JPH0281432A - Method of forming phosphorus-doped polycrystalline silicon film - Google Patents

Method of forming phosphorus-doped polycrystalline silicon film

Info

Publication number
JPH0281432A
JPH0281432A JP23175088A JP23175088A JPH0281432A JP H0281432 A JPH0281432 A JP H0281432A JP 23175088 A JP23175088 A JP 23175088A JP 23175088 A JP23175088 A JP 23175088A JP H0281432 A JPH0281432 A JP H0281432A
Authority
JP
Japan
Prior art keywords
phosphorus
polycrystalline silicon
silicon film
och3
polysilicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23175088A
Other languages
Japanese (ja)
Inventor
Hironobu Miya
博信 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP23175088A priority Critical patent/JPH0281432A/en
Publication of JPH0281432A publication Critical patent/JPH0281432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a uniform phosphorus distribution in a low concentration region among wafers by a method wherein monosilane and trimethoxy phosphoric acid are employed and a phosphorus-doped polycrystalline silicon film is formed in a specific temperature range. CONSTITUTION:In monosilane (SiH4) and trimethoxy phosphoric acid (PO(OCH3)3) are employed and a forming temperature is selected within a temperature range of 550-700 deg.C, PO(OCH3)3 is not decomposed in the gas introducing side of a reaction chamber and has a high resistivity and is decomposed in a wafer region by heat and is gradually taken into a polycrystalline silicon film. By selecting the suitable forming temperature, therefore, a uniform phosphorus concentration distribution can be obtained. In a low pressure CVD method, SiH4 and, instead of PH3 which has a high adsorption speed, trimethoxy phosphoric acid PO(OCH3)3 are employed as raw gases.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はLSI素子の配線材料として用いられているリ
ンドープポリシリコン膜の生成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a phosphorus-doped polysilicon film used as a wiring material for LSI devices.

〔従来の技術〕[Conventional technology]

従来、ポリシリコン膜を配線材料として用いる場合、そ
の生成は次のような方法で行われている。
Conventionally, when a polysilicon film is used as a wiring material, its production is performed by the following method.

第1の方法はポリシリコン膜にP、Asなどのイオンを
注入する方法、第2の方法はポリシリコン膜にPOC1
3などによるPを拡散させる方法及び第3の方法はSi
H4とPlhを用いて熱CVD法によりリンドープポリ
シリコン膜を生成する方法である。
The first method is to implant ions such as P and As into the polysilicon film, and the second method is to implant POC1 into the polysilicon film.
3, etc., and the third method is Si
This is a method of producing a phosphorus-doped polysilicon film by thermal CVD using H4 and Plh.

第1のイオン注入方法では深い段差を持つ部分へのイオ
ン注入が難しく、第2の拡散法ではリン濃度の制御と濃
度均一性を得るのが難しいため、第3のリンドープポリ
シリコン膜のCVD法による直接的生成方法が注目を集
めている。
With the first ion implantation method, it is difficult to implant ions into parts with deep steps, and with the second diffusion method, it is difficult to control the phosphorus concentration and obtain concentration uniformity. Direct generation methods using methods are attracting attention.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらSiH4とPHffによるリンドープポリ
シリコン膜の生成方法には、ホットウォール形熱CVD
装置において多数枚のウェー八領域におけるリン濃度の
均一性を得るため、PH,を過剰に加える必要がある。
However, the method for producing phosphorus-doped polysilicon films using SiH4 and PHff requires hot-wall thermal CVD.
In order to obtain uniformity of phosphorus concentration in a large number of wafer regions in the apparatus, it is necessary to add an excessive amount of PH.

第2図(a)はウェーハ位置に対する生成速度とPH3
の流量の関係を示す図で、a線はPH3の流量が200
cc/win、  b線は同じ<  150cc/mi
n、  c線は同じ<  100cc/min、 a線
は同じ(50cc/minの場合を示している。また第
2図(blはウェーハ位置に対する抵抗率とPH5の流
量の関係を示す図で、a線はPH1の流量が200cc
/min、  b線が150cc/min、  c線は
100cc/ffl1n、  d線は50cc/min
の場合を示している。いずれも、50χSiH4/、で
450cc/min、 0.5!PH3八。で50〜2
00cc/min、圧力が50pa 、温度が620℃
の条件で測定した場合を示している。この第2図(al
 、 (b)からも判るようにPR。
Figure 2 (a) shows the generation rate and PH3 with respect to the wafer position.
This is a diagram showing the relationship between the flow rates of PH3 and 200.
cc/win, b line is the same < 150cc/mi
The n and c lines are the same < 100 cc/min, and the a line is the same (showing the case of 50 cc/min. Also, Figure 2 (bl is a diagram showing the relationship between resistivity and PH5 flow rate with respect to wafer position, and a The line shows the flow rate of PH1 is 200cc
/min, b line 150cc/min, c line 100cc/ffl1n, d line 50cc/min
The case is shown below. Both are 50χSiH4/, 450cc/min, 0.5! PH38. 50~2
00cc/min, pressure 50pa, temperature 620℃
The figure shows the case measured under the following conditions. This figure 2 (al
, PR as seen from (b).

を多量に使用する必要がある。need to be used in large quantities.

また第3図示のように高さH=4.2μm9幅W−2,
6μmの凹状の段差部分にリンドープポリシリコン膜を
生成温度615℃で生成した場合、段差部分における膜
の被覆性(ステップカバレッジ)、即ち各部の膜厚寸法
A、B、CはP)lz/SiH4の比(リン濃度)を変
えた場合、下表に示す通り、リン濃度が低い程良好であ
り、高くなる程悪くなるという課題がある。
In addition, as shown in the third figure, height H=4.2μm9 width W-2,
When a phosphorus-doped polysilicon film is formed on a 6 μm concave step portion at a temperature of 615° C., the step coverage of the film at the step portion, that is, the film thickness dimensions A, B, and C at each part is P)lz/ When the ratio of SiH4 (phosphorus concentration) is changed, as shown in the table below, there is a problem that the lower the phosphorus concentration is, the better it is, and the higher it is, the worse it is.

〔課題を解決するための手段〕[Means to solve the problem]

本発明方法は上記の課題を解決するため、反応炉内に搬
入された多数枚のウェーハを原料ガスを流通しつつ加熱
してウェーハにリンドープポリシリコン膜を生成する減
圧CVD法において、モノシランとトリメトキシリン酸
を用いて550℃から700℃の温度範囲でリンドープ
ポリシリコン膜を生成することを特徴とするものである
In order to solve the above-mentioned problems, the method of the present invention uses monosilane and This method is characterized in that a phosphorus-doped polysilicon film is produced using trimethoxyphosphoric acid in a temperature range of 550° C. to 700° C.

〔作 用〕[For production]

このようにモノシラン(Silla)とトリメトキシリ
ン酸(PO(OCH3) 3)を用い、生成温度を55
0℃から700℃の温度範囲内に選定すると、PO(O
CH3)+は反応炉のガス導入側では分解されず、抵抗
率が高く、ウェーハ領域において加熱分解されて次第に
ポリシリコン膜中に取り込まれる。従って適当な生成温
度を選定することにより均一なリン濃度分布が得られる
ことになる。
In this way, using monosilane (Silla) and trimethoxyphosphoric acid (PO(OCH3) 3), the generation temperature was set to 55
When selected within the temperature range of 0℃ to 700℃, PO(O
CH3)+ is not decomposed on the gas introduction side of the reactor, has a high resistivity, is thermally decomposed in the wafer region, and is gradually incorporated into the polysilicon film. Therefore, by selecting an appropriate generation temperature, a uniform phosphorus concentration distribution can be obtained.

〔実施例〕〔Example〕

以下図面により本発明方法の実施例を説明する。 Embodiments of the method of the present invention will be described below with reference to the drawings.

原料ガスとしてSiH,とPH,を用いた場合にはPt
hのSiウェーハ表面への吸着速度は、第4図示のよう
に速く、通常のリンドープポリシリコン膜の生成温度で
ある550℃〜650°Cで最大(ピーク)となる。こ
の場合、51g4はSiHn(g)−5iHz(g) 
十Hz(g)の反応により5iHzを生成し、PH3と
の反応で5i)12+PII:+→SiH,PHzを生
成し、リンドープポリシリコンを形成する。このためP
ll、の吸着が速いことはリン濃度のウェーハ内、ウェ
ーハ間の均一性を得るのに望ましいことではない。
When SiH and PH are used as source gases, Pt
The rate of adsorption of h onto the Si wafer surface is fast, as shown in Figure 4, and reaches its maximum (peak) at 550°C to 650°C, which is the temperature at which a normal phosphorus-doped polysilicon film is formed. In this case, 51g4 is SiHn (g) - 5iHz (g)
A reaction at 10 Hz (g) generates 5 iHz, and a reaction with PH3 generates 5i) 12+PII:+→SiH, PHz, forming phosphorus-doped polysilicon. For this reason, P
The rapid adsorption of phosphorus is not desirable in order to obtain uniformity of the phosphorus concentration within and between wafers.

本発明方法では減圧CVD法において原料ガスとしてS
 i It =と、吸着の速いPH3に替えてトリキメ
キシリン酸PO(OCH3)3を用いる。
In the method of the present invention, S is used as the raw material gas in the low pressure CVD method.
i It =, and triquimexylic acid PO(OCH3)3 is used instead of PH3, which adsorbs quickly.

PO(OCH3) :lは沸点が197℃の液体原料で
あり、Siウェーハ上への吸着はPH,のように明らか
ではない。
PO(OCH3):l is a liquid raw material with a boiling point of 197°C, and its adsorption onto the Si wafer is not as obvious as with PH.

生成温度を変えてウェーハ間における抵抗率のばらつき
を観察してみると、第1図のa示のようにPll3がガ
ス導入側において抵抗率が低いのに対し、PO(OCH
3)3はガス導入側ではすぐには分解されず、抵抗率は
高く、ウェーハ領域において加熱分解されて次第にポリ
シリコン膜中に取り込まれる。第1図のbは生成温度が
600°C1同じくcは620°C1同じくdは640
°Cの場合のウェーハ位置(領域)に対する抵抗率を示
す。
When changing the formation temperature and observing the variation in resistivity between wafers, we found that Pll3 has a low resistivity on the gas introduction side, as shown in Figure 1a, while PO(OCH
3) 3 is not immediately decomposed on the gas introduction side, has a high resistivity, is thermally decomposed in the wafer region, and is gradually incorporated into the polysilicon film. In Figure 1, b shows the generation temperature at 600°C1. Similarly, c shows 620°C. Similarly, d shows 640°C.
It shows the resistivity versus wafer position (area) in °C.

従って適当な生成温度を選ぶことにより均一なリン濃度
分布が得られることになる。
Therefore, by selecting an appropriate generation temperature, a uniform phosphorus concentration distribution can be obtained.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明によれば、熱CVD法によりリンド
ープポリシリコン膜を形成する際にシリコンウェーハへ
の吸着の速いPlhを用いずに有機系原料であるPO(
OCH3)3を用いることにより低濃度領域におけるウ
ェーハ間のリン濃度分布の均一性を得ることができる。
As described above, according to the present invention, when forming a phosphorus-doped polysilicon film by thermal CVD, PO (which is an organic raw material) is used instead of Plh, which is quickly adsorbed to a silicon wafer.
By using OCH3)3, it is possible to obtain uniformity of the phosphorus concentration distribution between wafers in the low concentration region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のPH,と本発明のPO(OCIh) :
lを用いた場合における生成温度とウェーハ間の抵抗率
のバラツキを示す図、第2図(a)はウェーハ位置に対
する生成速度とPH3の流量の関係を示す図、第2図(
b)はウェーハ位置に対する抵抗率とPH3の流量の関
係を示す図、第3図は段差部分にリンドープポリシリコ
ン膜を生成温度615℃で生成した場合、段差部分にお
ける膜のステップカバレッジを示す図、第4図は従来の
PHffを用いた場合における生成温度とPH3のシリ
コンウェーハへの吸着速度の関係を示す図である。 箋Z謂 (a) ’10    に0 生成速度(A/を)
Figure 1 shows the conventional PH and the PO (OCIh) of the present invention:
Figure 2(a) shows the relationship between the generation rate and the flow rate of PH3 with respect to the wafer position.
b) is a diagram showing the relationship between the resistivity and the flow rate of PH3 with respect to the wafer position, and Figure 3 is a diagram showing the step coverage of the film in the step part when a phosphorus-doped polysilicon film is formed at a temperature of 615°C in the step part. , FIG. 4 is a diagram showing the relationship between the generation temperature and the rate of adsorption of PH3 onto a silicon wafer when a conventional PHff is used. Note Z so-called (a) '10 to 0 generation rate (A/)

Claims (1)

【特許請求の範囲】[Claims] 反応炉内に搬入された多数枚のウェーハを原料ガスを流
通しつつ加熱してウェーハにリンドープポリシリコン膜
を生成する減圧CVD法において、モノシランとトリメ
トキシリン酸を用いて550℃から700℃の温度範囲
でリンドープポリシリコン膜を生成することを特徴とす
るリンドープポリシリコン膜の生成方法。
In the low-pressure CVD method, which generates a phosphorous-doped polysilicon film on the wafers by heating a large number of wafers carried into a reactor while flowing raw material gas, monosilane and trimethoxyphosphoric acid are used to heat the wafers at temperatures ranging from 550 to 700 degrees Celsius. A method for producing a phosphorus-doped polysilicon film, the method comprising producing a phosphorus-doped polysilicon film in a temperature range of .
JP23175088A 1988-09-16 1988-09-16 Method of forming phosphorus-doped polycrystalline silicon film Pending JPH0281432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23175088A JPH0281432A (en) 1988-09-16 1988-09-16 Method of forming phosphorus-doped polycrystalline silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23175088A JPH0281432A (en) 1988-09-16 1988-09-16 Method of forming phosphorus-doped polycrystalline silicon film

Publications (1)

Publication Number Publication Date
JPH0281432A true JPH0281432A (en) 1990-03-22

Family

ID=16928449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23175088A Pending JPH0281432A (en) 1988-09-16 1988-09-16 Method of forming phosphorus-doped polycrystalline silicon film

Country Status (1)

Country Link
JP (1) JPH0281432A (en)

Similar Documents

Publication Publication Date Title
IE914500A1 (en) Process for producing a smooth, polycrystalline silicon¹layer doped with arsenic for highly integrated circuits
JP3356531B2 (en) Method for forming boron-containing polysilicon film
WO1999045167A1 (en) Method of depositing silicon with high step coverage
EP1908098A2 (en) Uniform batch film deposition process and films so produced
JPS61275136A (en) Formation of silicon layer doped with boron and phosphorus
JPS60245231A (en) Method of depositing borophossilidate glass
JP2947828B2 (en) Method for manufacturing semiconductor device
JPH08330423A (en) Manufacture of semiconductor device
US4487787A (en) Method of growing silicate glass layers employing chemical vapor deposition process
US5250463A (en) Method of making doped semiconductor film having uniform impurity concentration on semiconductor substrate
US3653991A (en) Method of producing epitactic growth layers of semiconductor material for electrical components
JPH0281432A (en) Method of forming phosphorus-doped polycrystalline silicon film
JP3318067B2 (en) Method for producing phosphorus-doped silicon film, semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP2633551B2 (en) Thin film formation method
US8158495B2 (en) Process for forming a silicon-based single-crystal portion
JP2727106B2 (en) Film formation method
US20070254450A1 (en) Process for forming a silicon-based single-crystal portion
JP2000036467A (en) Phosphorus diffusion method
JPS5928330A (en) Vapor growth method of semiconductor
JPH0234917A (en) Method of forming polysilicon film doped with phosphorus in low concentration
JPH01103832A (en) Plasma doping process
JPH03273630A (en) Method and apparatus for manufacturing semiconductor device
JPS6086274A (en) Preparation of polycrystalline silicon film
JPS5985857A (en) Preparation of aluminum film
JPS63299363A (en) Formation of polysilicon film doped with phosphorus