderable metal layer 4m may be formed on the upper surface 4a of the protrusion 4 in the above reference example . In this way, as shown in the figure, for example, when the solder bumps 7 made of high melting point solder are formed as a whole, the solder attaches to the upper surface 3a of the pad 3 and the upper surface 4a of the protrusion 4, and on the side surface 4b side. Only the gap G is formed. That is, since the solder is also attached to the upper surface 4a of the protruding portion 4 in the BGA bonding, the bonding strength between the wiring boards is improved accordingly.
[0027]
In the above description, the projecting portion has a cylindrical (disc) shape, but the shape may be a prismatic shape (square plate shape) such as a square, or a cylindrical shape such as a cylindrical shape (ring shape). It is sufficient that the surface is made of a non-solderable surface and at least a part of the upper surface is made solderable. However , in the case of a cylindrical shape, it is sufficient that only the outer peripheral side surface is not solderable. In addition, although the protrusion is one, it is on the upper surface of the connection pad, inside the outer periphery, at least the side surface is made of a non-solderable surface, and at least a part of the upper surface is made solderable Then, the number, planar arrangement, three-dimensional arrangement, and combination may be appropriately designed according to the wiring board. Moreover, although it is preferable to set the height of a projection part large, generally the range of 30-100 micrometers is suitable. Furthermore, although it is appropriate to arrange the protrusions at the center in the case of one, the planar size may be appropriately designed in consideration of the soldering area on the upper surface of the pad.
[0028]
FIG. 12 shows the protrusion 34 formed in a ring shape in a plan view and formed in a raised shape at the center of the upper surface of the pad 33 to form a cylindrical shape. FIG. 13 shows a structure in which a protrusion 44 is formed in a square column shape at the center of the upper surface of each pad 43. FIG. 14 illustrates the case where a plurality of protrusions 54 are provided on the upper surface of each pad 53. Each protrusion 54 has a cylindrical shape and is arranged at four equal angular intervals with respect to the center of the pad 53. The thing is illustrated. In any case, if at least the side surface is formed so as not to be soldered, a gap will be formed between the solder and the side surface after BGA bonding, and cracks will occur due to the shearing force due to the difference in thermal expansion coefficient. Even if it does, the progress which leads to a disconnection between terminals is prevented.
[0029]
In the above description, the present invention is embodied in a ceramic package substrate and mounted on a plastic printed board. However, the present invention can also be embodied in a plastic printed board. When the ceramic substrate of the previous example is mounted and connected to such a printed circuit board, disconnection between the pads of both wiring boards is further effectively prevented. That is, the present invention is extremely effective when BGA bonding is performed on a wiring board having a different thermal expansion coefficient or a wiring board causing deformation regardless of the type or material of the wiring board such as a package board or a printed board.
[0030]
In the case where the above reference example is embodied in a resin wiring board made of glass-epoxy resin or the like, the following forming method is exemplified. That is, when the above-described reference example is embodied in the resin wiring substrate for the pad 3 of FIGS. 1 to 4, for example, an additive method using electroless Cu plating or electrolytic Cu plating on the pad portion of the resin substrate 1. Or a subtractive method to form a copper pattern (pad 3) having a predetermined thickness, and then printing, for example, a photosensitive epoxy resin as a solder non-wetting material, so that a projection is formed in plan view. Develop and cure. As a result, the wiring substrate 1 having the solder wettability protrusions 4 having the thickness of the resin on the connection pads (group) 3 having solder wettability is formed.
[0031]
In addition, Ni plating and Au plating are applied to the surface of the pad of such a resin substrate, and then a low melting point solder paste is printed on the pad, a metal ball is mounted and reflowed, or a eutectic solder paste is printed. Then , similar to the above-described reference example of the ceramic wiring board, a reference example of the wiring board formed by soldering metal balls or provided with solder bumps can be obtained.
[0032]
In the above, the case where it is embodied with a ceramic package substrate or a resin printed substrate has been described. However, the present invention is not limited to the type and material of such a wiring substrate, and is BGA bonded. The wiring board can be widely applied to various substrates having greatly different thermal expansion coefficients.
[0033]
【The invention's effect】
As is clear from the above description, in the wiring board according to the present invention, when a solder bump is formed or a solderable metal ball is soldered to each connection pad as a connection terminal , the solder is projected. It is repelled on the side of the part and joined to the surface of the pad.
[0034]
When BGA bonding is performed with such a wiring board, the solder is repelled on the side surfaces of the protrusions and retains voids in each connection pad. Force), and the stress hardly causes cracks on the outer periphery of the solder in the vicinity of the interface between the upper surface of each pad and the low melting point solder. It reaches the side of the protrusion and stops at the gap that exists there . Thus , according to the present invention, the time until disconnection is extended, so that the reliability of the BGA junction can be increased accordingly.
[Brief description of the drawings]
FIG. 1 is a front view of a schematic configuration of an embodiment of a substrate for a BGA package according to a reference example on which the present invention is based .
FIG. 2 is an enlarged view for explaining the connection pad of FIG. 1;
FIG. 3 is a plan view of FIG. 2;
4 is a diagram in which solder balls are soldered to the connection pads of FIG. 2 via low melting point solder.
FIG. 5 is a front view of a schematic configuration of a BGA package substrate in which solder balls are soldered to connection pads.
FIG. 6 is an enlarged partial cross-sectional view of connection terminal portions of both wiring boards when a BGA package board is superimposed on a printed board.
7 is a view soldered in FIG. 6. FIG.
8 is a cross-sectional view taken along line XX in FIG.
FIG. 9 is a cross-sectional view for explaining a state in which a crack stops and the progress stops.
FIG. 10 is a manufacturing process diagram of a wiring board or connection pad.
FIG. 11 is an enlarged cross-sectional view of a connection pad in which the upper surface of a protruding portion can be soldered, and a diagram in which solder bumps are formed.
FIG. 12 is a perspective view showing another example of the protrusion.
FIG. 13 is a perspective view showing another example of the protrusion.
FIG. 14 is a perspective view showing another example of the protrusion.
FIG. 15 is a diagram illustrating connection terminals of a conventional BGA wiring board.
FIG. 16 is a cross-sectional view for explaining a state in which a conventional BGA wiring board is overlaid on a printed circuit board and connection terminals are BGA bonded.
17 is a cross-sectional view for explaining a state in which cracks are generated in the solder due to expansion and contraction of both wiring boards due to a temperature change in FIG. 16;
18 is a partially enlarged view of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic substrate 2 Main surface of ceramic substrate 3 Connection pad of ceramic substrate 4 Protrusion part of connection pad of ceramic substrate 5 Low melting point solder 6 Solder ball 7 Connection terminal 21 Printed circuit board 22 Main surface of printed circuit board 23 Connection pad of printed circuit board 24 Printed circuit board connection pad protrusion 33, 43, 53 Wiring board connection pad 34, 44, 54 Printed circuit board connection pad protrusion

Claims (2)

ハンダ付け可能な表面からなる接続パッドを主面に複数有する配線基板であって、その接続パッドの上面にはその外周縁より内側に一又は複数の突起部が形成されるとともに、該突起部は少くともその側面がハンダ付け不能に形成されてなる一方、該突起部の上面の少くとも一部がハンダ付け可能にされてなり、
前記接続パッドに、接続端子としてハンダ付け可能の金属ボールが該金属ボールの融点より低融点のハンダでハンダ付けされており、しかも、該ハンダと前記突起部のハンダ付け不能の側面との間に空隙が形成されていることを特徴とする配線基板。
A wiring board having a plurality of connection pads made of a solderable surface on the main surface, and one or more protrusions are formed on the upper surface of the connection pads on the inner side of the outer peripheral edge. At least the side surface of the protrusion is made non-solderable, while at least a part of the upper surface of the protrusion is solderable.
A metal ball that can be soldered as a connection terminal is soldered to the connection pad with a solder having a melting point lower than the melting point of the metal ball, and between the solder and the non-solderable side surface of the protrusion. A wiring board having a void formed therein .
ハンダ付け可能な表面からなる接続パッドを主面に複数有する配線基板であって、その接続パッドの上面にはその外周縁より内側に一又は複数の突起部が形成されるとともに、該突起部は少くともその側面がハンダ付け不能に形成されてなる一方、該突起部の上面の少くとも一部がハンダ付け可能にされてなり、A wiring board having a plurality of connection pads made of a solderable surface on the main surface, and one or more protrusions are formed on the upper surface of the connection pads on the inner side of the outer peripheral edge, and the protrusions are At least the side surface of the protrusion is made non-solderable, while at least a part of the upper surface of the protrusion is solderable.
前記接続パッドに、接続端子としてハンダバンプが形成されており、しかも、該ハンダと前記突起部の側面との間に空隙が形成されていることを特徴とする配線基板。A wiring board, wherein a solder bump is formed as a connection terminal on the connection pad, and a gap is formed between the solder and a side surface of the protrusion.
JP2203397A 1997-01-20 1997-01-20 Wiring board Expired - Lifetime JP3719806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2203397A JP3719806B2 (en) 1997-01-20 1997-01-20 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2203397A JP3719806B2 (en) 1997-01-20 1997-01-20 Wiring board

Publications (2)

Publication Number Publication Date
JPH10209592A JPH10209592A (en) 1998-08-07
JP3719806B2 true JP3719806B2 (en) 2005-11-24

Family

ID=12071665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2203397A Expired - Lifetime JP3719806B2 (en) 1997-01-20 1997-01-20 Wiring board

Country Status (1)

Country Link
JP (1) JP3719806B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1039527A3 (en) * 1999-03-24 2002-03-06 Shinko Electric Industries Co. Ltd. Semiconductor device mounting structure
US7141885B2 (en) * 2002-02-13 2006-11-28 Samsung Electronics Co., Ltd. Wafer level package with air pads and manufacturing method thereof
JP4502690B2 (en) * 2004-04-13 2010-07-14 富士通株式会社 Mounting board
KR100596452B1 (en) * 2005-03-22 2006-07-04 삼성전자주식회사 Wafer level chip scale package having air gap between ball land and solder ball and manufacturing method thereof

Also Published As

Publication number Publication date
JPH10209592A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
US6046910A (en) Microelectronic assembly having slidable contacts and method for manufacturing the assembly
JP3704864B2 (en) Semiconductor element mounting structure
US6281581B1 (en) Substrate structure for improving attachment reliability of semiconductor chips and modules
JP3401767B2 (en) Multilayer ceramic substrate and method of manufacturing the same
JPH10135613A (en) Wiring board
JPH0680703B2 (en) Direct attachment of semiconductor chip to substrate
JP2915888B1 (en) Wiring board and manufacturing method thereof
JPH10173006A (en) Semiconductor device and its manufacturing method
JP2001085470A (en) Semiconductor device and manufacturing method therefor
JP2581456B2 (en) Component connection structure and method of manufacturing the same
JP4151136B2 (en) Substrate, semiconductor device and manufacturing method thereof
JP3719806B2 (en) Wiring board
JPH10303330A (en) Wiring substrate
JP2001298046A (en) Semiconductor device and its manufacturing method, circuit board, and electronic apparatus
JPH10209591A (en) Wiring board
JP3585806B2 (en) Wiring board with pins
JP3708283B2 (en) Wiring board
JP3544439B2 (en) Connection pins and board mounting method
JPH10261737A (en) Wiring board
JP2705653B2 (en) Electronic device assembly and method of manufacturing the same
JP2827965B2 (en) Ball grid array mounting method
JP3331146B2 (en) Manufacturing method of BGA type semiconductor device
JPH10116927A (en) Connecting terminal and method for its formation
JP3780088B2 (en) Bonding member for surface mounting of electronic components
JP2633745B2 (en) Semiconductor device package

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term