JPH0280328A - Treatment of molten glass - Google Patents

Treatment of molten glass

Info

Publication number
JPH0280328A
JPH0280328A JP22976888A JP22976888A JPH0280328A JP H0280328 A JPH0280328 A JP H0280328A JP 22976888 A JP22976888 A JP 22976888A JP 22976888 A JP22976888 A JP 22976888A JP H0280328 A JPH0280328 A JP H0280328A
Authority
JP
Japan
Prior art keywords
glass
gas
molten glass
bubbler
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22976888A
Other languages
Japanese (ja)
Inventor
Shiro Takahashi
四郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22976888A priority Critical patent/JPH0280328A/en
Publication of JPH0280328A publication Critical patent/JPH0280328A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To reduce a percentage of remaining bubbles in a glass article by improving the ejection of gas from a gas ejecting pipe in the treatment of molten glass by the bubbler method. CONSTITUTION:Periphery of a ceramic bubbler tube 3 extending through decking tiles 1 at the bottom of a glass melting tank upwards into molten glass 2 is surrounded by a double wall water-cooling jacket tube 4 which penetrates the decking tiles 1 and circulates cooling water. An ejecting pipe 3b extending horizontally is provided to the top end of the bubbler tube 3, and an ejecting port 3a is formed by opening a tip end of the ejecting pipe on an external wall of the jacket tube 4. The gas 5 fed to the bubbler tube 3 is ejected in the horizontal direction from the ejecting port 3a, forming thus closed cells 6 arranged in the almost horizontal direction in the glass 2. The glass 2 is stirred when the foams 6 are separated from the ejecting port 3a and floated, and are broken when the foams reach the upper surface of the molten glass and liberate the gas into the atmosphere of a space at the top of the glass melting tank. By this method, generation of uniform quality of a glass body can be prompted and a glass article contg. no foam is obtd. because many foams having minute sizes can be dispersed in the glass 2 without causing bursting of the glass.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は製品の泡、コート9等の品質が問題となる硝子
製造分野における熔融硝子の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for treating molten glass in the glass manufacturing field where the quality of foam, coat 9, etc. of products is a problem.

〔従来の技術〕[Conventional technology]

硝子の熔解及び清澄工程については、その歴史は古く、
高温溶解炉という古典的設備と、これを扱う操作が同工
程技術の中心となって来た。
The glass melting and fining process has a long history.
The classic equipment of a high-temperature melting furnace and its operations have become central to this process technology.

これに対し、この熔解清澄工程に、機械的強制力をもっ
た装置を導入し、従来からの古典的熱反応、熱対流等に
のみ頼るだけでな(、近代的メカニズムを利用して、こ
の工程の効率化ないし対象とする製品の品質改善を進め
ようとする各種の試みが近来進められており、その一つ
として硝子熔解槽内の熔融硝子中に噴気孔からガスを強
制的に噴出させることによって、気泡を発生させ、同気
泡の浮上によってバブリングを行なうバブラ一方式が挙
げられる。
In contrast, we introduced a device with mechanical forcing into this melting and clarification process, and instead of relying solely on conventional classical thermal reactions, thermal convection, etc. Recently, various attempts have been made to improve the efficiency of the process or the quality of the target product, and one of them is to forcibly eject gas from a fumarole into the molten glass in a glass melting tank. One example is a bubbler type, which generates air bubbles and performs bubbling by floating the air bubbles.

現用のバブラーシステムについて、それが開発された時
の目的と、現在実用されているものの効用について簡単
に説明すると、当初の目的は熔解槽底部に設けられた多
数個のバブラー噴気孔から垂直上方に向ってガスを噴出
させ、それKよって発生する多数の気泡の界面を利用し
て、熔融硝子中に熔解しているガス成分を、熔融硝子の
自由上表面からだけでなく、この気泡中へも拡散させ結
局炉内雰囲気中への放散効果を向上させることKあった
とも云われている。しかし、工業的実用例に於ては、た
とえ多数個のバブラーノズルからの泡発生を行っても、
この気泡が熔融硝子中に形成する界面の表面積の総和は
、硝子素地の上記自由上表面のそれとの対比に於て極め
て小さく、バブラー気泡界面を通じての硝子素地内溶解
ガス成分の拡散放出については、殆んどその効果を期待
することはできなかった。
To briefly explain the purpose of the current bubbler system when it was developed and the effectiveness of the one currently in use, the original purpose was to blow vertically upward from a large number of bubbler fumaroles installed at the bottom of the melting tank. By jetting gas towards the direction of the glass, and using the interfaces of the many bubbles thus generated, the gas components dissolved in the molten glass are not only released from the free upper surface of the molten glass but also into these bubbles. It is also said that the effect of diffusion into the atmosphere inside the furnace can be improved. However, in industrial practical applications, even if bubbles are generated from multiple bubbler nozzles,
The total surface area of the interface formed by these bubbles in the molten glass is extremely small compared to that of the above-mentioned free upper surface of the glass base, and regarding the diffusion and release of dissolved gas components within the glass base through the bubbler bubble interface, I could hardly expect the effect.

ただ、熔解槽内に生ずる硝子素地の熱対流罠よる渦流と
上記バブラーシステムによって生ずる人工的渦流との組
合せによって、熔解槽内のこの領域における渦流の安定
度を高めることによって、製品の品質保持についてもそ
の安定性を向上させつる効果は認められており、現用バ
ブラーシステムのより大きい効用としては、製品の品質
欠点として挙げられる硝子成分の局所的不均質性に基づ
く脈理(ヨード)に対し、バブラーシステムがこの部位
に発生させる上記の人工的渦流によって硝子素地中に活
溌な混合攪拌が生じ、との脈理を消去させる点にある。
However, the quality of the product can be maintained by increasing the stability of the vortex in this region of the melting tank by combining the vortex caused by the heat convection trap of the glass substrate generated in the melting tank with the artificial vortex created by the bubbler system described above. It has been recognized that the current bubbler system has a vine effect that improves its stability, and the greater effect of the current bubbler system is that it can reduce striae (iodine) caused by local heterogeneity of glass components, which is cited as a quality defect of the product. The above-mentioned artificial vortex generated by the bubbler system in this area creates lively mixing and agitation in the glass base, thereby eliminating striae.

この他に、脈理消去の為の機械的手段としては、素地中
で攪拌翼を廻転させるスターラージステムも広く実用化
されている。
In addition to this, as a mechanical means for eliminating striae, a stirrer system that rotates stirring blades in the substrate has also been widely put into practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術に於ては、バブラーシステムもスターラージス
テムも熔融硝子の混合攪拌というメカニズムについては
実用上効果を発揮しているが、硝子製品の最も基本的な
品質欠点である泡について、明確なメカニズムを背景と
した改善については手ぎ届いていない。
In conventional technology, both the bubbler system and the stirrer system are effective in terms of the mechanism of mixing and stirring molten glass, but there is no clear mechanism for foaming, which is the most basic quality defect of glass products. Improvements against this background have not yet been made.

熔融硝子中に含まれる泡についてみると、そこに含まれ
る泡のうち径の太きいものは成型工程に至る前に浮上消
滅するが、径の小さいものが、残って成型されてしまう
ことKなる。この際径が小さい泡は、p=−(p:内圧
、T:表面張力、r二半径)という物理法則に基づきr
が小さくなる程、外周の熔融硝子に対するガスの浸透圧
が太き(なり微小泡を囲む熔融硝子中に溶は込んで気泡
の径は更に小さくなり究極的に消滅してゆく、所謂、抱
締めが行われることが理想的であるが、実際は微小気泡
中のガス濃度とこれを取囲む熔融硝子中に溶解している
ガスの濃度とのバランスによって最終製品中に泡が残る
ことになる。
Looking at the bubbles contained in molten glass, the larger diameter bubbles float up and disappear before the molding process, but the smaller diameter ones remain and are molded. . In this case, bubbles with a small diameter are r
The smaller the bubble, the greater the osmotic pressure of the gas against the molten glass on the outer periphery (as it melts into the molten glass surrounding the microbubbles, the diameter of the bubble becomes smaller and ultimately disappears, so-called hugging). Ideally, this should be done, but in reality, bubbles will remain in the final product depending on the balance between the gas concentration in the microbubbles and the concentration of gas dissolved in the molten glass surrounding them.

上記のガスの滲透拡散に関する化学的バランスから最終
製品中の泡の残存率を低下させる為には、硝子の熔融清
澄工程において熔融硝子中に溶解しているガスの熔融硝
子中の濃度の飽和率を低く抑えることから基本的に重要
である。
In order to reduce the residual rate of bubbles in the final product from the chemical balance regarding permeation and diffusion of the gas mentioned above, it is necessary to increase the saturation rate of the concentration of gas dissolved in the molten glass in the glass melting and refining process. This is fundamentally important because it keeps the value low.

上記の熔融硝子中に、溶解しているガス成分を拡散排除
してその濃度を低下させるという泡品質改善へのアプロ
ーチを考察すると、それ自体は液中の溶解ガスを気液界
面を通じて気体中に拡散させるという物理化学的プロセ
スであって、この拡散の効率自体を促進する機械的手段
を見出すことは難しい。
Considering the above-mentioned approach to improving foam quality in which the dissolved gas components in the molten glass are diffused and eliminated to reduce their concentration, it is possible that the dissolved gas in the liquid is converted into gas through the gas-liquid interface. Diffusion is a physicochemical process, and it is difficult to find mechanical means to promote the efficiency of this diffusion itself.

ここに於て、解決すべき課題は熔融硝子中に機械的方法
で強制的に、いかにして気泡を多数分散させるかという
手段についての解決策を見出すことである。ただ単純に
機械的方法で熔融ガラスのように表面張力の大きい液中
罠多数の気泡を分散させようとすると、これには膨大な
機械的エネルギーが必要とされる。
The problem to be solved here is to find a solution for how to forcibly disperse a large number of air bubbles into molten glass using a mechanical method. However, if one attempts to disperse the large number of bubbles trapped in a liquid with high surface tension, such as in molten glass, by a simple mechanical method, an enormous amount of mechanical energy is required.

即ち粘性流体である熔融硝子中には、機械力によって気
泡を作りにくいことを考慮し、本発明は、以下述べるよ
うに噴気管から熔融硝子中へのガスの噴出を改良するこ
とによって、上記の問題点を解決しようとするものであ
る。
That is, in consideration of the fact that it is difficult to form bubbles in molten glass, which is a viscous fluid, by mechanical force, the present invention aims to solve the above problem by improving the jetting of gas from the blow tube into molten glass as described below. It attempts to solve problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、硝子熔解槽の底部から同熔解槽内の熔融硝子
中に挿入された噴気管からガスを熔融硝子中に強制的に
噴出させることによって、熔融硝子中圧気泡を発生させ
、同気泡の浮上によって72プリン/を行なう熔融硝子
の処理方法において、上記噴気管からガスをほぼ水平に
、即ち、水平、又は水平に対しやや斜め上方もしくはや
や斜め下方に噴出させるようにした。
The present invention generates medium-pressure bubbles in the molten glass by forcibly blowing gas into the molten glass from a blow tube inserted into the molten glass in the glass melting tank from the bottom of the tank. In the method for treating molten glass in which 72 pudding/ is carried out by levitation, the gas is ejected from the blowhole almost horizontally, that is, horizontally, or slightly obliquely upward or slightly obliquely downward with respect to the horizontal.

〔作用〕[Effect]

本発明においては、バズリン/に使用されるガスの噴出
方向をほぼ水平、即ち、水平又は水平に対しやや斜め上
方もしくはやや斜め下方にすることによって、気泡はほ
ぼ水平方向に向って形成される。噴出ガスの流れの運動
量のベクトルは水平又は水平に近い方向を有しているた
めに、ガスの噴出量を大きくしても、従来の垂直方向へ
の気泡噴出の方式に比べて噴出気流が熔融硝子中にその
上表面に直通するガス流路を形成すること、所謂吹き抜
けと呼ばれる現象を抑制することができる。
In the present invention, bubbles are formed in a substantially horizontal direction by ejecting the gas used in Buzzlin/in a substantially horizontal direction, that is, horizontally, or slightly diagonally above or slightly diagonally below the horizontal. Since the momentum vector of the ejected gas flow is horizontal or in a near-horizontal direction, even if the amount of gas ejected is increased, the ejected air flow will not melt as compared to the conventional method of ejecting bubbles in the vertical direction. By forming a gas flow path in the glass that communicates directly with the upper surface thereof, it is possible to suppress a phenomenon called so-called blow-through.

即ち、従来の垂直上方への噴出方式に比して相当噴出流
速を大きくしても、吹き抜けを生ずることなくバブリン
グが継続される。
That is, even if the jetting flow velocity is increased considerably compared to the conventional vertically upward jetting method, bubbling continues without causing blow-by.

液槽に適用されるバブラーシステムの実用例は、硝子熔
解槽のみならず、広範に亘っているのが現状であるが、
その場合に要求されるのは、噴出口端面部のガス流の全
圧=静圧+動圧は、同噴出口端面部にがかる液槽の液圧
を超えていることである。
Currently, practical examples of bubbler systems applied to liquid tanks are not limited to glass melting tanks, but are widespread.
In that case, what is required is that the total pressure = static pressure + dynamic pressure of the gas flow at the end of the jet nozzle exceeds the liquid pressure of the liquid tank over the end of the jet nozzle.

本発明では、噴出流速を大きくすることが可能になる結
果、この噴出流の全圧の構成においては、従来の浮力に
よる気泡離脱の方式においては靜圧分がその殆んどを占
めていたのに対し、動圧分をもって全圧の主体とするこ
とが可能となる。
In the present invention, it is possible to increase the jet flow velocity, and as a result, the total pressure of the jet flow is mostly composed of quiet pressure in the conventional bubble separation method using buoyancy. On the other hand, it is possible to make the dynamic pressure component the main body of the total pressure.

このために、本発明では、このガス噴流の径を小さくし
てバブリングを継続することが可能となり、この小径の
噴流の流路に外からかかる熔融硝子の液静圧によって、
このガス噴流は分断されて径の小さい気泡が形成される
ことになる。
For this reason, in the present invention, it is possible to continue bubbling by reducing the diameter of this gas jet, and the hydrostatic pressure of the molten glass applied from the outside to the flow path of this small diameter jet causes
This gas jet is broken up to form small diameter bubbles.

従って、本発明においては、バズリング用噴出ガスの量
の上限を大きくすると共に発生浮上する気泡の径を小さ
くし、バブリンダ効果が増大されることKなる。
Therefore, in the present invention, the upper limit of the amount of the buzzing gas is increased, and the diameter of the generated and floating bubbles is decreased, thereby increasing the bubbler effect.

〔実施例〕〔Example〕

本発明の第一の実施例を第1図ないし第3図によって説
明する。
A first embodiment of the present invention will be explained with reference to FIGS. 1 to 3.

第1図に示すように、流量計5及び圧力計26を備えた
空気、He、02.H2O等のガスの供給管Uは、硝子
熔解槽の熔解域と清澄域との間の脱気渦流域に設けられ
た噴気管としての複数のセラミックス製ノぐブラー管3
に接続されている。
As shown in FIG. 1, air, He, 02. The supply pipe U of gas such as H2O is a plurality of ceramic nogburer pipes 3 as fumarole pipes installed in the degassing vortex region between the melting zone and the clarification zone of the glass melting tank.
It is connected to the.

セラミックス製バブラー管3は、第2図に示すように、
熔解槽の炉底部散見1を貫通して熔融硝子2内に上方に
延びており、その周囲は熔解槽の炉底部散見1を貫通し
冷却水を循環させる二重水冷外套管4によって取囲まれ
ている。同バブラー管3の上端部に水平方向に伸びる噴
射管3bが設けられ、同噴射管3bの先端は二重水冷外
套管4の外壁に開口して噴出口3aを形成している。
As shown in FIG. 2, the ceramic bubbler tube 3 is
It passes through the furnace bottom part 1 of the melting tank and extends upward into the molten glass 2, and is surrounded by a double water-cooled mantle pipe 4 that passes through the furnace bottom part 1 of the melting tank and circulates cooling water. ing. An injection tube 3b extending horizontally is provided at the upper end of the bubbler tube 3, and the tip of the injection tube 3b opens into the outer wall of the double water-cooled mantle tube 4 to form an injection port 3a.

本実施例においては、ガス供給管冴からバブラー管3に
供給されたガス5は、噴出口3aより水平方向に噴出さ
れて熔融硝子2中にほぼ水平方向に並んだ独立気泡6が
形成される。この気泡6は、第3図に示すように、ノミ
プリング管3の噴出口3aより離脱して浮上するときに
、これに伴って誘起される気泡6周囲の熔融硝子2の上
昇流を駆動源とする熔融硝子2の攪拌が行なわれる。上
記気泡6は第3図に示すように熔融硝子2中を上昇し、
その自由上表面に達して破裂して、その中のガスを熔解
槽上部空間の雰囲気中に放出する。
In this embodiment, the gas 5 supplied from the gas supply pipe to the bubbler tube 3 is ejected horizontally from the ejection port 3a to form closed cells 6 arranged in a substantially horizontal direction in the molten glass 2. . As shown in FIG. 3, the bubbles 6 are driven by the upward flow of the molten glass 2 around the bubbles 6 that is induced when the bubbles 6 leave the spout 3a of the nomi-pring tube 3 and float up. The molten glass 2 is stirred. The bubbles 6 rise in the molten glass 2 as shown in FIG.
It reaches its free upper surface and ruptures, releasing the gas therein into the atmosphere in the upper space of the melting tank.

このよう圧水平方向に形成された気泡6における噴出ガ
ス流(第2図中矢印aで示す)の運動量のベクトルは水
平の方向を有しているために、ガスの時間当りの噴出量
を多くしても、噴出管末端の噴出口径を適当な小径に保
つ限り噴出ガス流の運動量が大きくなる程、気泡の水平
方向における引きち切れは起っても噴出された気流が熔
融硝子2の内部を上表面に向って吹抜けることはない。
Since the momentum vector of the ejected gas flow (indicated by arrow a in FIG. 2) in the bubble 6 formed in the horizontal direction has a horizontal direction, the amount of ejected gas per hour is increased. However, as long as the diameter of the ejection port at the end of the ejection tube is kept at an appropriately small diameter, the greater the momentum of the ejected gas flow, the more the ejected airflow will flow inside the molten glass 2 even if the bubbles are torn apart in the horizontal direction. It does not blow through towards the upper surface.

また、このガス噴流の流路に加わる熔融硝子の液静圧に
よってガス噴流は分断されて径の小さい気泡が形成され
る。
Further, the gas jet is divided by the hydrostatic pressure of the molten glass applied to the flow path of the gas jet, and bubbles with a small diameter are formed.

更に、本実施例に於ては、バブラー噴出ガス量を大きく
することができることによって、浮上する気泡の時間当
りの容積が誘起する熔融硝子2のこの部位における局所
的上昇流が強化される。これに加えて、従来法に於ては
、上記気泡のバブラー管3からの離脱は気泡の静的浮力
との釣合で行われていたのに対し、本実施例に於ては、
上記のように、ガスの噴流する慣性力が気泡のバブラー
管3からの離脱を促すことになる。即ち、噴出流の有す
る動圧が熔融硝子2内に生ずる渦流の強さを決めるのに
関る形となる。
Furthermore, in this embodiment, by increasing the amount of gas ejected from the bubbler, the local upward flow of the molten glass 2 at this portion, which is induced by the volume per hour of the floating bubbles, is strengthened. In addition, in the conventional method, the bubbles were separated from the bubbler tube 3 by balancing the static buoyancy of the bubbles, whereas in this embodiment,
As described above, the inertial force of the jet of gas promotes the separation of bubbles from the bubbler tube 3. That is, the dynamic pressure of the ejected flow determines the strength of the vortex generated within the molten glass 2.

この結果、従来のバブラーシステムが、その目的として
きたバブラーによって形成される熔融硝子2内の渦流圧
よる硝子素地の攪拌混合均質化がより活溌罠行われるこ
とになる。
As a result, the stirring, mixing, and homogenization of the glass substrate by the vortex pressure in the molten glass 2 formed by the bubbler, which has been the objective of the conventional bubbler system, can be carried out more actively.

本発明の第二の実施例を第4図によって説明する。A second embodiment of the present invention will be explained with reference to FIG.

本実施例は、上記第一の実施例に比してバブラー管3の
噴出口近傍の構造を次のように変更したものである。
In this embodiment, the structure near the spout of the bubbler tube 3 is changed as follows compared to the first embodiment.

即ち、バブラー管3をセラミックス製とし、その上端部
に水平方向に軸を有する噴出口3aを設け、このバブラ
ー管3の外周に近接して二重水冷外套管4の内管4aを
配置し、同外套管4の外管4bと内管4aとの間に中間
の管4cを配置することによって、上記の管4a r 
4a間に冷却水の上昇通路を、また上記の管4c * 
4b間に冷却水の下降通路を設けた二重水冷外套管4が
形成されている。また、セラミックス製バブラー管3の
上端部には、上記のよ5に水平方向に噴出口3aが設げ
られ、同噴出口3a に対応する位置で内管4aに開口
すると共に水平方向に外方に延びて外管4cに開口する
外方に向ってラッパ状に拡大する截頭円錐状のガス噴出
路4dが設けられている。
That is, the bubbler tube 3 is made of ceramics, a spout 3a having a horizontal axis is provided at its upper end, and the inner tube 4a of the double water-cooled outer tube 4 is disposed close to the outer periphery of the bubbler tube 3. By arranging the intermediate tube 4c between the outer tube 4b and the inner tube 4a of the outer tube 4, the above-mentioned tube 4a r
4a, and the above pipe 4c*
A double water-cooled jacket tube 4 is formed with a cooling water descending passage between the tubes 4b. Further, the upper end of the ceramic bubbler tube 3 is provided with a spout 3a in the horizontal direction as shown in 5 above, which opens into the inner tube 4a at a position corresponding to the spout 3a and extends outward in the horizontal direction. A truncated conical gas ejection passage 4d is provided which extends outward into a trumpet shape and opens into the outer tube 4c.

本実施例は、第一の実施例における噴出口部の構造を上
記のように変更したもので、その作用及び効果について
は、第一の実施例と本質的に変るところはない。
In this embodiment, the structure of the ejection port in the first embodiment is changed as described above, and its operation and effect are essentially the same as those in the first embodiment.

従来の垂直方向上方にガスを噴出するバブラー管におい
ては、全バブラー管から噴出されるガス量の合計は、0
.04 Nm”/mm程度であったが、上記第−及び第
二の実施例では、全バブラー管3からの噴出ガス量合計
Vを約5倍、即ち、 V = 0.04 x 5 = 0.2 Nm”/fN
A8 L K 増大サレタ。
In conventional bubbler pipes that eject gas vertically upward, the total amount of gas ejected from all bubbler pipes is 0.
.. 0.04 Nm"/mm, but in the first and second embodiments, the total amount of gas blown out from all the bubbler tubes 3 was increased by about 5 times, that is, V = 0.04 x 5 = 0.04 Nm"/mm. 2 Nm”/fN
A8 L K Increase sales.

このように噴出ガス流の流量、したがって、噴出流の運
動量が増大されても、噴出方向が水平方向であるために
浮上する気泡は分断細分化されバブリング継続に問題が
生ずることはなかった一方、噴出ガス流量の増加によっ
て、従来のバブラ一方式に比べて、第一、第二の実施例
においては硝子熔解槽においてこのバズラージステムに
よる強力かつ活溌な強制的渦流の安定的継続が認められ
た。
Even if the flow rate of the ejected gas flow, and therefore the momentum of the ejected gas flow, was increased in this way, since the ejected direction was horizontal, the floating bubbles were divided into smaller pieces, and there was no problem with the continuation of bubbling. Due to the increase in the flow rate of the ejected gas, the stable continuation of a strong and lively forced vortex flow by the buzz large system was observed in the glass melting tank in the first and second examples compared to the conventional one-bubbler type. .

なお、上記各実施例において使用されるガスとしては、
従来から72ノリング用に使用されている空気を用いて
もよいが、空気の中の0□は硝子に対して溶は易いが、
N2は硝子製品中の泡の成分として重要な消去対象であ
るので、溶解しているガスを気泡中に拡散放出させた上
調子炉内雰囲気中に放散させるという方式において利用
するガスとしては、熔融ガラスに溶は易いHe 、 N
20 、02等を使用するのがよい。
The gases used in each of the above examples are as follows:
Air, which has been conventionally used for 72-knolling, may be used, but 0□ in air easily dissolves into glass;
Since N2 is a component of bubbles in glass products and is an important target for elimination, N2 is the gas used in the method in which the dissolved gas is diffused into the bubbles and released into the atmosphere inside the top-conditioning furnace. He, N easily melts into glass
It is better to use 20, 02, etc.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、ガスをほぼ水平方向に
噴気管から噴出することによって、噴出ガスの量及びそ
の運動量を大きくしても、噴出流の熔融硝子上表面への
吹き抜けが起きることなく、逆に、発生する気泡の径を
小さくしつつ、気泡ガス量を増大させることができる。
As explained above, the present invention allows the gas to be ejected from the fumarole pipe in a substantially horizontal direction, thereby preventing the ejected flow from blowing through to the upper surface of the molten glass even if the amount of the ejected gas and its momentum are increased. On the contrary, it is possible to increase the amount of bubble gas while reducing the diameter of the generated bubbles.

この結果、従来のバズラージステムの硝子素地の攪拌混
合による硝子素地の均質化の促進について、従来法に比
して格段罠高い攪拌効果を得ることができる。
As a result, compared to the conventional method, it is possible to obtain a much higher stirring effect in promoting the homogenization of the glass substrate by stirring and mixing the glass substrate with the conventional buzz large stem.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例に使用される装置の全体
の説明図、第2図は本発明の第一の実施例に使用される
装置の要部の縦断面図、第3図は上記第一の実施例にお
ける気泡の移動・浮上を示す説明図、第4図は本発明の
第二の実施例に使用される装置の要部の縦断面図である
。 1・・・熔解槽底部散見、   2・・・熔融硝子。 3・・・バブラー管、      3a・・・噴出口。 4・・・二重水冷外套管、5・・・ガス、6・・・気泡
。 代理人  弁理士 坂 間   暁 外2名 を 第1図 第2図
FIG. 1 is an explanatory diagram of the entire device used in the first embodiment of the present invention, FIG. 2 is a vertical sectional view of the main parts of the device used in the first embodiment of the present invention, and FIG. The figure is an explanatory diagram showing the movement and floating of bubbles in the first embodiment, and FIG. 4 is a longitudinal cross-sectional view of the main part of the apparatus used in the second embodiment of the present invention. 1... The bottom of the melting tank can be seen here and there, 2... Molten glass. 3... Bubbler tube, 3a... Spout. 4...Double water-cooled mantle, 5...Gas, 6...Bubble. Two agents, patent attorneys Akigai Sakama, are shown in Figure 1 and Figure 2.

Claims (1)

【特許請求の範囲】[Claims] 硝子熔解槽の底部から同熔解槽内の熔融硝子中に挿入さ
れた噴気管からガスを同熔融硝子中に強制的に噴出する
ことによって、熔融硝子中に気泡を発生させ、同気泡の
浮上によってバブリングを行なう熔融硝子の処理方法に
おいて、上記噴気管から上記熔融硝子中にほぼ水平にガ
スを噴出させることを特徴とする熔融硝子の処理方法。
By forcefully blowing gas into the molten glass from the bottom of the glass melting tank through a blow tube inserted into the molten glass in the glass melting tank, air bubbles are generated in the molten glass, and the air bubbles float up. A method for treating molten glass that involves bubbling, characterized in that gas is ejected almost horizontally into the molten glass from the blow tube.
JP22976888A 1988-09-16 1988-09-16 Treatment of molten glass Pending JPH0280328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22976888A JPH0280328A (en) 1988-09-16 1988-09-16 Treatment of molten glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22976888A JPH0280328A (en) 1988-09-16 1988-09-16 Treatment of molten glass

Publications (1)

Publication Number Publication Date
JPH0280328A true JPH0280328A (en) 1990-03-20

Family

ID=16897371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22976888A Pending JPH0280328A (en) 1988-09-16 1988-09-16 Treatment of molten glass

Country Status (1)

Country Link
JP (1) JPH0280328A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2813536A1 (en) * 2000-09-04 2002-03-08 Schott Glas Device for the injection of corrosive gases into a very hot medium, comprising an injection tube surrounded by a refrigerating envelope
KR20030069778A (en) * 2002-10-21 2003-08-27 희성금속 주식회사 Mixer formed by bubbling tube
JP2004269347A (en) * 2003-02-18 2004-09-30 Nippon Electric Glass Co Ltd Glass composition
JP2005145814A (en) * 2003-10-20 2005-06-09 Nippon Electric Glass Co Ltd Glass composition and method of producing glass article
JP2008542167A (en) * 2005-05-25 2008-11-27 プラクスエア・テクノロジー・インコーポレイテッド Bubble formation in liquid such as molten glass
US7823416B2 (en) 2003-10-20 2010-11-02 Nippon Electric Gas Co., Ltd. Glass composition and method for producing glass article
JP2011525886A (en) * 2008-06-26 2011-09-29 コーニング インコーポレイテッド Method for bubbling gas into glass melt
JP2014189429A (en) * 2013-03-26 2014-10-06 Osaka Gas Co Ltd Glass melting furnace

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2813536A1 (en) * 2000-09-04 2002-03-08 Schott Glas Device for the injection of corrosive gases into a very hot medium, comprising an injection tube surrounded by a refrigerating envelope
US6912874B2 (en) * 2000-09-04 2005-07-05 Schott Glas Device and process for introducing gases into a hot medium
DE10142405B4 (en) * 2000-09-04 2011-09-15 Schott Ag Device, its use and method for introducing aggressive gases into a molten glass
KR20030069778A (en) * 2002-10-21 2003-08-27 희성금속 주식회사 Mixer formed by bubbling tube
JP2004269347A (en) * 2003-02-18 2004-09-30 Nippon Electric Glass Co Ltd Glass composition
JP2005145814A (en) * 2003-10-20 2005-06-09 Nippon Electric Glass Co Ltd Glass composition and method of producing glass article
US7823416B2 (en) 2003-10-20 2010-11-02 Nippon Electric Gas Co., Ltd. Glass composition and method for producing glass article
JP4573209B2 (en) * 2003-10-20 2010-11-04 日本電気硝子株式会社 Method for manufacturing glass article
JP2008542167A (en) * 2005-05-25 2008-11-27 プラクスエア・テクノロジー・インコーポレイテッド Bubble formation in liquid such as molten glass
KR101325312B1 (en) * 2005-05-25 2013-11-08 프랙스에어 테크놀로지, 인코포레이티드 Bubbling in molten glass
JP2011525886A (en) * 2008-06-26 2011-09-29 コーニング インコーポレイテッド Method for bubbling gas into glass melt
JP2014189429A (en) * 2013-03-26 2014-10-06 Osaka Gas Co Ltd Glass melting furnace

Similar Documents

Publication Publication Date Title
US6854290B2 (en) Method for controlling foam production in reduced pressure fining
US4426068A (en) Rotary gas dispersion device for the treatment of a bath of liquid metal
CN100337949C (en) Method and device for melting and refining materials capable of being vitriefied
EP0845645B1 (en) Monolithic jet column reactor pump
US5660614A (en) Gas treatment of molten metals
US3791813A (en) Method for injecting a gaseous reacting agent into a bath of molten metal
JPH02299B2 (en)
NZ229501A (en) Refining aluminium: gas bubbles dispersed into liquid metal through impeller in lower part of holding vessel
JPH0280328A (en) Treatment of molten glass
JP2000128548A (en) Glass melting furnace
AU654307B2 (en) Jet flow device for injecting gas into molten metal
US10246361B2 (en) Method for manufacturing molten glass, method for manufacturing glass product, and device for manufacturing molten glass
KR101325312B1 (en) Bubbling in molten glass
JP3785792B2 (en) Vacuum degassing equipment for molten glass
JPH0280327A (en) Treatment of molten glass
KR930005067B1 (en) Method for refining molten steel in a vacuum
US4840751A (en) Process for contacting gases with liquids
JPS607959B2 (en) Anaerobic digester equipment
JPS62226801A (en) Method for dissolving ozone
JP2648769B2 (en) Vacuum refining method for molten steel
JPH02301526A (en) Method and device for generating fine bubble in molten metal
JPH07238312A (en) Production of ultra low carbon steel and vacuum degassing equipment
JPH06212242A (en) Method for vacuum-refining molten steel in ladle
JPH05287357A (en) Method for melting extremely low carbon steel
JP2648769C (en)