【発明の詳細な説明】[Detailed description of the invention]
(産業上の利用分野)
本発明は、熱可塑性ポリマーを溶融紡糸する方
法に関し、更に詳しくは、高溶融粘度、高粘着度
の熱可塑性ポリマーを安定に溶融紡糸する方法に
関する。
(従来の技術)
溶融粘度の大きい熱可塑性ポリマーを防糸口金
ノズルから溶融吐出すると、吐出されたポリマー
が急激に膨む、いわゆるベーラス効果という現象
が顕著になる。第2図は従来の紡糸方法における
ベーラス効果現象を模式的に示した要部拡大断面
図であり、紡糸口金1に穿設したノズル2から吐
出された溶融ポリマー3は、大きく膨張し、紡糸
口金表面4と接触し易い状態となる。特にポリマ
ーの粘着度が高いと、極めて短時間のうちに、ノ
ズル2から吐出された溶融ポリマー3が紡糸口金
表面4に粘着し、ニーイング、ベンデイング現象
が多発して、紡糸断糸が起こり、安定な紡糸を行
えず、また、延伸工程において、ローラへの単糸
巻き付き(ラツプ)の発生率が高くなるという問
題があつた。
かかる問題点を解消するために、例えば、紡糸
口金面の清掃を頻繁に行う方法が採用されるが、
この方法では清掃の都度生産を中止しなければな
らないので、生産効率が悪く、しかも作業が繁雑
であるという欠点がある。また、清掃を頻繁に行
つても、依然として、安定な紡糸は望めない。更
に、第3図に示すように、紡糸口金1に穿設した
ノズル2の吐出側エツジ5をシヤープ(R10μ以
下)に形成しておくと、吐出溶融ポリマー3が紡
糸口金表面4に接触し難くなり、ニーイング、ベ
ンデイング現象を防止することができる。しかし
ながら、この場合は、紡糸をつづけているうち
に、エツジ5が摩耗して、第2図のように丸くな
つてしまい、結局は、ニーイング、ベンデイング
が多発して、安定な紡糸が行えないことになつて
しまう。また、ノズル2の吐出側エツジ5をシヤ
ープにした時は、エツジ5の周辺に劣化ポリマー
が付着し易くなり、これが紡糸安定性を阻害する
原因になるという新たな問題も生じてくる。
(発明が解決しようとする問題点)
本発明は、かかる従来法の欠点を解消し、ノズ
ルエツジの状態によらず、高溶融粘度、高粘着度
の熱可塑性ポリマーを安定に溶融紡糸することの
できる方法を提供せんとするものである。
(問題点を解決するための手段)
本発明は、溶融紡糸条件下における溶解粘度が
1350ポイズ以上、粘着度が200以上である熱可塑
性ポリマーを、吐出側表面の粗度が0.3〜3.0sにな
るように梨地加工した紡糸口金を用いて紡糸する
ことを特徴とする溶融紡糸方法である。
本発明において溶融紡糸に供する熱可塑性ポリ
マーは、溶融紡糸条件下における溶融粘度が1350
ポイズ以上で、かつ粘着度が200以上のものであ
る。ここで、粘着度とは、140℃に加熱したプレ
ート上に4mm×4mmの熱可塑性ポリマーチツプを
2000粒置いて、20分間放置した後、該プレートを
ひつくり返した際に、プレートに粘着して、落下
せずに残つたチツプの粒数で表した値であり、こ
の値が大きいほど粘着性が高いことを示す。この
ような、高溶融粘度、高粘着性の熱可塑性ポリマ
ーとしては、例えば、5価のリン化合物とアルカ
リ土類金属化合物とを含有するポリエステル、ス
ルホ酸金属塩の基を主鎖中に含有する変性ポリエ
ステルなどを挙げることができる。
第1図は、本発明に使用する紡糸口金の一例を
示す要部拡大断面図であり、1は紡糸口金、2は
ノズル、3は吐出された溶融ポリマー、4′は梨
地加工された紡糸口金表面を示す。梨地加工され
た紡糸口金表面4′の粗度は、0.3〜3.0sとするこ
とが必要である。梨地粗度が0.3s未満では、鏡面
に近くなり、ベンデイング、ニーイングを防止す
る効果がなくなる。一方、梨地粗度が3.0sを超え
ると、ノズル周辺に欠落部分ができて、更には粗
度のバラツキが大きくなり、かえつて溶融ポリマ
ーの吐出状態が不安定になり、紡糸断糸多くなり
不適当である。
尚、紡糸口金面に梨地加工を施す範囲は、第1
図に示す如く、全面であつてもよく、ノズル2か
ら吐出されたポリマーが紡糸口金面4から離れる
線とその外側近傍との間に施すことでも充分であ
る。
(作用)
第1図において、紡糸口金1のノズル2から吐
出された、高溶融粘度、高粘着性の溶融ポリマー
3は、ベーラス効果によつて大きく膨張し、紡糸
口金表面4′に接触する。しかし、紡糸口金表面
4′が0.3〜3.0sに梨地加工されていて、溶融ポリ
マーとの接触面積が小さくなるため、溶融ポリマ
ーが紡糸口金表面4′に粘着せず、長時間にわた
つて溶融紡糸を継続しても、ベンデイング、ニー
イング現象は起こらず、安定な紡糸を行うことが
できる。
(実施例)
以下、実施例により本発明を説明する。
実施例 1
テレフタル酸ジメチル100部とエチレングリコ
ール60部とを、酢酸カルシウム1水塩0.06部の存
在下でエステル交換反応させ、得られた反応生成
物に、リン酸ジエステルカルシウム塩と酢酸カル
シウムとの混合溶液9.88部を添加し、次いで三酸
化アンチモン0.04部を添加して重合を行い、極限
粘度0.64のポリマーを得た。このポリマーは下記
紡糸条件下での溶融粘度が1500ポイズ、粘着度が
240であつた。
このポリマーを常法によりチツプ化、乾燥し
て、孔径0.3mm、ランド長0.6mm、ノズル孔のポリ
マー吐出部の曲率半径25μmの円形ノズルを36個
穿設した紡糸口金から紡糸温度290℃、紡糸速度
1100m/分で溶融紡糸し、次いで常法により、延
伸倍率3.5倍で、延伸して75デニール/36フイラ
メントの糸条を得た。その際、紡糸口金のポリマ
ー吐出側表面の粗度を第1表に示すように、種々
変更し、それぞれ10日間にわたつて紡糸工程での
ベンデイング発生率、紡糸断糸率及び、延伸工程
でラツプ発生率を測定した。その結果を第1表に
示す。
なお、ベンデイング発生率は、16錘を2回/日
チエツクし、発生ホール/(16錘×36H×2回×
10日)で示す。
溶融粘度は紡糸口金の背圧より、ハーゲンポア
ーズの式を用いて算出した。
η=πa4Δp/8Ql
a:ノズル半径、l:ランド長
Q:吐出量、 Δp:ノズル圧損
(Industrial Application Field) The present invention relates to a method for melt-spinning a thermoplastic polymer, and more particularly, to a method for stably melt-spinning a thermoplastic polymer having high melt viscosity and high tackiness. (Prior Art) When a thermoplastic polymer having a high melt viscosity is melted and discharged from a thread-proof nozzle, a phenomenon called the so-called balus effect, in which the discharged polymer rapidly expands, becomes noticeable. FIG. 2 is an enlarged cross-sectional view of the main part schematically showing the Belas effect phenomenon in the conventional spinning method, in which the molten polymer 3 discharged from the nozzle 2 formed in the spinneret 1 expands greatly and It is in a state where it is easy to come into contact with the surface 4. In particular, if the adhesiveness of the polymer is high, the molten polymer 3 discharged from the nozzle 2 will stick to the spinneret surface 4 in a very short time, causing frequent kneeing and bending phenomena, resulting in yarn breakage and stabilization. In addition, there were problems in that the rate of occurrence of single yarn wrapping around the rollers increased during the drawing process. In order to solve this problem, for example, a method is adopted in which the spinneret surface is frequently cleaned.
This method has the disadvantage that production must be stopped each time cleaning is performed, resulting in poor production efficiency and complicated work. Moreover, even if cleaning is performed frequently, stable spinning cannot still be expected. Furthermore, as shown in FIG. 3, if the discharge side edge 5 of the nozzle 2 bored in the spinneret 1 is formed sharply (R10μ or less), the discharged molten polymer 3 is less likely to come into contact with the spinneret surface 4. This can prevent kneeing and bending phenomena. However, in this case, as spinning continues, the edge 5 wears out and becomes rounded as shown in Figure 2, resulting in frequent kneeing and bending, making it impossible to perform stable spinning. I'm getting used to it. Further, when the discharge side edge 5 of the nozzle 2 is made sharp, a new problem arises in that degraded polymer tends to adhere around the edge 5, and this becomes a cause of inhibiting spinning stability. (Problems to be Solved by the Invention) The present invention eliminates the drawbacks of such conventional methods and makes it possible to stably melt-spun thermoplastic polymers with high melt viscosity and high stickiness regardless of the state of the nozzle edge. The purpose is to provide a method. (Means for Solving the Problems) The present invention provides that the melt viscosity under melt spinning conditions is
A melt spinning method characterized by spinning a thermoplastic polymer with a viscosity of 1350 poise or more and a viscosity of 200 or more using a spinneret that has been matte-finished so that the surface roughness on the discharge side is 0.3 to 3.0 s. be. The thermoplastic polymer to be subjected to melt spinning in the present invention has a melt viscosity of 1350 under melt spinning conditions.
Poise or higher and adhesiveness of 200 or higher. Here, tackiness refers to a thermoplastic polymer chip of 4 mm x 4 mm placed on a plate heated to 140°C.
This value is expressed as the number of chips that stuck to the plate and remained without falling when the plate was turned over after 2000 chips were placed and left for 20 minutes.The higher the value, the more sticky it is. indicates that the value is high. Such thermoplastic polymers with high melt viscosity and high adhesiveness include, for example, polyesters containing a pentavalent phosphorus compound and an alkaline earth metal compound, and polyesters containing a sulfonic acid metal salt group in the main chain. Examples include modified polyester. FIG. 1 is an enlarged sectional view of essential parts of an example of a spinneret used in the present invention, in which 1 is a spinneret, 2 is a nozzle, 3 is a discharged molten polymer, and 4' is a matted spinneret. Show the surface. The roughness of the matted spinneret surface 4' is required to be 0.3 to 3.0s. If the roughness of the satin finish is less than 0.3s, the surface will become close to a mirror surface, and the effect of preventing bending and kneeing will be lost. On the other hand, if the satin roughness exceeds 3.0 s, missing parts will be formed around the nozzle, and furthermore, the variation in roughness will become larger, and the discharge state of the molten polymer will become unstable, resulting in many spun yarn breakages and failure. Appropriate. Note that the area where the satin finish is applied to the spinneret surface is the first
As shown in the figure, it may be applied over the entire surface, and it is sufficient to apply it between the line where the polymer discharged from the nozzle 2 leaves the spinneret surface 4 and the vicinity of the outside thereof. (Function) In FIG. 1, the molten polymer 3 having high melt viscosity and high adhesiveness discharged from the nozzle 2 of the spinneret 1 expands greatly due to the berus effect and comes into contact with the spinneret surface 4'. However, since the spinneret surface 4' is satin-finished for 0.3 to 3.0 seconds and the contact area with the molten polymer is small, the molten polymer does not stick to the spinneret surface 4' and melt spinning continues for a long time. Even if this process is continued, bending and kneeing phenomena do not occur, and stable spinning can be performed. (Example) The present invention will be explained below with reference to Examples. Example 1 100 parts of dimethyl terephthalate and 60 parts of ethylene glycol were subjected to a transesterification reaction in the presence of 0.06 parts of calcium acetate monohydrate, and the resulting reaction product was transesterified with phosphoric acid diester calcium salt and calcium acetate. 9.88 parts of the mixed solution was added, and then 0.04 part of antimony trioxide was added to carry out polymerization to obtain a polymer with an intrinsic viscosity of 0.64. This polymer has a melt viscosity of 1500 poise and a tackiness under the following spinning conditions.
It was 240. This polymer was chipped by a conventional method, dried, and spun at a temperature of 290°C from a spinneret equipped with 36 circular nozzles with a hole diameter of 0.3 mm, a land length of 0.6 mm, and a radius of curvature of 25 μm at the polymer discharge portion of the nozzle hole. speed
The yarn was melt-spun at 1100 m/min and then drawn by a conventional method at a draw ratio of 3.5 times to obtain a yarn of 75 denier/36 filaments. At that time, the roughness of the surface of the polymer discharge side of the spinneret was changed variously as shown in Table 1, and the bending occurrence rate in the spinning process, the spinning yarn breakage rate, and the lapping rate in the drawing process were measured over a period of 10 days. Incidence was determined. The results are shown in Table 1. The bending occurrence rate is determined by checking 16 spindles twice/day and calculating the occurrence hole/(16 spindles x 36H x 2 times x
10 days). The melt viscosity was calculated from the back pressure of the spinneret using Hagenpoers' formula. η=πa 4 Δp/8Ql a: Nozzle radius, l: Land length Q: Discharge amount, Δp: Nozzle pressure drop
【表】
第1表からも明らかなように、紡糸口金の表面
粗度が0.3s未満のとき又は3.0sを越えるときは、
ベンデイング発生率、紡糸断糸率が高くなり、紡
糸工程が不安定になり、更に延伸工程でのラツプ
発生率も増大するが、表面粗度を0.3〜3.0sとした
ときは、ベンデイング発生率、紡糸断糸率共に低
く、安定した紡糸を行うことができ、延伸工程で
のラツプ発生率も低い。
実施例 2
5−ナトリウムスルホイソフタル酸を2.8モル
%共重合した極限粘度0.50、下記紡糸条件下での
溶融粘度1450ポイズ、粘着度260のポリエチレン
テレフタレートチツプを常法により乾燥して、孔
径0.3mmの円形ノズルを48個穿設した紡糸口金か
ら紡糸温度288℃、紡糸速度1100m/分で溶融紡
糸し、次いで常法により、延伸倍率3.37倍で延伸
して、100デニール/48フイラメントの糸条を得
た。その際、紡糸口金のポリマー吐出側表面の粘
度を第2表に示すように、種々変更し、それぞ
れ、10日間にわたつて紡糸工程でのベンデイング
発生率、紡糸断糸率、及び延伸工程でのラツプ発
生率を測定した。その結果を第2表に示す。[Table] As is clear from Table 1, when the surface roughness of the spinneret is less than 0.3s or more than 3.0s,
The bending occurrence rate and spinning yarn breakage rate become high, the spinning process becomes unstable, and the lapping rate in the drawing process also increases, but when the surface roughness is set to 0.3 to 3.0 s, the bending occurrence rate, Both the spinning yarn breakage rate is low, stable spinning can be performed, and the incidence of lapping in the drawing process is also low. Example 2 Polyethylene terephthalate chips copolymerized with 2.8 mol % of 5-sodium sulfoisophthalate, having an intrinsic viscosity of 0.50, a melt viscosity of 1450 poise under the following spinning conditions, and a viscosity of 260, were dried by a conventional method to form chips with a pore diameter of 0.3 mm. Melt spinning was carried out from a spinneret equipped with 48 circular nozzles at a spinning temperature of 288°C and a spinning speed of 1100 m/min, and then drawn by a conventional method at a draw ratio of 3.37 times to obtain a yarn of 100 denier/48 filaments. Ta. At that time, the viscosity of the surface of the polymer discharge side of the spinneret was changed variously as shown in Table 2, and the bending occurrence rate in the spinning process, the yarn breakage rate in the spinning process, and the rate of yarn breakage in the drawing process were respectively changed over 10 days. The incidence of laps was measured. The results are shown in Table 2.
【表】
第2表からも明らかなように、紡糸口金の表面
粗度が0.3〜3.0sの範囲内にあるときは、ベンデイ
ング発生率、紡糸断糸率が低く、紡糸工程が安定
しており、延伸工程でのラツプ発生率も低いこと
がわかる。
比較例 1
実施例1において紡糸口金表面粗度を0(鏡面)
とし、かつ第3図に示すように、吐出側エツジを
シヤープに形成したノズルを穿設した紡糸口金を
用いて、紡糸を行つたところ、紡糸開始から15日
を経過した頃からベンデイング、ニーイングが多
発しはじめ、次第に紡糸断糸が増加し、30日目に
はまつたく紡糸することができなくなつた。この
紡糸口金のノズルを観察すると、その吐出側エツ
ジが摩耗して、第2図に示すように丸くなつてい
ることがわかつた。
(発明の効果)
本発明によれば、溶融粘度、粘着度が高い熱可
塑性ポリマーを溶融紡糸する場合でも、ベンデイ
ング、ニーイングがほとんど発生せず、紡糸断糸
も少なく、極めて安定な紡糸を長期間にわたつて
行うことができ、更に、延伸工程でのラツプ発生
率も非常に低いという効果を奏することができ
る。[Table] As is clear from Table 2, when the surface roughness of the spinneret is within the range of 0.3 to 3.0 s, the bending occurrence rate and yarn breakage rate are low, and the spinning process is stable. It can be seen that the incidence of lapping during the stretching process is also low. Comparative Example 1 In Example 1, the spinneret surface roughness was 0 (mirror surface).
When spinning was carried out using a spinneret equipped with a nozzle with a sharp discharge edge as shown in Figure 3, bending and kneeing were observed after 15 days from the start of spinning. This started to occur frequently, and the number of yarn breaks gradually increased, and on the 30th day, it became impossible to spin the yarn properly. When the nozzle of this spinneret was observed, it was found that the discharge edge thereof was worn and rounded as shown in FIG. (Effects of the Invention) According to the present invention, even when thermoplastic polymers with high melt viscosity and adhesiveness are melt-spun, bending and kneeing hardly occur, there is little spun yarn breakage, and extremely stable spinning can be achieved for a long period of time. The stretching process can be carried out over a period of time, and furthermore, the rate of occurrence of lapping during the stretching process is extremely low.
【図面の簡単な説明】[Brief explanation of drawings]
第1図は、本発明に使用する紡糸口金の一例を
示す要部拡大断面図、第2図及び第3図は従来方
法において使用していた紡糸口金の例を示す要部
拡大断面図である。
1……紡糸口金、2……ノズル、3……吐出さ
れた溶融ポリマー、4′……梨地加工された紡糸
口金表面、R……曲率半径。
FIG. 1 is an enlarged cross-sectional view of a main part showing an example of a spinneret used in the present invention, and FIGS. 2 and 3 are enlarged cross-sectional views of main parts showing an example of a spinneret used in a conventional method. . DESCRIPTION OF SYMBOLS 1... Spinneret, 2... Nozzle, 3... Discharged molten polymer, 4'... Matte-finished spinneret surface, R... Radius of curvature.