JPH02301526A - Method and device for generating fine bubble in molten metal - Google Patents
Method and device for generating fine bubble in molten metalInfo
- Publication number
- JPH02301526A JPH02301526A JP12069289A JP12069289A JPH02301526A JP H02301526 A JPH02301526 A JP H02301526A JP 12069289 A JP12069289 A JP 12069289A JP 12069289 A JP12069289 A JP 12069289A JP H02301526 A JPH02301526 A JP H02301526A
- Authority
- JP
- Japan
- Prior art keywords
- tuyere
- gas
- molten metal
- bubbles
- refractory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 76
- 239000002184 metal Substances 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims description 18
- 238000007664 blowing Methods 0.000 claims abstract description 20
- 238000007872 degassing Methods 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 102
- 229910000831 Steel Inorganic materials 0.000 description 21
- 239000010959 steel Substances 0.000 description 21
- 230000000694 effects Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000011819 refractory material Substances 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 5
- 238000007670 refining Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000009991 scouring Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- OYFJQPXVCSSHAI-QFPUQLAESA-N enalapril maleate Chemical compound OC(=O)\C=C/C(O)=O.C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)CC1=CC=CC=C1 OYFJQPXVCSSHAI-QFPUQLAESA-N 0.000 description 1
- CNKHSLKYRMDDNQ-UHFFFAOYSA-N halofenozide Chemical compound C=1C=CC=CC=1C(=O)N(C(C)(C)C)NC(=O)C1=CC=C(Cl)C=C1 CNKHSLKYRMDDNQ-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は溶融金属中における微細気泡の発生方法および
装置に係り、金属精練反応の促進や、非金属介在物の除
去に有効な2 u++nφ以下の微細気泡の簡単な装置
による有効な発生方法および装置に関し、製鋼分野のみ
ならず、その他の金属精練分野に広く利用される。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method and apparatus for generating microbubbles in molten metal, and is effective for promoting metal scouring reactions and removing nonmetallic inclusions. This invention relates to an effective method and device for generating microbubbles using a simple device, and is widely used not only in the steel manufacturing field but also in other metal smelting fields.
溶融金属中に微細な気泡を発生させることにより、金属
精練反応の促進や非金属介在物の除去が図られることは
広く知られている。例えば、日本鉄鋼協会講演論文集C
AM P −I S I J Vol、 1(19,
88)P、 1161〜1164には、大気圧下の溶鋼
中に微細気泡を吹込むことにより、介在物の除去効率が
飛躍的に改善されることや、気泡による減圧下での脱ガ
ス効率が大幅に改善されることが報告されている。It is widely known that metal scouring reactions can be promoted and nonmetallic inclusions can be removed by generating fine bubbles in molten metal. For example, Japan Iron and Steel Institute Lecture Proceedings C
AMP-ISIJ Vol, 1 (19,
88) P, 1161-1164 states that by blowing fine bubbles into molten steel under atmospheric pressure, the removal efficiency of inclusions is dramatically improved, and that the degassing efficiency under reduced pressure due to bubbles is improved. A significant improvement has been reported.
また住友軽金g技報Vo1.26 、 Nn 2 (A
pril 1985)P、21〜30には、アルミニウ
ムの精練においても、微細気泡の吹込みが介在物の除去
、脱ガスに効果的であることが報告されている。すなわ
ち、アルミニウムの溶湯処理において、微細気泡が多数
発生するほど、気泡と液状金属との接触表面積が増太し
、気液間の反応が促進され、また気泡を介在物の浮上分
離に利用する場合、多数の微細な気泡の方が介在物を捕
捉し易く、かつ分離効果も大きい。更に微細気泡を用い
た場合には、気泡が溶融金属の表面で破壊する際の界面
の乱れが少なく、人気や保温材、スラグと溶融金属が反
応して起る汚染や、浮上した介在物の再巻き込みおよび
スプラッシュの飛散が少ないという利点があると報告さ
れている。Also, Sumitomo Light Metal G Technical Report Vo1.26, Nn 2 (A
Pril 1985) P, 21-30 reports that the injection of fine bubbles is effective for removing inclusions and degassing even in aluminum smelting. In other words, when processing molten aluminum, the more microbubbles are generated, the larger the contact surface area between the bubbles and the liquid metal, promoting the reaction between gas and liquid. , it is easier to trap inclusions with a large number of fine bubbles, and the separation effect is also greater. Furthermore, when microbubbles are used, there is less turbulence at the interface when the bubbles break on the surface of the molten metal, which reduces the risk of contamination caused by the reaction between slag and molten metal, and floating inclusions. It is reported to have the advantage of less re-entrainment and less splashing.
その結果、溶融金属中に微細な気泡を多量に発生させる
技術開発はかなり古くから進められて来た。その最も−
、般的な従来技術は、ポーラスノズルと称されている多
孔質耐火物を介して溶融金属中にガスを吹込む方法であ
るが、一般に溶融金属と耐火物との濡れ性が悪いために
、従来は耐火物表面の微小孔から発生した気泡が合体し
て成長し、そのままでは微細な気泡を得ることが極めて
困難であった。As a result, the development of technology for generating large amounts of fine bubbles in molten metal has been underway for quite some time. The most
A common prior art technique is to blow gas into molten metal through a porous refractory material called a porous nozzle, but this generally results in poor wettability between the molten metal and the refractory material. Conventionally, the bubbles generated from the micropores on the surface of the refractory coalesce and grow, and it was extremely difficult to obtain fine bubbles in that state.
この問題を解決するために、特開昭59−226129
では、「溶融金属容器の底部に設けた多孔性耐火物から
なる吹込プラグを用いて気体を吹込み、該溶融金属中の
不純物の浮上除去において、該吹込プラグの稼動表面積
100d当り、吹込ガス量を14.2N1分以下にする
ことを特徴とした通気性耐火物による微細気泡の発生方
法。」が開示されている。In order to solve this problem, Japanese Patent Application Laid-Open No. 59-226129
In ``In the case where gas is blown into a molten metal container using an blown plug made of porous refractory provided at the bottom of the molten metal container, and impurities in the molten metal are floated and removed, the amount of blown gas per 100 d of working surface area of the molten metal container. "A method for generating microbubbles using a breathable refractory, characterized by reducing the pressure to 14.2N for 1 minute or less."
また、特開昭58−58965には、「タンディツシュ
の如き溶鋼収納容器の底に多孔質耐火物を取付けて、不
活性ガスを溶鋼と多孔質耐火物の単位接触面積当り0.
016〜1.4NL/win、 ciの割合で吹込みつ
つ、容器下部に設けた電磁撹拌装置により溶鋼を撹拌し
、ガス吹込部の溶鋼流速を20 am/see以上、
80 cm/see未満とする清浄鋼の製造方法、」が
開示されている。Furthermore, Japanese Patent Application Laid-open No. 58-58965 states, ``A porous refractory is attached to the bottom of a molten steel storage container such as a tundish, and an inert gas is injected at a rate of 0.00% per unit contact area between the molten steel and the porous refractory.
While blowing at a rate of 016 to 1.4 NL/win, ci, the molten steel is stirred by an electromagnetic stirring device installed at the bottom of the container, and the molten steel flow rate at the gas injection part is set to 20 am/see or higher.
A method for producing a clean steel with a hardness of less than 80 cm/see is disclosed.
また、特公昭63−26169には第6図に示す如く、
「容器内下部?s鋼2に電磁コイル4にて磁力を作用せ
しめて0 、8 m/see以−ヒの溶鋼流6を発生さ
せ、該溶鋼流6にガス管8を介してプラグ10から不活
性ガスを添加する溶鋼の清浄化方法。」が示されている
。更に、この発明は、第7図に示す如く、r容器内下部
溶鋼2に電磁コイル4にて磁力を作用せしめて0 、8
m/see以上の溶鋼流6を発生させると共に、浸漬
撹拌体12を設け、モーターMにて浸漬撹拌体12を回
転させ、同時にガス管14A、14Bを通じガス体15
と共に精錬剤16を吹込み添加する溶鋼の清浄化方法、
」も併せて開示されている。In addition, as shown in Figure 6, in Special Publication No. 63-26169,
A magnetic force is applied to the steel 2 in the lower part of the container by an electromagnetic coil 4 to generate a molten steel flow 6 of 0.8 m/see, and the molten steel flow 6 is passed from a plug 10 through a gas pipe 8. ``Method for cleaning molten steel by adding inert gas.'' Furthermore, as shown in FIG.
In addition to generating a molten steel flow 6 with a flow rate of at least m/see, an immersion agitator 12 is provided, and the immersion agitator 12 is rotated by a motor M. At the same time, a gas body 15 is generated through gas pipes 14A and 14B.
A method for cleaning molten steel by blowing and adding a refining agent 16 at the same time;
' is also disclosed.
また、特開昭62−192240では、第8図に示す如
く、[耐火物製のランス本体18と、このランス本体1
8の先端部に多孔質耐火物で形成されたガス吐出部20
と、前記ランス本体18に形成されガス吐出部20にガ
ス15を供給するガス通路22と、前記ランス本体18
をその軸を中心に回転させる回転手段を具備したことを
特徴とする溶湯バブリング装置。」が開示されている。Further, in Japanese Patent Application Laid-Open No. 62-192240, as shown in FIG.
Gas discharge part 20 formed of porous refractory material at the tip of 8
, a gas passage 22 formed in the lance body 18 and supplying the gas 15 to the gas discharge part 20, and the lance body 18.
A molten metal bubbling device characterized by comprising a rotating means for rotating the molten metal bubbling device around its axis. ' has been disclosed.
なお、先に示した住友軽金属技報Vo1.26 。In addition, the Sumitomo Light Metal Technical Report Vol. 1.26 shown above.
Ha 2にはアルミニウムの脱ガスのために吹込む不活
性ガスノズルの態様が種々示されており、第9図に示す
如く、2本のノズル24から噴出−する不活性ガスを中
央の400〜500rpmにて高速回転する回転体26
にて剪断して微細気泡28を発生するノズルも示されて
いる。Ha 2 shows various embodiments of inert gas nozzles for blowing in for degassing aluminum, and as shown in FIG. Rotating body 26 rotating at high speed
Also shown is a nozzle that generates microbubbles 28 by shearing at .
かくの如く、従来の微細気泡の発生方法は、溶湯の撹拌
や吹込装置の回転により、ガス吹込部の溶湯流速を特定
の値以上に限定するものが多かった。しかし、所要量の
ガスを吹込もうとすると、多大の面積の吹込み羽口稼動
面を要し、補修コストおよび装置の寿命の点からも非現
実的である。As described above, in many conventional methods for generating fine bubbles, the flow rate of the molten metal in the gas blowing section is limited to a specific value or more by stirring the molten metal or rotating the blowing device. However, in order to blow in the required amount of gas, a large area of the blowing tuyere operating surface is required, which is impractical in terms of repair costs and equipment life.
また上記従来技術の如く、溶湯流動を発生させるために
は、当然浸漬回転撹拌体や電磁撹拌装置が必要となり、
設備が巨大となるほか、溶融金属の流動に伴なう耐火物
の損耗が増大する等の欠点がある。Furthermore, as in the prior art described above, in order to generate molten metal flow, an immersed rotating stirrer or an electromagnetic stirring device is naturally required.
In addition to the large size of the equipment, there are disadvantages such as increased wear and tear on the refractories due to the flow of molten metal.
一方、他の方法で溶融金属中において微細気泡を発生さ
せる方法もしくは装置としては、第10図に示す如き特
公昭61−56301がある。この発明では、「溶融金
属の液面に対して20”以下の角度で、流速がマツハ数
2程度のガスジェットを吹きつけ、そのガスジェットの
核部を液面に衝突させることを特徴とする溶融金属中に
微細気泡を発生させる方法、」が開示されている。On the other hand, as another method or apparatus for generating microbubbles in molten metal, there is Japanese Patent Publication No. 61-56301 as shown in FIG. This invention is characterized by blowing a gas jet with a flow velocity of about 2 Matsuha number at an angle of 20" or less with respect to the liquid surface of the molten metal, and causing the core of the gas jet to collide with the liquid surface. A method for generating microbubbles in molten metal is disclosed.
この場合は第10図において、ガス吹込管32からガス
が吹込まれ、その先端には0.5〜1mφの複数個の小
孔を有するセラミック製ノズル34が取付けられており
、上部には排気口36のほか、外気の巻き込みとスプラ
ッシュ38の防止のためカバー40が設けられている。In this case, as shown in FIG. 10, gas is blown from a gas blowing pipe 32, a ceramic nozzle 34 having a plurality of small holes of 0.5 to 1 mφ is attached to the tip, and an exhaust port is provided at the top. In addition to 36, a cover 40 is provided to prevent outside air from being drawn in and splash 38.
また、特開昭59−153822には、「製鉄用タンデ
ィツシュ中の溶鋼中介在物を除去する方法において、加
熱分解により微細な気泡を生成する直径3〜100ミク
ロンの粉体をタンディツシュ内溶鋼中に吹込むことを特
徴とする溶鋼中介在物の除去方法。ノが開示されている
。In addition, JP-A-59-153822 describes, ``In a method for removing inclusions in molten steel in a tundish for iron-making, powder with a diameter of 3 to 100 microns that generates fine bubbles by thermal decomposition is added to the molten steel in the tundish. A method for removing inclusions in molten steel characterized by blowing is disclosed.
しかしながら、前者においては、20°以下という小さ
い角度でガスジェットを吹きつけることに伴なう溶融金
属の飛散が大となるほか、ノズル付近の保守にも問題を
有している。また、発生する気泡の量も使用したガス量
に比し極めて少く、その結果、介在物の除去以外の適用
では、使用したガス量の割には上記従来技術をしのぐ効
果が得られない、また後者の発明も、微細な粉体を吹込
む装置が必要であるほか、粉体と共に溶融金属中に吹き
込まれるガスにより、非常に大きな気泡も同時に発生す
るので、溶融金属とスラブ、保温材の界面が撹乱され、
汚染発生の原因になる等の欠点がある。However, in the former case, the molten metal is scattered a lot due to the gas jet being blown at a small angle of 20 degrees or less, and there are also problems in maintenance around the nozzle. In addition, the amount of bubbles generated is extremely small compared to the amount of gas used, and as a result, in applications other than removing inclusions, it is not possible to obtain an effect superior to the above conventional technology considering the amount of gas used. The latter invention also requires a device to blow fine powder into the molten metal, and the gas that is blown into the molten metal along with the powder also generates very large bubbles, so the interface between the molten metal, slab, and heat insulating material is disturbed,
It has disadvantages such as causing pollution.
本発明の目的は、溶融金属中における微細気泡発生方法
および発生装置に関する上記従来技術の問題点を解決し
て、簡単な装置を用いて大量の微細気泡を効率よく発生
させる方法ならびにその装置を提供しようとするもので
ある。An object of the present invention is to solve the problems of the prior art related to the method and device for generating microbubbles in molten metal, and to provide a method and device for efficiently generating a large amount of microbubbles using a simple device. This is what I am trying to do.
上記本発明の目的は、下記要旨の本発明による微細気泡
の発生方法によって達成される。すなわち、
(1) 溶融金属中に開口した第1羽口より亜音速のガ
スを吹込んで気泡を発生させると同時に、前記第1羽口
内もしくはその外周に設けられた直径2I以下の複数の
細管より成る第2羽口より音速以上のガスジェットを吹
込み前記第1羽口より発生した気泡に衝突させることを
特徴とする溶融金属中における微細気泡の発生方法。The above object of the present invention is achieved by the method for generating microbubbles according to the present invention as summarized below. That is, (1) Subsonic gas is injected into the molten metal through a first tuyere opened to generate bubbles, and at the same time, bubbles are generated through a plurality of thin tubes with a diameter of 2I or less provided in or around the first tuyere. A method for generating microbubbles in molten metal, which comprises blowing a gas jet at a speed higher than the speed of sound through a second tuyere and colliding with the bubbles generated from the first tuyere.
また、本発明の目的は、下記要旨の微細気泡の発生装置
によっていずれも達成される。すなわち、(2) 溶融
金属中に開口し開放端に通気性耐火物を有するガス供給
路からなる第1羽口と、前記第1羽口の開口内および/
またはその外周に配設され音速以上のガスジェットを発
生させる直径21以下の複数の細管より成る第2羽口と
、を有して成ることを特徴とする溶融金属中における微
細気泡の発生装置。Further, the objects of the present invention are all achieved by the microbubble generating device as summarized below. That is, (2) a first tuyere consisting of a gas supply path that opens into the molten metal and has a gas permeable refractory at the open end;
or a second tuyere consisting of a plurality of thin tubes with a diameter of 21 or less arranged on the outer periphery of the tuyere and generating a gas jet at the speed of sound or higher.
(3) 溶融金属中に開口し先端開口断面の平均流速が
亜音速となるガス供給管より成る第1羽口と、前記第1
羽口の開口内および/またはその外周に配設され音速以
上のガスジェットを発生させる直径211m以下の複数
の細管より成る第2羽口と、を有して成ることを特徴と
する溶融金属中における微細気泡の発生装置。である。(3) a first tuyere consisting of a gas supply pipe that opens into the molten metal and has an average flow velocity of subsonic in the cross section of the tip opening;
A second tuyere consisting of a plurality of thin tubes having a diameter of 211 m or less and disposed within the opening of the tuyere and/or around its outer periphery and generating a gas jet at the speed of sound or higher. Micro bubble generator. It is.
先ず本発明による微細気泡の発生装置の実施例を第1図
を参照して説明する。First, an embodiment of a microbubble generating device according to the present invention will be described with reference to FIG.
溶融金属50中にはガス供給管52が浸漬されており、
ガス供給管52はその外側に耐火物54がライニングさ
れており、その先端の内側には通気性耐火物56が取付
けられており、これが本発明による第1羽口Aを形成す
る。通気性耐火物56には、これを貫通する小径の複数
の貫通孔58が明けられており1貫通孔58が通気性耐
火物56が溶融金属50と対する面において、ガスジェ
ット吐出孔60となって全体として第2羽目Bを形成す
る。第1羽口Aおよび第2羽口Bにはそれぞれ異なる供
給源からヘッダー等を介して第1羽口Aには亜音速のガ
ス62を、第2羽口Bには音速以上のガスジェット64
を供給する。A gas supply pipe 52 is immersed in the molten metal 50,
The gas supply pipe 52 is lined with a refractory 54 on the outside, and a breathable refractory 56 is attached to the inside of its tip, which forms the first tuyere A according to the invention. A plurality of small-diameter through holes 58 are formed in the breathable refractory 56 , and one through hole 58 serves as a gas jet discharge hole 60 on the surface where the breathable refractory 56 faces the molten metal 50 . The second wing B is formed as a whole. A subsonic gas 62 is supplied to the first tuyere A and a supersonic gas jet 64 to the second tuyere B from different supply sources via headers or the like to the first tuyere A and the second tuyere B.
supply.
第1羽口Aから供給されるガス62の吹込み流速は亜音
速域の極力小さい値にする必要があり、第2羽口Bから
吐出されるガスジェット64の流速は、音速以上とした
理由は、第1羽口Aにて形成された粗大気泡66Aにこ
れを衝突させると。The reason why the blowing flow velocity of the gas 62 supplied from the first tuyere A needs to be as low as possible in the subsonic range, and the flow velocity of the gas jet 64 discharged from the second tuyere B is set to be higher than the sonic velocity. When this is caused to collide with the coarse bubbles 66A formed at the first tuyere A.
ジェット衝突部の界面で溶融金属50のスプラッシュの
飛散が多くなり、界面が乱れる結果、粗大気泡66Aの
微細化が促進され、微細気泡66Bとなる。そのために
流速は音速以上を必要とするのでガスジェット64の流
速を音速以上と限定した。しかして1貫通孔58の大き
さは、一般に介在物除去、冶金反応の促進のためには2
onφ以下が必要であるので、第2羽口Bを形成する
複数の貫通孔58の径をすべて2unφ以下に限定した
。The splash of molten metal 50 increases at the interface of the jet collision part, and as a result, the interface is disturbed, and as a result, the coarse air bubbles 66A are promoted to become finer, and become fine air bubbles 66B. For this purpose, the flow velocity needs to be higher than the sonic velocity, so the flow velocity of the gas jet 64 is limited to the sonic velocity or higher. Therefore, the size of one through hole 58 is generally set to 2 for removing inclusions and promoting metallurgical reaction.
Onφ or less is required, so the diameters of the plurality of through holes 58 forming the second tuyere B are all limited to 2unφ or less.
本発明による微細気泡の発生装置の他の態様を第3図に
よって説明する。この場合は、第1羽口Aを形成するガ
ス供給管52は直接溶融金属50中に開口している。第
2の羽口Bは第1羽目への外周に一定距離を離れて複数
の細管68から形成されている。例えば第3図の如く、
内管67、外管69の2重管の下端を接合して接合部7
0とし。Another embodiment of the microbubble generating device according to the present invention will be explained with reference to FIG. In this case, the gas supply pipe 52 forming the first tuyere A opens directly into the molten metal 50. The second tuyere B is formed from a plurality of thin tubes 68 spaced apart by a certain distance on the outer periphery of the first tuyere. For example, as shown in Figure 3,
The lower ends of the double tubes of the inner tube 67 and the outer tube 69 are joined to join the joint 7.
Set it to 0.
上記ガス供給管52は内管67であり、亜音速のガス6
2は内管67の内部を通過し、これが第1羽目Aとなり
、音速以上のガス64は内管67と外管69の間隙から
導入されて、下端の接合部70に開口された複数の細管
68から吐出され、これが全体として第2羽口Bを形成
する。この場合も細管68の内径は2mφ以下であって
全体として音速以上の流速のガスジェット64を吐出す
る。The gas supply pipe 52 is an inner pipe 67, and the subsonic gas 6
2 passes through the inside of the inner tube 67, which becomes the first layer A, and the gas 64, which has a speed higher than the speed of sound, is introduced from the gap between the inner tube 67 and the outer tube 69, and flows into a plurality of thin tubes opened at the joint 70 at the lower end. 68, which collectively forms the second tuyere B. In this case as well, the inner diameter of the thin tube 68 is 2 mφ or less, and the gas jet 64 as a whole is discharged at a flow velocity higher than the speed of sound.
この場合も、第1羽目Aから供給されるガス62と、第
2羽口Bから吐出されるガスジェット64とはそれぞれ
独立した異なる供給源から供給される。第1羽口Aから
吹き込まれるガス62の流速は、溶融金属50の差込み
を防げる範囲であれば音速より小さくても十分であり、
むしろ粗大気泡66Aを数多く発生させる必要がない場
合は極力流速を抑えた方がよい。Also in this case, the gas 62 supplied from the first wing A and the gas jet 64 discharged from the second tuyere B are supplied from different independent supply sources. The flow velocity of the gas 62 blown from the first tuyere A may be lower than the sonic velocity as long as it can prevent the molten metal 50 from being inserted.
Rather, if it is not necessary to generate a large number of coarse bubbles 66A, it is better to suppress the flow rate as much as possible.
一方、第2羽口Bから吐出されるガスジェット64の流
速は、ガス供給管52の外周径まで拡大しようとする粗
大気泡66Aの外周を激しく撹乱させるために音速以上
が必要であり、しかも極力高速にすることが望ましい、
特にガスジェット64の流速をマッハ2程度にすると、
細管68群のノズル先端からノズル径の10倍程度の距
離までガスジェット64の圧力変動が及ぶので、この範
囲までの粗大気泡66Aの気泡壁に衝突することにより
、界面の乱れを増加し、微細気泡66Bの発生を更に促
進させることができる。On the other hand, the flow velocity of the gas jet 64 discharged from the second tuyere B needs to be higher than the sonic velocity in order to violently disturb the outer periphery of the coarse bubbles 66A, which are about to expand to the outer diameter of the gas supply pipe 52. It is desirable to make it fast,
In particular, when the flow velocity of the gas jet 64 is set to about Mach 2,
Since the pressure fluctuation of the gas jet 64 extends to a distance of about 10 times the nozzle diameter from the nozzle tip of the group of narrow tubes 68, by colliding with the bubble wall of the coarse bubbles 66A up to this range, turbulence at the interface increases and fine The generation of bubbles 66B can be further promoted.
上記本発明による微細気泡の発生装置の構成ならびに限
定要件の限定理由を第1図および第3図によって説明し
たが、その作用についてそれぞれ説明する。The structure of the micro-bubble generating device according to the present invention and the reasons for limiting the requirements have been explained with reference to FIGS. 1 and 3, and their effects will be explained respectively.
第1図において、ガス供給管52より亜音速ガス62を
吹込み通気性耐火物56を通過すると、流速が減少して
十分小さくなり、通気性耐火物56の表面から僅かに離
れた図示のAまでの範囲に付着気泡66Aが発生する。In FIG. 1, when the subsonic gas 62 is blown from the gas supply pipe 52 and passes through the breathable refractory 56, the flow velocity decreases and becomes sufficiently small, so that the flow rate at A slightly away from the surface of the breathable refractory 56 is Adhesive bubbles 66A are generated in the range up to .
この付着気泡66Aは、溶融金属50に対する通気性耐
火物56との濡れ性が悪いために、通過した吹込みガス
62が耐火物56の表面でism気泡とならず集合合体
して粗大な付着気泡66Aとなったものである。この付
着気泡66Aは第1図の如く上方に通気性耐火物56が
あって浮上しにくい場合には1通気性耐火物56の外周
から更に横に拡がって、ガス供給管52を保護する耐火
物54の外径まで達することがある。そのため一部の気
泡66Aは微細化されることなく、付着気泡66Aの外
周から雛脱して離脱気泡66Gとなって分離して浮上す
る。These attached bubbles 66A do not form ism bubbles on the surface of the refractory 56 because the molten metal 50 has poor wettability with the air permeable refractory 56, so the blown gas 62 that has passed therethrough does not form ism bubbles on the surface of the refractory 56, but aggregates and coalesces into coarse attached bubbles. It became 66A. If the attached air bubbles 66A are difficult to float due to the air permeable refractory 56 above as shown in FIG. It may reach an outer diameter of 54 mm. Therefore, some of the bubbles 66A are not miniaturized, but detach from the outer periphery of the attached bubbles 66A, become separated bubbles 66G, and float to the surface.
この離脱気泡66Cの発生量を極力少くするために第1
羽口Aからのガス吹込み流速は亜音速域の極力小さい流
速とする必要がある。In order to minimize the amount of this separation bubble 66C,
The flow rate of the gas blown from the tuyere A needs to be as low as possible in the subsonic range.
一方、残る大部分の付着気泡66Aは本発明による方法
により微細化される。すなわち、貫通孔58を通過した
ガスジェット64は付着気泡66Aノ内面に衝突する。On the other hand, most of the remaining attached bubbles 66A are made fine by the method according to the present invention. That is, the gas jet 64 that has passed through the through hole 58 collides with the inner surface of the attached bubble 66A.
このガスジェット64の運動エネルギーが十分大きいと
、付着気泡壁を打ち抜き、第1図においてほぼBにて示
す範囲まで溶融金属50中に突入した後分裂して微細気
泡66Bとなる。この時の微細気泡66Bの直径は、ガ
スジェット64が付着気泡66Aの気泡壁に衝突して作
るくぼみの径に近い寸法になるので、微細気泡66Bを
得るためには、ガスジェット64を吐出する貫播孔58
の径を小さくする必要があり、本発明では2mφ以下に
限定したことは先に述べたとおりである。When the kinetic energy of this gas jet 64 is sufficiently large, it punches out the adhering bubble walls, enters into the molten metal 50 to approximately the area indicated by B in FIG. 1, and then splits to form fine bubbles 66B. The diameter of the fine bubbles 66B at this time is close to the diameter of the depression created when the gas jet 64 collides with the wall of the attached bubble 66A, so in order to obtain the fine bubbles 66B, the gas jet 64 must be discharged. Penetration hole 58
As mentioned above, it is necessary to reduce the diameter of the diameter, and in the present invention, the diameter is limited to 2 mφ or less.
発生した気泡のうち離脱気泡66Gの如き粗大気泡66
Aは、直ちに浮上し、その際溶融金属50の上昇流を発
生させる。一方、本発明により発生した微細気泡66B
の浮上速度は小さく、溶融金属50の局所的な流動の影
響を受は易いので、すぐには浮上せず、第1図にてCに
て示す如き比較的広い領域にまで分散する。Among the generated bubbles, coarse bubbles 66 such as detached bubbles 66G
A immediately floats up, generating an upward flow of molten metal 50. On the other hand, fine bubbles 66B generated by the present invention
The floating speed of the molten metal 50 is low and it is easily affected by the local flow of the molten metal 50, so it does not float immediately and is dispersed over a relatively wide area as shown by C in FIG.
第1図に示した本発明を取鍋内に収容された溶融金属に
適用した場合を第2図にて説明する。A case where the present invention shown in FIG. 1 is applied to molten metal contained in a ladle will be explained with reference to FIG. 2.
取鍋68中に収容された溶融金属50にランス(ガス供
給管)52の先端に本発明による複数の貫通孔58を有
する通気性耐火物56より成る微細気泡発生装置76を
浸漬し、それぞれガス流量調節弁71A、71Bを有す
るガス供給路72A、72Bを通じ、第1羽口Aに亜音
速ガス62を、第2羽口Bに音速以上のガスジェット6
4を供給する。この場合ランス52の先端部の微細気泡
発生装置76を可能な限り取鍋68底部の深い部位に浸
漬してそれぞれのガスを吹込むと、上記説明した如き作
用により発生した大きな離脱気泡66Cは直ちに浮上す
るので、溶融金属50の循環流50Aを発生する。従っ
て発生した微細気泡66Bはこの上昇流に伴われて一旦
溶融金属5゜の表面近くまで浮上するが、再び下降流に
伴われて下降し、取鍋68内の上下を循環して分散され
る。かくの如く、微細気泡66Bの分散化によって溶融
金属50中の非金属介在物との接触の機会が増加するの
で、非金属介在物は微細気泡66Bに付着して浮上分離
されるのに極めて効果的である。A micro-bubble generator 76 made of an air-permeable refractory 56 having a plurality of through holes 58 according to the present invention is immersed in the molten metal 50 housed in a ladle 68 at the tip of a lance (gas supply pipe) 52 to generate gas. Subsonic gas 62 is supplied to the first tuyere A, and gas jet 6 at the speed of sound or higher is supplied to the second tuyere B through gas supply channels 72A and 72B having flow rate control valves 71A and 71B.
Supply 4. In this case, if the fine bubble generator 76 at the tip of the lance 52 is immersed as deep as possible in the bottom of the ladle 68 and the respective gases are blown into the ladle 68, the large bubbles 66C generated by the action described above will be immediately removed. Since it floats, a circulating flow 50A of molten metal 50 is generated. Accordingly, the generated microbubbles 66B are accompanied by this upward flow and once rise to near the surface of the molten metal 5°, but are again brought down by the downward flow, circulated up and down in the ladle 68, and are dispersed. . As described above, the dispersion of the microbubbles 66B increases the chance of contact with the nonmetallic inclusions in the molten metal 50, which is extremely effective in causing the nonmetallic inclusions to adhere to the microbubbles 66B and be floated and separated. It is true.
(a) 本発明を応用した変形例を第4図にて説明す
る。第1羽口Aから吹込んだガス62により粗大気泡6
6Aを作る代りに、第2羽口Bから吹込んだ音速以上の
ガスジェット64によっても微細気泡66Bとなれず、
溶融金属50中に滞留しているガスを本装置によって捕
集して付着気泡66Aを作るのに使用することができる
。すなわち、第4図に示す装置を溶融金属50中に浸漬
しておく、微細気泡66Bになれず滞留していたガスは
下部の凹部73に捕集されるので、凹部73の外周の第
2羽口Bから音速以上のガス64を吹込めば、捕集され
たガス74は付着気泡66Aとなって、順次音速以上の
ガス64によって微細気泡66Bとなる。この場合は第
2羽口Bと凹部73とを含む全体が1本発明による第1
羽口Aであり、従って単位時間に凹部73に捕集される
ガス量、もしくは第2羽口Bからのガス吹込量を凹部7
3の面積で割った値が1本発明における第1羽口Aから
のガス吹込速度に相当する。従って第4図に示す如き装
置も溶融金属50の残存浮遊ガスを捕集して微細気泡を
発生させる装置として効果的である。(a) A modification to which the present invention is applied will be explained with reference to FIG. The coarse air bubbles 6 are caused by the gas 62 blown in from the first tuyere A.
Instead of forming micro-bubbles 66B, the gas jet 64 blowing in from the second tuyere B at a speed higher than that of sound fails to form micro-bubbles 66B.
Gas lingering in molten metal 50 can be captured by the device and used to create deposition bubbles 66A. That is, when the apparatus shown in FIG. 4 is immersed in the molten metal 50, the gas that has not formed into fine bubbles 66B and remains is collected in the lower recess 73, so that the second wing on the outer periphery of the recess 73 When gas 64 at a speed higher than the speed of sound is blown from the port B, the collected gas 74 becomes attached bubbles 66A, and then becomes fine bubbles 66B by the gas 64 higher than the speed of sound. In this case, the whole including the second tuyere B and the recess 73 is one part of the first tuyere according to the present invention.
Therefore, the amount of gas collected in the recess 73 per unit time or the amount of gas blown from the second tuyere B is determined by the recess 7.
The value divided by the area of 3 corresponds to the gas blowing speed from the first tuyere A in the present invention. Therefore, the device as shown in FIG. 4 is also effective as a device for capturing residual floating gas in the molten metal 50 and generating fine bubbles.
(b) 次に本発明装置の使用態様の特殊な例を第5
図にて説明する。すなわち本発明装置を第5図に示す如
く、溶融金属50中で装置を水平にして使用することも
できる。この場合は第1羽口A、第2羽口Bの溶融金属
50と接触する面は、取鍋等の容器に対し垂直となるの
で1通気性耐火物56を通過して発生した付着気泡66
Aは上方に分裂して浮上する傾向がある。従って第1羽
目Aの前面には第1図について説明したと同様の気泡界
面ができるので、これを第2羽口Bのガスジェット64
で撹乱するので微細気泡66Bが発生する。(b) Next, a special example of how the device of the present invention is used is explained in the fifth section.
This will be explained with a diagram. That is, the apparatus of the present invention can also be used horizontally in molten metal 50, as shown in FIG. In this case, the surfaces of the first tuyere A and the second tuyere B that come into contact with the molten metal 50 are perpendicular to the container such as a ladle, so the attached air bubbles 66 generated by passing through the air-permeable refractory 56
A tends to split upward and float up. Therefore, on the front surface of the first tuyere A, a bubble interface similar to that explained in FIG.
As a result, fine bubbles 66B are generated.
なお、本発明において吹込むガスとしては、不活性ガス
のほか精錬の目的によっては、酸素、空気、その他のガ
スも使用可能であって、溶融金属中に微細気泡を拡散さ
せることにより、化学的、物理的な反応の促進、操作の
改善、向上が期待できるガス種類を任意に選択すること
ができる。In addition to inert gas, oxygen, air, and other gases can also be used as the gas to be blown into the molten metal depending on the purpose of refining. It is possible to arbitrarily select a type of gas that can be expected to promote physical reactions and improve operation.
実施例1 上記第1図で説明した態様の実施例について説明する。 Example 1 An embodiment of the aspect described in FIG. 1 above will be described.
稼動部径100mφ×長さ200ninのポーラスプラ
グより成る通気性耐火物56の層を貫通する内径0.5
mmの細管より成る貫通孔58を20本埋め込み1通気
性耐火物56の背面および細管群58Aの一端からそれ
ぞれ異なるヘッダーを設けて第1羽口Aおよび第2羽口
Bより成る微細気泡発生装置76を作製した。通気性耐
火物56の側面は非通気性耐火物74で被覆し側面から
のガス漏洩がないようにした。この装置76を第1図の
如く、その稼動面が下向きになるようにして1600’
Cの溶鋼内に約150noの深さに浸漬し、ポーラスプ
ラグ56および細管群58Aからそれぞれ10NIII
/mLn、 10 ONQ/winの流量のArガスを
吹込んだ。この時のガス流速はポーラスプラグ56の稼
動面で平均0.02 m/see、細管58の出口で3
70 m/seeであった。An inner diameter of 0.5 that penetrates the layer of breathable refractory material 56 made of a porous plug with a working part diameter of 100 mφ and a length of 200 nin.
20 through-holes 58 made of 1 mm thin tubes are embedded and different headers are provided from the back side of the permeable refractory 56 and from one end of the thin tube group 58A, respectively, to create a micro bubble generator consisting of a first tuyere A and a second tuyere B. 76 was produced. The sides of the breathable refractory 56 were covered with a non-breathable refractory 74 to prevent gas leakage from the sides. As shown in FIG.
10NIII from each of the porous plug 56 and the capillary tube group 58A.
Ar gas was blown in at a flow rate of /mLn, 10 ONQ/win. At this time, the gas flow velocity is an average of 0.02 m/see on the operating surface of the porous plug 56, and 3 m/see at the outlet of the thin tube 58.
It was 70 m/see.
発生した気泡を鋼製の丸棒に付着させ、丸棒表面の凝固
層に残った痕跡から気泡径を調査した処、1〜2m径の
微細気泡跡が多数認められた。When the generated bubbles were attached to a steel round bar and the bubble diameter was investigated from the traces left in the solidified layer on the surface of the round bar, many traces of fine bubbles with a diameter of 1 to 2 m were observed.
本発明の効果を確認するために、次に細管群58Aから
のArガスの吹込みを中止し、ポーラスプラグ56から
100NQ/minのArガスのみを吹込むとポーラス
プラグ56稼動面近傍が波立ち、前回と同様に丸棒表面
の凝固層に残った痕跡からは、2a++以下の微細気泡
跡はほとんど認められなかった。従ってポーラスプラグ
56の第1羽目Aからの発生気泡を細管群58Aの第2
羽口Bからのガスジェット64によって撹乱することに
より微細気泡66Bが発生することを確認した。In order to confirm the effect of the present invention, next, when the blowing of Ar gas from the thin tube group 58A was stopped and only Ar gas of 100 NQ/min was blown from the porous plug 56, the vicinity of the operating surface of the porous plug 56 became undulating. As in the previous case, from the traces left in the coagulated layer on the surface of the round bar, hardly any traces of fine bubbles of 2a++ or less were observed. Therefore, the bubbles generated from the first layer A of the porous plug 56 are transferred to the second layer of the thin tube group 58A.
It was confirmed that fine bubbles 66B were generated by being disturbed by the gas jet 64 from the tuyere B.
実施例2 上記第3図で説明した態様の実施例について説明する。Example 2 An embodiment of the aspect described in FIG. 3 above will be described.
第3図に示す如く、外周を耐火物54にて被覆した内径
40++nの鋼管をガス供給管52とし、内部に0,5
mmの細管68を10本配置して本発明の微細気泡発生
装置76を作製し、実施例1と同様に稼動面が下向きに
なるようにして1600℃の溶鋼内に浸漬し、細管群6
8Aからは50 N Q /min、ガス供給管52か
らは2 N Q /ll1inの流量のArガスを吹込
み、実施例1と同様に丸棒による気泡径を調査したとこ
ろ1〜2mφの微細気泡跡が多数認められた。As shown in FIG. 3, the gas supply pipe 52 is a steel pipe with an inner diameter of 40++n and whose outer periphery is covered with a refractory material 54.
A micro bubble generator 76 of the present invention was prepared by arranging 10 thin tubes 68 of 1.0 mm in diameter, and immersed in 1600° C. molten steel with the operating surface facing downward in the same manner as in Example 1.
Ar gas was blown at a flow rate of 50 N Q /min from the gas supply pipe 52 and 2 N Q /ll1 in from the gas supply pipe 52, and when the bubble diameter was investigated using a round rod in the same manner as in Example 1, fine bubbles of 1 to 2 mφ were found. Many marks were recognized.
次に細管群68からのArガス吹込を中止し、ガス供給
管52からのみ52 N Q /l1inのArガスを
吹込んだところ、2mφ以下の微細気泡跡がほとんど認
められず、実施例1と同様に本発明の効果が確認された
。Next, when the blowing of Ar gas from the thin tube group 68 was stopped and Ar gas of 52 N Q /l1 inch was blown only from the gas supply pipe 52, almost no traces of fine bubbles of 2 mφ or less were observed, which was the same as in Example 1. Similarly, the effects of the present invention were confirmed.
本発明は従来の微細気泡の発生方法および装置の欠点を
検討し、特に通気性耐火物の微細な小孔群もしくは小径
のガスジェット吹込み孔から溶融金属中に単にガスを吹
込んだのでは、表面の濡れ性が悪いために気泡が合体し
て微細気泡ができない事実から、本発明は、溶融金属中
に開口した第1羽口から亜音速のガスを吹込んで気泡を
発生させると共に、第1羽口内もしくはその外周から音
速以上のガスジェットを吹込み第1羽口より発生した気
泡に衝突させる方法をとり、その装置も前記微細気泡の
発生方法の実施に適合するように構成したので次の効果
を挙げることができた。The present invention examines the shortcomings of conventional methods and devices for generating microbubbles, and specifically considers the disadvantages of simply injecting gas into molten metal through a group of fine holes in a breathable refractory or a small diameter gas jet blowing hole. Due to the fact that bubbles cannot coalesce and form fine bubbles due to poor surface wettability, the present invention aims to generate bubbles by blowing subsonic gas through a first tuyere opened into molten metal, and A method was adopted in which a gas jet of speed higher than the speed of sound was blown into one tuyere or its outer periphery and collided with the bubbles generated from the first tuyere, and the device was constructed to be compatible with the above-mentioned method for generating microbubbles. We were able to cite the effects of
(イ) 本発明の方法は、不規則に変化する第1羽口に
より発生した気泡の内面に、第2羽口よりのガスジェッ
トを衝突させるので、溶融金属中に突入するジェットの
形態は複雑に変化し、単に溶融金属の表面にジェットを
衝突させる従来技術よりも、はるかに気泡の微細化が容
易である。(b) In the method of the present invention, the gas jet from the second tuyere collides with the inner surface of the bubbles generated by the first tuyere, which changes irregularly, so the shape of the jet entering the molten metal is complex. It is much easier to make bubbles smaller than the conventional technology, which simply impinges a jet on the surface of molten metal.
(ロ) 本発明では1発生するスプラッシュも周囲の溶
融金属に取り込まれるので、飛散防止の手段を省略でき
る。(b) In the present invention, since even one splash generated is absorbed into the surrounding molten metal, it is possible to omit a means for preventing scattering.
(ハ) 本発明による装置は、溶融金屓撹拌用ランスの
先端に取付は得る簡単な装置であり、特別の設備を設け
る必要がなく、シかも大量の微細気泡を確実に発生させ
ることができる。(c) The device according to the present invention is a simple device that can be attached to the tip of a lance for stirring molten metal, does not require special equipment, and can reliably generate a large amount of fine bubbles. .
(ニ) 本発明は単に溶鋼のみならず、あらゆるその他
の金属精錬に適用でき、更にその溶融金属の精錬目的に
よって使用するガスも単に不活性ガスのみならず、酸素
、空気、その他の気体をも使用できるので、微細気泡を
利用する多くの溶融金属の精錬の発展に寄与できる効果
は極めて大である。(d) The present invention is applicable not only to molten steel but also to all other metal refining, and the gas used for the purpose of molten metal refining is not only inert gas but also oxygen, air, and other gases. Therefore, the effect of contributing to the development of many types of molten metal refining using microbubbles is extremely large.
【図面の簡単な説明】
第1図は本発明の実施例の装置の構成および作用を説明
する模式断面図、第2図は本発明による微細気泡発生装
置を取鍋中の溶融金属に適用した場合の溶融金属流動を
示す模式断面図、第3図は本発明の他の実施例の構成お
よび作用を示す断面図、第4図は本発明装置の応用例を
示す断面図、第5図は本発明装置の特殊な使用態様を示
す断面図、第6図〜第10図は溶融金属中における微細
気泡発生方法もしくは装置の従来技術を示す断面図であ
る。
50・・・溶融金属 52・・・ガス供給管54
・・・耐火物
56・・・通気性耐火物(ポーラスプラグ)58・・・
貫通孔 58A・・・細管群60・・・ガスジ
ェット吐出孔
62・・・亜音速ガス
64・・・音速以上のガスジェット
66A・・・付着気泡(粗大気泡)
66B・・・微細気泡 66C・・・離脱気泡68
・・・取鍋 70・・・接合部73・・・凹
部 74・・・捕集ガス76・・・微細気泡
発生装置[Brief Description of the Drawings] Fig. 1 is a schematic cross-sectional view illustrating the structure and operation of an apparatus according to an embodiment of the present invention, and Fig. 2 is a schematic cross-sectional view of the micro-bubble generating apparatus according to the present invention applied to molten metal in a ladle. FIG. 3 is a cross-sectional view showing the structure and operation of another embodiment of the present invention, FIG. 4 is a cross-sectional view showing an application example of the apparatus of the present invention, and FIG. 6 to 10 are cross-sectional views showing a special mode of use of the device of the present invention, and FIGS. 6 to 10 are cross-sectional views showing a conventional method or device for generating microbubbles in molten metal. 50... Molten metal 52... Gas supply pipe 54
... Refractory 56... Breathable refractory (porous plug) 58...
Through hole 58A...Thin tube group 60...Gas jet discharge hole 62...Subsonic gas 64...Gas jet at or above the speed of sound 66A...Adhesive bubbles (coarse bubbles) 66B...Fine bubbles 66C・...Separation bubble 68
... Ladle 70 ... Joint part 73 ... Concave part 74 ... Collected gas 76 ... Fine bubble generator
Claims (3)
を吹込んで気泡を発生させると同時に、前記第1羽口内
もしくはその外周に設けられた直径2mm以下の複数の
細管より成る第2羽口より音速以上のガスジェットを吹
込み前記第1羽口より発生した気泡に衝突させることを
特徴とする溶融金属中における微細気泡の発生方法。(1) Subsonic gas is injected into the molten metal through a first tuyere opened to generate bubbles, and at the same time a second tuyere consisting of a plurality of thin tubes with a diameter of 2 mm or less provided inside or around the first tuyere A method for generating microbubbles in molten metal, which comprises blowing a gas jet at the speed of sound or higher through two tuyeres to collide with the bubbles generated from the first tuyere.
るガス供給路から成る第1羽口と、前記第1羽口の開口
内および/またはその外周に配設され音速以上のガスジ
ェットを発生させる直径2mm以下の複数の細管より成
る第2羽口と、を有して成ることを特徴とする溶融金属
中における微細気泡の発生装置。(2) A first tuyere consisting of a gas supply path that opens into the molten metal and has a gas permeable refractory at the open end, and a gas having a velocity higher than the speed of sound that is disposed within the opening of the first tuyere and/or around its outer periphery. A device for generating microbubbles in molten metal, comprising: a second tuyere consisting of a plurality of thin tubes with a diameter of 2 mm or less for generating a jet.
音速となるガス供給管より成る第1羽口と、前記第1羽
口の開口内および/またはその外周に配設され音速以上
のガスジェットを発生させる直径2mm以下の複数の細
管より成る第2羽口と、を有して成ることを特徴とする
溶融金属中における微細気泡の発生装置。(3) A first tuyere consisting of a gas supply pipe that opens into the molten metal and has an average flow velocity of subsonic in the cross section of the tip opening, and a first tuyere that is disposed within the opening of the first tuyere and/or on its outer periphery and that is higher than the velocity of sound. A device for generating microbubbles in molten metal, comprising: a second tuyere consisting of a plurality of thin tubes having a diameter of 2 mm or less for generating a gas jet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1120692A JPH0735552B2 (en) | 1989-05-15 | 1989-05-15 | Method and apparatus for generating fine bubbles in molten metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1120692A JPH0735552B2 (en) | 1989-05-15 | 1989-05-15 | Method and apparatus for generating fine bubbles in molten metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02301526A true JPH02301526A (en) | 1990-12-13 |
JPH0735552B2 JPH0735552B2 (en) | 1995-04-19 |
Family
ID=14792604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1120692A Expired - Fee Related JPH0735552B2 (en) | 1989-05-15 | 1989-05-15 | Method and apparatus for generating fine bubbles in molten metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0735552B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1038046C (en) * | 1993-10-15 | 1998-04-15 | 曼内斯曼股份公司 | Method and equipment for introducing gases into metal melts |
CN109881025A (en) * | 2019-03-13 | 2019-06-14 | 上海交通大学 | Aluminum melt supersonic speed depassing unit and method |
-
1989
- 1989-05-15 JP JP1120692A patent/JPH0735552B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1038046C (en) * | 1993-10-15 | 1998-04-15 | 曼内斯曼股份公司 | Method and equipment for introducing gases into metal melts |
CN109881025A (en) * | 2019-03-13 | 2019-06-14 | 上海交通大学 | Aluminum melt supersonic speed depassing unit and method |
Also Published As
Publication number | Publication date |
---|---|
JPH0735552B2 (en) | 1995-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0674016A1 (en) | Gas atomizer with reduced backflow | |
CN1038046C (en) | Method and equipment for introducing gases into metal melts | |
US5340379A (en) | Jet flow device for injecting gas into molten metal and process | |
JP2007077489A (en) | Top-blown lance and method for operating converter using this lance | |
Liu et al. | Intensification of bubble disintegration and dispersion by mechanical stirring in gas injection refining | |
JPH02301526A (en) | Method and device for generating fine bubble in molten metal | |
US4011290A (en) | Method and device for dispersing a melt with a fluid jet | |
JP2007277653A (en) | Molten metal treatment device and molten metal treatment method performed using the molten metal treatment device | |
JP2000205200A (en) | Air-lift pump device | |
JPH0474820A (en) | Method for accelerating degassing of molten steel | |
CN108253799A (en) | side-blown spray gun | |
JP2005254245A (en) | Pouring tube for tundish | |
JP2024500653A (en) | Method for processing molten metal and/or slag in a metal bath and metal plant for processing molten metal | |
JPS55102429A (en) | Generating method for minute bubble in liquid | |
JPH0280327A (en) | Treatment of molten glass | |
CN109396365A (en) | Casting device under a kind of new eddy flow | |
JPH07238312A (en) | Production of ultra low carbon steel and vacuum degassing equipment | |
JPH11179497A (en) | Tundish for casting clean steel | |
JP2019090078A (en) | Immersion lance for blowing and refining method of molten iron | |
CN109881025B (en) | Supersonic degassing device and method for aluminum melt | |
JP5412756B2 (en) | Converter operation method | |
JP6888492B2 (en) | Molten steel refining equipment and molten steel refining method | |
SU939054A1 (en) | Jet apparatus for granulating melt | |
CN116037869A (en) | Device and method for refining bubbles by using ultrasound for continuous casting argon blowing tundish | |
KR100289874B1 (en) | Method and apparatus for controlled turbulence purification of open vessels |