JPH0280327A - Treatment of molten glass - Google Patents

Treatment of molten glass

Info

Publication number
JPH0280327A
JPH0280327A JP22976788A JP22976788A JPH0280327A JP H0280327 A JPH0280327 A JP H0280327A JP 22976788 A JP22976788 A JP 22976788A JP 22976788 A JP22976788 A JP 22976788A JP H0280327 A JPH0280327 A JP H0280327A
Authority
JP
Japan
Prior art keywords
glass
gas
molten glass
bubbles
pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22976788A
Other languages
Japanese (ja)
Inventor
Shiro Takahashi
四郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22976788A priority Critical patent/JPH0280327A/en
Publication of JPH0280327A publication Critical patent/JPH0280327A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers

Abstract

PURPOSE:To improve the quality of a glass article by reducing the content of bubbles therein by utilizing numerous solid pieces having minute sizes in the treatment of molten glass by the bubbler method. CONSTITUTION:An ejecting port 3a of gas is provided to a top end of a bubbler tube 3 extending upwards in the molten glass 2 after penetrating decking tiles at the bottom of a glass melting tank. A mixture 5 of solid and gas contg. previously suspended fine glass pieces having a same compsn. as the glass 2 is fed to the bubbler tube 3 through a feeding pipe, and the mixture is ejected into the glass 2 through the ejecting port 3a. Thus, a gas foam 6 is formed at a tip end of the bubbler tube 3. Fine glass pieces 7 are supplied to the inside of the gas foam 6. The fine glass pieces are blown by the stream of the gas expressed by an arrow mark (a) to the top area of the inside of the gas foam 6, and melted by the heat supplied from the glass 2 and stick to the inside surface of the foam 6, forming thus many fine unevennesses 9 around the glass pieces 7 as nuclei on the inside surface of the foam 6. Such foams 6 grow increasingly, rise upward in the glass 2 after separating from the bubbler tube 3, and stir the glass 2. In this stage, the gas dissolved in the glass 2 is liberated by diffusion through the large surface area at the interface of the foams.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は製品の泡、コード等の品質が問題となる硝子製
造分野における熔融硝子の処理方法鴫関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for processing molten glass in the field of glass manufacturing, where the quality of bubbles, cords, etc. of products is a problem.

〔従来の技術〕[Conventional technology]

硝子の熔解及び清澄工程については、その歴史は古く、
高温溶解炉とい5古典的設備と1.これを扱う操作が同
工程技術の中心となって来た。
The glass melting and fining process has a long history.
High-temperature melting furnace 5 classical equipment and 1. Operations that handle this have become the core of this process technology.

これに対し、この熔解清面工程に、機械的強制力をもっ
た装置を導入し、従来からの古典的熱反応、熱対流等に
のみ頼るだけでなく、近代的メカニズムを利用して、こ
の工程の効率化ないし対象とする製品の品質改善を進め
ようとする各種の試みが近来進められており、その一つ
として硝子熔解槽内の熔融硝子中に噴気孔からガスを強
制的に噴出させることによって、気泡を発生させ、同気
泡の浮上によってバブリングを行なうバブラ一方式が挙
げられる。
In response to this, we introduced a device with mechanical forcing into this melting and cleaning process, and instead of relying solely on traditional thermal reactions and heat convection, we utilized modern mechanisms to achieve this goal. Recently, various attempts have been made to improve the efficiency of the process or the quality of the target product, and one of them is to forcibly eject gas from a fumarole into the molten glass in the glass melting tank. One example is a bubbler type, which generates air bubbles and performs bubbling by floating the air bubbles.

現用のバブラーシステムについて、それが開発された時
の目的と、現在実用されているものの効用について簡単
に説明すると、初の目的は熔解槽底部に設けられた多数
個のバブラー噴気孔から発生する多数の気泡の界面を利
用して、熔融硝子中に熔解しているガス成分を、熔融硝
子の自由上表面からだけでなく、この気泡中へも拡散さ
せ結局炉内雰囲気中への放散効果を向上させることにあ
ったとも云われている。しかし、工業的実用例に於ては
、たとえ多数個のバブラーノズルからの泡発生を行って
も、この気泡が熔融硝子中に形成する界面の表面積の総
和は、硝子素地の上記自由上表面のそれとの対比に於て
、極めて小さく、バブラー気泡界面を通じての硝子素地
内溶解ガス成分の拡散放出については、殆んどその効果
を期待することはできなかった。
To briefly explain the purpose of the current bubbler system when it was developed and the effectiveness of the one currently in use, the first purpose was to generate a large number of bubbles generated from the numerous bubbler fumarole holes provided at the bottom of the melting tank. Utilizing the interface of the bubbles, the gas components melted in the molten glass are diffused not only from the free upper surface of the molten glass but also into these bubbles, ultimately improving the diffusion effect into the furnace atmosphere. It is also said that the purpose was to make him do so. However, in an industrial practical example, even if bubbles are generated from a large number of bubbler nozzles, the total surface area of the interface formed by the bubbles in the molten glass is the same as that of the free upper surface of the glass substrate. In contrast, the diffusion and release of dissolved gas components within the glass substrate through the bubbler bubble interface was extremely small, and almost no effect could be expected.

ただ、熔解槽内に生ずる硝子素地の熱対流による渦流と
上記バブラーシステムによって生ずる人工的渦流との組
合せKよって、熔解槽内のこの領域における渦流の安定
度を高めることによって、製品の品質保持についてもそ
の安定性を向上させうる効果は認められており、現用バ
ブラーシステムのより大きい効用とし゛〔は、製品の品
質欠点として挙げられる硝子成分の局所的不均質性に基
づく脈理(コート9)に対し、バブラーシステムがこの
部位に発生させる上記の人工的渦流によって硝子素地中
に活溌な混合攪拌が生じ、この脈理を消去させる点にあ
る。
However, by increasing the stability of the vortex in this region of the melting tank due to the combination of the vortex caused by the heat convection of the glass substrate and the artificial vortex generated by the bubbler system described above, it is possible to maintain the quality of the product. It has been recognized that the current bubbler system has the effect of improving its stability, and the current bubbler system is expected to have a greater effect on striae (coat 9) due to local heterogeneity of the glass component, which is cited as a quality defect of the product. On the other hand, the above-mentioned artificial vortex generated by the bubbler system in this area generates active mixing and agitation in the glass base, which eliminates the striae.

この他に、脈理消去の為の機械的手段としては、素地中
で攪拌汎を廻転させるスターラージステムも広く実用化
されている。
In addition to this, as a mechanical means for eliminating striae, a stirrer system that rotates a stirrer in the substrate has also been widely put into practical use.

〔発明が解決しよプとする課題〕[Problems that the invention aims to solve]

即ち従来技術に於ては、バズラージステムもスターラー
ジステムも熔融硝子の混合攪拌とい5メカニズムについ
ては実用上・効果を発揮しているが、硝子製品の最も基
本的な品質欠点である泡について、明確なメカニズムを
背景とした改善については手が届いていない。
In other words, in the conventional technology, both the buzz large system and the stir large system are practical and effective in terms of the five mechanisms of mixing and stirring molten glass, but they are not effective in dealing with foam, which is the most basic quality defect of glass products. , improvements based on clear mechanisms are out of reach.

熔融硝子中に含まれる泡につ(・てみると、そこに含ま
れる泡のうち径の大きいものは成型工程に至る前に浮上
消滅するが径の小さいものが、残って成型されてしま5
ことになる。この際径が小さ半径)という物理法則に基
づきrが小さ(なる程外周の熔融硝子に対するガスの浸
透圧が大きくなり微小泡を囲む熔融硝子中に溶は込んで
気泡の径は更に小さくなり究極的に消滅してゆく、所g
■、抱締めが行われることが理想的であるが、実際は微
小気泡中のガス濃度とこれを取囲む熔融硝子中洗溶解し
ているガスの濃度とのバランスによって最終製品中に泡
が残ることになる。
Looking at the bubbles contained in molten glass, the larger diameter bubbles float up and disappear before the molding process, but the smaller diameter ones remain and are formed.
It turns out. At this time, r is small based on the physical law that the diameter is small (indeed, the osmotic pressure of the gas against the molten glass on the outer periphery increases, and the gas melts into the molten glass surrounding the microbubbles, making the bubble diameter even smaller. The place that disappears
■Ideally, cuddles are carried out, but in reality, bubbles may remain in the final product depending on the balance between the gas concentration in the microbubbles and the concentration of gas dissolved in the molten glass that surrounds them. become.

上記のガスの滲透拡散に関する化学的バランスから最終
製品中の泡の残存率を低下させる為には、硝子の熔融清
澄工程において熔融硝子中に溶解しているガスの熔融硝
子中の濃度の飽和率を低く抑えることが基本的に重要で
ある。
In order to reduce the residual rate of bubbles in the final product from the chemical balance regarding permeation and diffusion of the gas mentioned above, it is necessary to increase the saturation rate of the concentration of gas dissolved in the molten glass in the glass melting and refining process. It is fundamentally important to keep this low.

上記の熔融硝子中罠溶解しているガス成分を拡散排除し
てその濃度を低下させるという泡品質改善へのアプロー
チを考察すると、それ自体は液中の溶解ガスを気液界面
を通じて気体中に拡散させるという物理化学的プロセス
であって、この拡散の効率自体を促進する機械的手段を
見出すことは難しいが、この拡散は、上記のように気液
界面を通じて行われることに着目すれば、この気液界面
の全表面積を新規な機械的手法で大巾に増大させること
が出来れば、上記の気液界面における面積、当りの拡散
効率は変らなくても、熔融硝子中に溶解しているガスの
気泡中への拡散量を大巾に増大させることは可能となり
、泡品質改善を図る機械的方法の道を拓くことになる。
Considering the above-mentioned approach to improving foam quality in which gas components trapped in the molten glass are diffused and eliminated to reduce their concentration, the solution itself is to diffuse the dissolved gas in the liquid into the gas through the gas-liquid interface. Although it is difficult to find mechanical means to promote the efficiency of this diffusion itself, if we focus on the fact that this diffusion occurs through the gas-liquid interface as mentioned above, this diffusion can be improved. If the total surface area of the liquid interface can be greatly increased using a new mechanical method, the amount of gas dissolved in the molten glass will increase, even if the area and per-diffusion efficiency at the gas-liquid interface do not change. It becomes possible to greatly increase the amount of diffusion into bubbles, paving the way for mechanical methods to improve foam quality.

ここに於て、解決すべき課題は熔融硝子中に機械的方法
で強制的に、いかにして微小径の泡を多数分散させるか
とい5手段についての解決策を見・出すことである。た
だ単純に機械的方法で熔融ガラスのように表面張力の大
きい液中に多数の微小径の泡を分散させようとすると、
これには膨大な機械的エネルギーが必要とされる。した
がって、機械的エネルギーの利用は部分的とし、微小径
泡を生成させるエネルギー源としては主として熱エネル
ギーを利用するという物理的方法との組合わせがないと
実用上池品質向上に実効のある水準の泡界面の全表面積
の大きさを得ることは難しい。
The problem to be solved here is to find and find solutions to five methods for forcibly dispersing a large number of microscopic bubbles into molten glass using a mechanical method. However, if you try to disperse a large number of microscopic bubbles in a liquid with high surface tension like molten glass using a simple mechanical method,
This requires enormous mechanical energy. Therefore, mechanical energy is only partially used, and thermal energy is mainly used as an energy source to generate microbubbles. Unless this is combined with a physical method, the level of practical improvement in pond quality cannot be achieved. It is difficult to obtain the size of the total surface area of the bubble interface.

即ち粘性流体である熔融硝子中には、機械力によって微
小径の気泡を作りにくいことを考慮し、本発明において
は、以下述べるように無数の微小径固体片をバブラープ
ロセスのバブリングに利用することによって、上記の問
題点を解決しようとするものである。
That is, in consideration of the fact that it is difficult to create microscopic bubbles in molten glass, which is a viscous fluid, by mechanical force, in the present invention, countless microscopic solid pieces are used for bubbling in the bubbler process as described below. This is an attempt to solve the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、 (1)  硝子熔解槽の底部から同熔解槽内の熔融硝子
中に挿入された噴気管からガスを熔融硝子中に強制的に
噴出させることによって、熔融硝子中に気泡を発生させ
、同気泡の浮上によってバズリングを行なう熔融硝子の
処理方法において、上記噴気管から噴出されるガス中に
熔融硝子と同一成分を有する微小硝子片を予め懸濁させ
、上記気泡が噴気管よう離脱して熔融硝子中の浮上を開
始するまでに上記硝子微小片が気泡内表面に衝突融着し
て同気泡内表面に多数の微細凹凸面を形成させるようK
した。
The present invention has the following features: (1) Air bubbles are generated in the molten glass by forcibly blowing gas into the molten glass from a blow tube inserted into the molten glass in the glass melting tank from the bottom of the tank. , a method for processing molten glass in which buzzing is performed by floating air bubbles, in which minute glass pieces having the same composition as the molten glass are suspended in advance in the gas ejected from the fumarole pipe, and the bubbles are released from the fumarole pipe. By the time the glass particles start floating in the molten glass, the glass particles collide and fuse with the inner surface of the bubble, forming a large number of fine uneven surfaces on the inner surface of the bubble.
did.

(2)  上記熔融硝子の処理方法において、噴気管か
らガスをほぼ水平に、即ち、水平、又は水平に対しやや
斜め上方もしくはやや斜め下方に噴出させるようにした
(2) In the method for treating molten glass, the gas is ejected from the fumarole tube almost horizontally, that is, horizontally, or slightly diagonally upward or diagonally downward with respect to the horizontal.

〔作 用〕[For production]

上記(1)の本発明では、噴気管の噴出口端面かも気泡
が熔融硝子の内部に形成され、これが拡大生長して噴気
管から離脱して熔融素地中の浮上を開始するまでに、ガ
ス体と共にこの気泡中に噴出された硝子微小片は同気泡
の内表面に衝突し、熔融硝子から熱を受けて内表面に融
着し、同内表面に、この硝子微小片を核とする多数の微
細凹凸面が形成される。
In the present invention described in (1) above, bubbles are formed inside the molten glass at the end surface of the ejection port of the fumarole tube, and by the time the bubbles expand and grow and separate from the fumarole tube and start floating in the molten base, the gaseous At the same time, the glass particles ejected into this bubble collide with the inner surface of the bubble, receive heat from the molten glass and fuse to the inner surface, and many glass particles with these glass particles as cores are formed on the inner surface. A finely uneven surface is formed.

このように多数の微細凹凸面を内面に有する気泡は、噴
気管から離脱して熔融硝子内を上昇し、上表面に達した
後に破裂するために、各々の気泡自体は破g、消滅して
も、気泡内面に形成されている多数の硝子微小片を核と
する微細凹凸面は、同気泡が破裂しては気泡内面同志が
融着し小気泡を再形成しては又破裂するプロセスが繰返
された後、結局上記硝子微小片を核とする微小泡を熔融
硝子上表面に分散残置させることになる。
In this way, the bubbles, which have a large number of finely uneven surfaces on their inner surfaces, leave the fumarole pipe, rise in the molten glass, and burst after reaching the upper surface, so each bubble itself bursts and disappears. In addition, the finely uneven surface formed on the inner surface of a bubble, which is made up of many microscopic pieces of glass, undergoes a process in which when the bubble ruptures, the inner surfaces of the bubble fuse together to form a small bubble, which then ruptures again. After this process is repeated, microbubbles with the glass micropieces as their core are left dispersed on the upper surface of the molten glass.

この結果、従来のバブラーシステムとしての浮上気泡の
内表面積の総和に対し、気泡が熔融硝子上表面に違して
破裂した後に、大きな内表面積の総和を有する多数の微
小泡が同熔融硝子上表面に形成される。
As a result, compared to the total inner surface area of the floating bubbles in the conventional bubbler system, after the bubbles burst on the upper surface of the molten glass, a large number of microbubbles with a large total inner surface area are formed on the upper surface of the molten glass. is formed.

このように形成された多数の微小泡の広い界面を通って
、熔融硝子中に溶解していたガスが効果的に同微小気泡
中に拡散放出され、この人為的に作り出された微小泡は
熔融清澄域の硝子上表面に於て加熱され究極的に破裂し
てその際に微小泡内のガスが溶解槽雰囲気中に放散され
る。
Through the wide interface of the many microbubbles formed in this way, the gas dissolved in the molten glass is effectively diffused and released into the microbubbles, and these artificially created microbubbles The upper surface of the glass in the clarification zone is heated and ultimately bursts, at which time the gas inside the microbubbles is released into the atmosphere of the melting tank.

このように(−で、上記(1)の本発明では、製品化工
程に向う熔融硝子素地中の溶解ガスを、上記微小硝子片
を核とする多数の微小気泡が形成する大きな総表面積を
介して効果的に同微小気泡内に吸収し、究極微小気泡の
硝子上表面での破裂によって同溶解ガスを炉内雰囲気中
に逸散させることKよって熔融硝子素地中の溶解ガス量
を減少させ、その結果製品の泡品質の向上を斉すことに
なる。
In this way (-), in the present invention (1) above, the dissolved gas in the molten glass base heading for the product manufacturing process is transported through the large total surface area formed by the large number of microbubbles with the microscopic glass pieces as cores. The amount of dissolved gas in the molten glass matrix is reduced by effectively absorbing the dissolved gas into the microbubbles and dissipating the dissolved gas into the furnace atmosphere by bursting the ultimate microbubbles on the top surface of the glass. As a result, the foam quality of the product will be improved.

また、上記微小気泡生成の核として働いた硝子微小片は
、上記工程を経て、成分として同一な周囲の熔融硝子中
に熔は込んで硝子素地となる。
Moreover, the glass micropieces that served as the nucleus for the generation of the microbubbles go through the above steps and melt into the surrounding molten glass having the same components to form a glass base.

上記(2)に記載の本発明においては、上記(1)に記
載の本発明に加えて、バブリングに使用されるガスの噴
出方向をほぼ水平、即ち、水平又は水平に対しやや斜め
上方もしくはやや斜め下方にすることによって、気泡は
ほぼ水平方向に向って形成される。噴出ガスの流れの運
動量のイクトルは水平又は水平に近い方向を有している
ために、ガスの噴出量を大きくしても、従来の垂直方向
への気泡噴出の方式に比べて噴出気流が熔融硝子中にそ
の上表面K11通するガス流路を形成すること、所謂吹
き抜けと呼ばれる現象を抑制することができる。
In the present invention described in (2) above, in addition to the present invention described in (1) above, the ejection direction of the gas used for bubbling is set almost horizontally, that is, horizontally, slightly diagonally above horizontally, or slightly above horizontally. By diagonally downward, the bubbles are formed in a substantially horizontal direction. Since the momentum vector of the ejected gas flow is horizontal or in a near-horizontal direction, even if the amount of gas ejected is increased, the ejected air flow will not melt as compared to the conventional method of ejecting bubbles in the vertical direction. By forming a gas flow path in the glass that passes through the upper surface K11, it is possible to suppress a phenomenon called so-called blow-through.

即ち、従来の垂直上方への噴出方式に比して相当噴出流
速を大きくしても、吹き抜けを生ずることなくバブリン
グが継続される。
That is, even if the jetting flow velocity is increased considerably compared to the conventional vertically upward jetting method, bubbling continues without causing blow-by.

液槽に適用されるバブリングシステムの実用例は、硝子
熔解槽のみならず、広範に亘っているのが現状であるが
、その場合に要求されるのは、噴出口端面部のガス流の
全圧=静圧+動圧は、仝噴出口端面部にがかる液槽の液
圧を超えていることである。
Practical examples of bubbling systems applied to liquid tanks are currently widespread, not only in glass melting tanks, but what is required in this case is that the entire gas flow at the end of the spout is Pressure=static pressure+dynamic pressure exceeds the liquid pressure of the liquid tank applied to the end face of the jet nozzle.

上記(1)の本発明によって噴出流の比重は、ガス単独
の場合より大きくなっており、上記(2)の本発明では
これに加えて、噴出流速を大きくすることが可能になる
結果、この噴出流の全圧の構成においては、従来の浮力
による気泡離脱の方式においては静圧分がその殆んどを
占めていたのに対し、動圧分をもって全圧の主体とする
ことが可能となる。
According to the present invention (1) above, the specific gravity of the ejected flow is greater than that in the case of gas alone, and in addition to this, the present invention (2) above makes it possible to increase the ejected flow velocity. In the composition of the total pressure of the jet flow, in the conventional bubble separation method using buoyancy, the static pressure component accounted for most of it, but now it is possible to make the dynamic pressure component the main component of the total pressure. Become.

即ち上記(2)の本発明では、このガス噴流の径を小さ
くしてバブリングを継続することが可能となり、この小
径の噴流の流路に外からかかる熔融硝子の液静圧によっ
て、このガス噴流は分断されて径の小さい気泡が形成さ
れることになる。
That is, in the present invention described in (2) above, it is possible to continue bubbling by reducing the diameter of this gas jet, and the hydrostatic pressure of the molten glass applied from the outside to the flow path of this small diameter jet causes this gas jet to are divided to form small-diameter bubbles.

従って、上記(2)の本発明においては、上記(1)の
本発明の作用に加えて、バブリング用噴出ガスの量の上
限を大きくすると共に発生浮上する気泡の径を小さくし
、バブリング効果が増大されることになる。
Therefore, in the present invention described in (2) above, in addition to the effect of the present invention described in (1) above, the upper limit of the amount of ejected gas for bubbling is increased and the diameter of the generated and floating bubbles is decreased, thereby improving the bubbling effect. It will be increased.

また更に、上記(2)の本発明におけるバブラー用噴出
ガスは、微小硝子片を含んで〜・るために見掛比重、従
って、その流体としての慣性力が大きくなっているため
に、バブリング気流を吹抜けに結び付ける気泡の上昇浮
力成分に対比し、上向きのイクトルと無関係な水平方向
を主とするこの慣性力の働きによって、吹抜けの噴出量
上限に達することなくバブリングを維持しつるガス噴出
量の上限は一層大きくなる。
Furthermore, since the ejected gas for the bubbler in the present invention described in (2) above contains minute glass particles, its apparent specific gravity and therefore its inertia as a fluid are large. In contrast to the rising buoyant force component of the bubbles that connects the gas to the atrium, this inertial force, mainly in the horizontal direction, which is unrelated to the upward vector, maintains bubbling without reaching the upper limit of the gas ejection volume of the atrium. The upper limit becomes even larger.

〔実施例〕〔Example〕

本発明の第一の実施例を第1図ないし第3図によって説
明する。
A first embodiment of the present invention will be explained with reference to FIGS. 1 to 3.

第1図に示すように、流量計6及び圧力計がを備えた空
気、  He、 02. H2O等のガスの供給管Uは
、硝子熔解槽の熔解域と清澄域との間の脱気渦流域に設
けられた噴気管としての複数のセラミックス製バブラー
管3に接続されており、また同ガス供給管冴には、熔解
槽内の硝子と同一成分をもつ硝子微小片7を収容したホ
ッノ(−加がロータリーフィーダーnをもつ微小硝子片
供給管21によって接続されている。
As shown in FIG. 1, air, He, 02. is equipped with a flow meter 6 and a pressure gauge. The supply pipe U of gas such as H2O is connected to a plurality of ceramic bubbler pipes 3 as fumarole pipes provided in the degassing vortex region between the melting zone and the clarification zone of the glass melting tank. The gas supply pipe is connected to a small glass piece supply pipe 21 having a rotary feeder containing glass minute pieces 7 having the same composition as the glass in the melting tank.

上記各バブラー管3は、第2図に示すように熔解槽の炉
底部敷瓦1を貫通して熔融硝子2内に上方に延びており
、その上端には噴出口3aが設けられている。上記各バ
ブラー管3の周囲には熔解槽の炉底部敷瓦1を貫通し冷
却水を循環させる二重水冷外套管4が設けられている。
As shown in FIG. 2, each of the bubbler tubes 3 extends upward into the molten glass 2 through the bottom tile 1 of the melting tank, and is provided with a spout 3a at its upper end. Around each of the bubbler tubes 3, there is provided a double water-cooled jacket tube 4 which penetrates the furnace bottom tile 1 of the melting tank and circulates cooling water.

本実施例では、供給管Uを通ってガス及び微小硝子片が
バブラー管3に導かれ、微小硝子片が懸濁された固気混
合ガス5は同バブラー管の噴出口3aを経て熔解槽内の
熔融硝子の中へ噴出され、バブラー管3の先端に気泡6
が形成される。同気泡6内には上記のよ5にガスと共に
微小硝子片7が供給され、これが第2図中矢印aで示す
ガスの流れによって、主として気泡6の内表面上部に吹
き付けられる。この微小硝子片7は熔融硝子から受熱し
て気泡6内表面に融着して同内表面に微小硝子片を核と
する多数の微細凹凸面9が形成される。
In this embodiment, gas and minute glass pieces are led to the bubbler tube 3 through the supply pipe U, and the solid-gas mixed gas 5 in which the minute glass pieces are suspended passes through the outlet 3a of the bubbler tube and enters the melting tank. into the molten glass, and bubbles 6 are formed at the tip of the bubbler tube 3.
is formed. Micro glass pieces 7 are supplied into the bubble 6 together with the gas as described above, and are mainly blown onto the upper part of the inner surface of the bubble 6 by the gas flow shown by the arrow a in FIG. The minute glass pieces 7 receive heat from the molten glass and are fused to the inner surface of the bubble 6, thereby forming a large number of fine uneven surfaces 9 having the minute glass pieces as cores on the inner surface.

このように、その内面に多数の微細凹凸面を有する気泡
6は、バブラー管3からガスの供給を受けて次第に大き
くなり、バブラー管3かも離脱して熔融硝子2内を上昇
し、これに伴って熔融硝子2内に熔融硝子自体の上昇流
が誘起され、これが駆動源となって熔融硝子2内に渦流
を生じさせて熔融硝子を攪拌する。
In this way, the bubble 6, which has a large number of finely uneven surfaces on its inner surface, gradually becomes larger as it is supplied with gas from the bubbler tube 3, and the bubbler tube 3 also separates and rises inside the molten glass 2. An upward flow of the molten glass itself is induced in the molten glass 2, and this serves as a driving source to generate a vortex in the molten glass 2 and stir the molten glass.

W、3図に示すように、熔融硝子の自由上表面10に達
した気泡6は破裂して矢印11に示すように、ガスを熔
解槽上部空間の雰囲気内に放出するが、この際熔融硝子
2の上面には微小硝子片7を核とする多数の微小泡が形
成される。
As shown in FIG. A large number of microbubbles with the microscopic glass pieces 7 as cores are formed on the upper surface of the glass substrate 2 .

このようにして形成された多数の微小泡の広い表面積を
もつ界面を通して同気泡中に熔融硝子2中に溶解してい
たガスが拡散放出される。この微/Jλ泡は熔融清面域
の硝子上表面に於て加熱され究極的には破裂して、その
際に微小泡内のガスは熔解槽上部空間の雰囲気内へ放散
される。
The gas dissolved in the molten glass 2 is diffused and released into the large number of microbubbles thus formed through the interfaces having a large surface area. These fine /Jλ bubbles are heated on the upper surface of the glass in the melting surface area and ultimately burst, at which time the gas within the fine bubbles is released into the atmosphere in the upper space of the melting tank.

熔融硝子と同一成分をもつ微小硝子片7は、熔融硝子よ
り熱を受けて熔融され熔融硝子2中に混入吸収される。
The minute glass pieces 7 having the same composition as the molten glass are melted by receiving heat from the molten glass, and are mixed and absorbed into the molten glass 2.

微小硝子片7を核として形成される上記多数の微小泡の
内表面の面積の総和は、ガスのみによって形成される気
泡の内表面積に比して格段に大きく、その上、上記の浮
上して破裂する気泡に比してその径が著しく微細である
ために、これが硝子上表面に於て加熱され破裂する迄に
時間を要する。
The sum of the inner surface areas of the large number of microbubbles formed with the microscopic glass pieces 7 as cores is much larger than the inner surface area of the bubbles formed only by gas, and in addition, the floating Since the diameter of the bubble is significantly smaller than that of the bubble to be burst, it takes time for the bubble to be heated on the upper surface of the glass and burst.

即ち、この熔解清澄域の硝子自由上表面に形成されては
消えてゆきながらこの微小泡の内表面の上記熔融硝子2
かものガスの拡散放出に時間的に継続して関与する面積
の総和は大きく、この大きな拡散放出界面を通して、熔
融硝子中のガスは効果的に微小泡内に吸収され熔融硝子
2中の溶解ガスの濃度が低下し、その結果製品の泡品質
を向上させることができる。
That is, the molten glass 2 on the inner surface of the microbubbles is formed on the free upper surface of the glass in the clarified melt region and then disappears.
The total area involved in the diffusion and release of spider gas over time is large, and through this large diffusion and release interface, the gas in the molten glass is effectively absorbed into the microbubbles, and the dissolved gas in the molten glass 2 concentration can be reduced, resulting in improved foam quality of the product.

ここで、本実施例における上記の微小泡内表面の面積総
和の大いさについて説明する。
Here, the size of the total area of the inner surfaces of the microbubbles in this example will be explained.

/ζプラー1個当りの噴出ガス量平均値をVNtr?/
mTA+  バブラー管本数をnとすれば、バブラーガ
ス量V = v n Nm”/韻となる。
/ζ Average amount of gas ejected per puller is VNtr? /
mTA+ If the number of bubbler tubes is n, then the bubbler gas amount V = v n Nm''/rhyme.

本実施例において、V=V□+v2+・・・・・・+ち
=0.04 Nm”/mis、ノζブラー用ガス体に懸
濁される微小硝子片7とガス体との容積比を5:95と
し、微小硝子片は実際は粉砕された硝子微粉であるが、
算定のためKこれを正立方体と仮定し、その−辺の長さ
の平均値を加μとする。
In this example, V=V :95, and the microscopic glass pieces are actually crushed glass powder, but
For calculation purposes, K is assumed to be a regular cube, and the average value of its -side lengths is defined as μ.

この条件下に於いて、1分間に熔融硝子2の中に噴出さ
れる微小硝子片7の表面積51fn3/Mは= 600
 tX となる。
Under this condition, the surface area 51fn3/M of the minute glass pieces 7 ejected into the molten glass 2 per minute is = 600.
It becomes tX.

別の試算としては、微小正立方体硝子片が充填体として
充填された層の充填体自身の体積と充填体の間に形成さ
れる空隙の空間比を60 : 40とし、この空隙空間
が例えば20μ×±径の真球に分断されたとすると、こ
の時1分間に形成される微細球表面積の総和52fi″
は。
Another estimate is that the space ratio of the volume of the filler itself and the void formed between the filler in a layer filled with tiny regular cubic glass pieces as a filler is 60:40, and this void space is, for example, 20μ. If it is divided into true spheres with a diameter of ×±, the total surface area of the fine spheres formed in 1 minute is 52fi''
teeth.

となる。becomes.

上記概算を参照すれば、本実施例において、熔融硝子自
由上表面に形成される微小泡が同自由上表面で発生後1
分間維持されて後消滅してゆくとすれば、この微小泡が
時間径過を通じて継続的に形成する泡内面面積の総和は
600〜700m’  というオーダーになり、工業的
硝子実用炉の溶融清澄域自由上表面の有する面積の10
倍以上の熔融硝子中に溶解しているガスの拡散放出界面
を保持することができる。
Referring to the above estimation, in this example, the microbubbles formed on the free upper surface of the molten glass were generated on the free upper surface.
If these microbubbles are maintained for a few minutes and then disappear, the total surface area of the bubbles continuously formed over time will be on the order of 600 to 700 m', which is within the melting and fining range of industrial glass furnaces. 10 of the area of the free upper surface
It is possible to maintain the diffusion and release interface of the gas dissolved in the molten glass more than twice as much.

本発明の第二の実施例を第4図及び第5図によって説明
する。
A second embodiment of the present invention will be explained with reference to FIGS. 4 and 5.

本実施例のセラミックス製ノZプラー管3は上記第一の
実施例と同様に第1図に示されるように配置され、ガス
及び微小硝子片の供給管に接続され、二重水冷外套管4
によって取囲まれているが、同バブラー管3の上端部に
水平方向に伸びる噴射管3bが設けられ、同噴射管3b
の先端は二重水冷外套管4の外壁に開口して噴出口3a
を形成している。
The ceramic Z-pull tube 3 of this embodiment is arranged as shown in FIG.
However, an injection pipe 3b extending horizontally is provided at the upper end of the bubbler pipe 3, and the injection pipe 3b
The tip is opened in the outer wall of the double water-cooled mantle tube 4 to form a spout 3a.
is formed.

本実施例においては、微小硝子片を懸濁したガスは噴出
口3aより水平方向に噴出されて熔融硝子2中にほぼ水
平方向く並んだ独立気泡6が形成される。同気泡6内に
おいては、矢印す方向に流れるガス流によって、主とし
て同気泡先端の部分に微小硝子片が吹き付けられ、これ
が熔融硝子から熱を受けて気泡6内表面に融着して第一
の実施例におけると同様に同内表面に微小硝子片を核と
する多数の凹凸面が形成される。
In this embodiment, the gas in which minute glass pieces are suspended is ejected horizontally from the ejection port 3a, and closed cells 6 are formed in the molten glass 2, which are arranged substantially horizontally. Inside the bubble 6, the gas flow flowing in the direction of the arrow blows microscopic pieces of glass mainly at the tip of the bubble, which receives heat from the molten glass and fuses to the inner surface of the bubble 6, forming the first As in the embodiment, a large number of uneven surfaces with micro glass particles as cores are formed on the inner surface.

従って、本実施例においても、第一実施例におけると同
様に気泡6がバブリング管3の噴出口3aより離脱して
浮上するとき、これに伴って誘起される気泡6周囲の熔
融硝子2の上昇流を駆動源とする熔融硝子2の攪拌が行
なわれ、また気泡6が熔融硝子2の上面に達して破裂し
たときに、微小硝子片7を核とする多数の微小気泡が形
成されて、この気泡の径が微小であるためにこの微小気
泡が再破裂するまでに要する時間内に、この微小気泡の
大きな内面積を通して熔融硝子中に溶解しているガスを
この気泡内に吸収する。
Therefore, in this embodiment, as in the first embodiment, when the bubbles 6 leave the spout 3a of the bubbling tube 3 and rise to the surface, the molten glass 2 around the bubbles 6 is induced to rise accordingly. When the molten glass 2 is stirred using the flow as a driving source, and when the bubbles 6 reach the upper surface of the molten glass 2 and burst, a large number of microbubbles with microscopic glass pieces 7 as nuclei are formed. Since the diameter of the bubbles is minute, the gas dissolved in the molten glass is absorbed into the bubbles through the large internal area of the minute bubbles within the time required for the bubbles to burst again.

また、本実施例においては、上記のようにガスが水平方
向に噴出されるために、気泡6は水平方向に向って形成
され、硝子微小片7が懸濁している噴出ガス流の運動量
のベクトルは水平の方向を有しているために気泡6は水
平方向に向って形成される。このために1ガスの時間当
りの噴出量を多くしても、また噴出ガス中に懸濁される
硝子微小片7のガスに対する混合比を太き(して噴出流
としての見掛比重を大きくしても、噴出管末端の噴出口
径を適当な小径に保つ限り噴出ガス流の運動量が大きく
なる程、気泡の水平方向におけるりきち切れは起っても
噴出された気流が熔融硝子2の内部を上表面に向って吹
抜けることはない。また、このガス噴流の流路に加わる
熔融硝子の液静圧によってガス噴流は分断されて径の小
さい気泡が形成される。従って、気泡6によるバブリン
グを効果的に行なうことができる。
In addition, in this embodiment, since the gas is ejected in the horizontal direction as described above, the bubbles 6 are formed in the horizontal direction, and the momentum vector of the ejected gas flow in which the glass particles 7 are suspended. has a horizontal direction, the bubbles 6 are formed in the horizontal direction. For this reason, even if the amount of gas ejected per hour is increased, the mixing ratio of the glass particles 7 suspended in the ejected gas to the gas may be increased (thus increasing the apparent specific gravity of the ejected flow). However, as long as the diameter of the ejection port at the end of the ejection tube is kept at an appropriately small diameter, the greater the momentum of the ejected gas flow, the more the ejected airflow can penetrate the inside of the molten glass 2 even if the bubbles are torn apart in the horizontal direction. It does not blow through toward the upper surface.In addition, the gas jet is divided by the hydrostatic pressure of the molten glass applied to the flow path of this gas jet, and bubbles with a small diameter are formed.Therefore, the bubbling caused by the bubbles 6 is It can be done effectively.

本発明の第三の実施例を第6図によって説明する。A third embodiment of the present invention will be explained with reference to FIG.

本実施例は、上記第二の実施例に比して、バブラー管3
の噴出口近傍の構造を次のよ5に変更したものである。
This embodiment differs from the second embodiment in that the bubbler tube 3
The structure near the ejection port has been changed as follows.

即ち、バブラー管3をセラミックス製とし、その上端部
に水平方向に軸を有する噴出口を投げ、このバブラー管
3の外周に近接して二重水冷外套管4の内管4aを配置
し、同外套管4の外管4bと内管4aとの間に中間の管
4cを配置することによって、上記の管4a、4c間に
冷却水の上昇通路を、また上記の管4 c + 4b間
に冷却水の下降通路を設けた二重水冷外套管4が形成さ
れている。またセラミックス製バメラー管3の上端部に
は水平方向に噴出口3aが設けられ、同噴出口3a K
対応する位置で内管4aK開口すると共に水平方向に延
びて外管4cに開口する外方に向ってラッパ状に拡大す
る截頭円錐状のガス噴出路4d#″−設けられている。
That is, the bubbler tube 3 is made of ceramics, a spout having a horizontal axis is disposed at the upper end thereof, and the inner tube 4a of the double water-cooled outer tube 4 is disposed close to the outer periphery of the bubbler tube 3. By arranging the intermediate pipe 4c between the outer pipe 4b and the inner pipe 4a of the mantle pipe 4, a rising passage for cooling water is formed between the above-mentioned pipes 4a and 4c, and between the above-mentioned pipes 4c + 4b. A double water-cooled jacket tube 4 is formed with a downward passage for cooling water. Further, a spout 3a is provided in the upper end of the ceramic bummerer tube 3 in the horizontal direction, and the spout 3a K
A truncated cone-shaped gas ejection passage 4d#'' is provided, which opens at a corresponding position in the inner pipe 4aK and expands outward in a trumpet shape, extending horizontally and opening into the outer pipe 4c.

本実施例は、第二の実施例における噴出口部における硝
子微小片7による摩耗の抑制を可能圧したもので、そ、
の作用については、第二の実施例と本質的に変るところ
はない。
In this embodiment, it is possible to suppress the wear due to the glass particles 7 at the jet nozzle portion in the second embodiment.
The operation of this embodiment is essentially the same as that of the second embodiment.

ここで、上記第二及び第三の実施例における上記微小泡
内表面の面状総和に大きさについで、以下説明する。
Here, the total planar shape and size of the inner surfaces of the microbubbles in the second and third embodiments will be explained below.

上記の第一の実施例についての概算をに一スに、相対的
な差異について述べる。
First, we will discuss the relative differences based on the rough estimate of the first embodiment.

先づV = 0.04 Nm7−は、第二、第三の実施
例ではV=0.04x5=0.2 N27m1x K増
大された。
First, V = 0.04 Nm7- was increased by V = 0.04x5 = 0.2 N27m1x K in the second and third embodiments.

バズラー用ガス体に懸濁される硝子微小片7とガス体と
の容積比5:95は、第二、第三の実施例においても同
様に保たれる。
The volume ratio of 5:95 between the glass particles 7 suspended in the buzzer gas and the gas is maintained in the same manner in the second and third embodiments.

このように噴出流の流量、したがって噴出流の運動量が
増大されても、噴出方向が水平方向であるために浮上す
る気泡は分断細分化されバブリング継続に問題が生ずる
ことはなかった一方、従来の)ζプラ一方式乃至第一実
施例・−のバブラ一方式に比べて、第二、第三のy!、
施例においては硝子熔解槽においてこのバブラーシステ
ムによる活溌す強制的渦流の安定的継続が認められた。
Even if the flow rate of the jet flow and therefore the momentum of the jet flow were increased in this way, since the jet direction was horizontal, the floating bubbles were divided into small pieces and there was no problem with continuing bubbling. ) The second and third y! ,
In the example, stable continuation of the active forced vortex flow by this bubbler system was observed in the glass melting tank.

第一の実施例に於けるSl、S2の算出規準をイースに
すると、第二、第三の実施例に於ては、Sl ”” 3
000 tyz 、S2 ”’ 3600−となり、熔
融清澄域の硝子自由上表面に形成される微小泡が同自由
表面で発生後1分間維持されて後消滅してゆくとすれば
、この微小泡が第二、第三の実施例の諸条件下に時間経
過を通じて継続的に形成する泡内面面積の総和は300
0〜3600−というオーダーになる。
If the calculation criterion for Sl and S2 in the first embodiment is set to E, then in the second and third embodiments, Sl "" 3
000 tyz, S2''' 3600-, and if the microbubbles formed on the free upper surface of the glass in the melt-fining region are maintained on the same free surface for 1 minute after generation and then disappear, then the microbubbles are The total inner surface area of bubbles that are continuously formed over time under the conditions of the second and third embodiments is 300.
It will be on the order of 0 to 3600-.

更に、第二、第三の実施例に於ては、バブラー噴出ガス
量が従来法に近い第一の実施例に比して大きくなり、浮
上する気泡の時間当りの容積が誘起する熔融硝子2のこ
の部位における局所的上昇流が強化される。これに加え
て、従来法、或いは第一の実施例に於ては、上記気泡の
バブラー管3からの離脱は気泡の静的浮力との釣合で行
われていたのに対し、第二、第三の実施例に於ては、上
記のように、見掛比重の大きい固気ガスの噴流する慣性
力が気泡のバブラー管3からの離脱を促すことになる。
Furthermore, in the second and third embodiments, the amount of gas ejected from the bubbler is larger than that in the first embodiment, which is close to the conventional method, and the volume of the floating bubbles per hour is increased. The local updraft in this region of the area is strengthened. In addition, in the conventional method or the first embodiment, the bubbles are separated from the bubbler tube 3 in balance with the static buoyancy of the bubbles. In the third embodiment, as described above, the inertial force of the jet of solid gas having a large apparent specific gravity promotes the separation of bubbles from the bubbler tube 3.

即ち、噴出流の有する動圧が熔融硝子2内に生ずる渦流
の強さを決めるのに関る形となる。
That is, the dynamic pressure of the ejected flow determines the strength of the vortex generated within the molten glass 2.

この結果、従来のノζプラーシステムが、その目的とし
てきたバブラーによって形成される熔融硝子2内の渦流
による硝子素地の攪拌混合均質化が、より活溌に行われ
ることになる。
As a result, the stirring, mixing, and homogenization of the glass base by the vortex in the molten glass 2 formed by the bubbler, which has been the objective of the conventional nozzle puller system, can be carried out more actively.

更に、上記のよ5に従来のバブラ一方式に対比して著し
く強力な上昇流がバブラ一部位において起きるというこ
とは、バブラー管3の噴出口付近乃至そこで生成された
気泡群が上昇を開始する部位付近の熔融硝子2の流れ九
ついて見ると、従来方式においては、熔解槽底部に設置
されたバブラーの噴流口に向って敷瓦に沿って後方及び
前方から上記熔融硝子の上昇流を補う底流が供給され、
流れのノζランスが保持されていたが、第二、第三の実
施例に於ては、敷瓦に沿う上記前方及び後方からの底流
だけでは上記バブリングの強制的機掴力による上昇流と
の72ランスが保持出来なくなって、気泡が破裂する硝
子自由上表面部の前後域において、そこに形成されてい
る硝子微小片7を核とする微小泡を内包した熔融硝子が
炉底部に向って下降気流を形成することが認められた。
Furthermore, as mentioned in 5 above, the fact that a significantly stronger upward flow occurs in one part of the bubbler than in the conventional one-bubbler type means that the bubbles generated near the spout of the bubbler pipe 3 or there begin to rise. Looking at the flow of the molten glass 2 near the part, in the conventional method, an underflow supplements the upward flow of the molten glass from the rear and front along the tiles toward the jet opening of the bubbler installed at the bottom of the melting tank. supplied,
Although the flow no.ζ lance was maintained, in the second and third embodiments, the bottom flow from the front and rear along the paving tiles alone was not enough to combine with the upward flow due to the forced gripping force of the bubbling. 72 In the front and rear regions of the free upper surface of the glass where the lance cannot hold it anymore and the bubbles burst, the molten glass containing microbubbles with the glass particles 7 as their cores formed there descends toward the bottom of the furnace. It was observed that airflow was formed.

このことは、上記のように、この領域における熔融硝子
の混合攪拌機能の向上に効果があると共に1上記第一な
いし第三の各実施例のいづれのケースに於ても、上記の
硝子微小片7を核とする微小泡は硝子の自由上表面に浮
遊しているという前提で説明を行って来たが、第二、第
三の実施例では更に、上表面に浮遊している微小泡が、
上記の強力なポルテックスによって熔融硝子2中に定常
的に捲き込まれる流れのパターンが構成されることにな
る。これによって、上記微小気泡が、その発生から消滅
に至る時間が長くなり、且つまた、この微小気泡は熔融
硝子の上表面に浮遊しているだけでなくその一部もしく
は大部分はポルテックスに乗って、この微小気泡がその
界面を通してその含有ガス拡散脱気を目的とする熔融硝
子2の内部に広く分散された形で循環対流することとな
る。
As mentioned above, this is effective in improving the mixing and stirring function of the molten glass in this region, and 1. In any case of the first to third embodiments, the glass micropieces The explanation has been given on the assumption that the microbubbles with the nucleus 7 are floating on the free upper surface of the glass, but in the second and third examples, it is further assumed that the microbubbles floating on the upper surface are ,
A flow pattern is formed in which the molten glass 2 is constantly rolled up by the above-mentioned strong portex. This increases the time it takes for the microbubbles to disappear from their generation, and furthermore, the microbubbles are not only floating on the upper surface of the molten glass, but some or most of them are riding on the portex. Through the interface, these microbubbles circulate and convect in a widely dispersed manner inside the molten glass 2 for the purpose of diffusion and degassing of the gas contained therein.

このことは、上記微小泡の3000〜3600 m”と
いう大きな面積によるだげでなく、目的とする熔融硝子
2からの溶解ガスの拡散放出を一層効率的に進めること
になる。
This is not only due to the large area of 3,000 to 3,600 m'' of the microbubbles, but also to more efficiently diffuse and release the dissolved gas from the molten glass 2.

なお、上記各実施例において使用されるガスとしては、
従来からバブリング用に使用されている空気を用いても
よいが、空気の中の02は硝子に対して溶は易いが、N
2は硝子製品中の泡の成分と形成し熔融硝子中和溶解し
ているガスをこの微小気泡中に拡散放出させた上調子炉
内雰囲気中に放散させるという方式において利用するガ
スとしては、熔融ガラスに溶は易いHe、 N20 、
02等を使用するのがよい。
The gases used in each of the above examples are as follows:
Air, which has been conventionally used for bubbling, may be used, but 02 in air dissolves easily in glass, but N
2 is the gas used in the method of neutralizing the molten glass, which is formed with the bubble components in the glass product, and dissipating the dissolved gas into the atmosphere in the upper temperature furnace, which is diffused and released into the microbubbles. He, which easily dissolves in glass, N20,
It is better to use 02 etc.

〔発明の効果〕〔Effect of the invention〕

以上説明したように請求項1に記載の本発明は、熔融硝
子と同一成分の微小硝子片を懸濁させたガスを噴気管か
ら熔融硝子中に噴出させて、気泡内表面に同微小硝子片
を核とする多数の微細凹凸面を形成し、この気泡によっ
てバブリングを行うことKよって、上記気泡が熔融硝子
上表面に達して破裂した同微小硝子片を核として形成さ
れる多数の微小泡の大きな内面面状を利用して、熔融硝
子中に溶解していたガスを、この微小気泡内に拡散放出
させ、熔融硝子中の溶解ガス濃度を低下させて製品の泡
品質を向上させることができる。
As explained above, the present invention as set forth in claim 1 is characterized in that a gas in which microscopic glass pieces having the same composition as the molten glass are suspended is ejected from a blow tube into the molten glass, and the microscopic glass pieces are attached to the inner surface of the bubble. By forming a large number of finely uneven surfaces with the bubbles as a nucleus and performing bubbling with the bubbles, the bubbles reach the upper surface of the molten glass and a large number of microbubbles are formed with the same microscopic glass pieces as the nucleus. By utilizing the large inner surface, the gas dissolved in the molten glass can be diffused and released into these microbubbles, reducing the concentration of dissolved gas in the molten glass and improving the foam quality of the product. .

また、請求項2に記載の本発明は、上記請求項1に記載
の発明において微小硝子片を懸濁させたガスをほぼ水平
方向Kl!Jt気管から噴出することによって、噴出ガ
ス量及び微小硝子片を含む噴出流の運動量を大きくして
も、噴出流の熔融硝子上表面への吹き抜けが起きること
な(、逆に、発生する気泡の径を小さくしつつ気泡ガス
量乃至は気泡中に噴射される硝子微小片の量を増大させ
ることができる。
Further, the present invention according to claim 2 is the invention according to claim 1, in which the gas in which minute glass pieces are suspended is moved in a substantially horizontal direction Kl! By ejecting from the Jt trachea, even if the amount of ejected gas and the momentum of the ejected flow containing minute glass fragments are increased, the ejected flow will not blow through to the upper surface of the molten glass (on the contrary, the generated air bubbles will not blow through). It is possible to increase the amount of bubble gas or the amount of glass particles injected into the bubbles while reducing the diameter.

この結果、従来のバブラーシステムの硝子素地の攪拌混
合による硝子素地の均質化の促進についても、従来法に
比して格段に高い攪拌効果が得られるのみならず、本発
明に係る)Sプラーがその機能を及ぼす熔融清溌域に於
て、微小泡の内表面の大きな面積が熔融硝子中に空間的
に分散された形で維持されることにより、熔融硝子中に
溶解しているガスがこの微小気泡中へ拡散放出され製品
化に向う熔融硝子のガス濃度が低下し、製品の泡品質の
改善が達成される。
As a result, in terms of promoting the homogenization of the glass substrate by stirring and mixing the glass substrate in the conventional bubbler system, not only can a much higher stirring effect be obtained compared to the conventional method, but also the S puller according to the present invention In the melt clearing region that exerts its function, a large area of the inner surface of the microbubbles is maintained in a spatially dispersed form in the molten glass, so that the gas dissolved in the molten glass is The gas concentration of the molten glass that is diffused into microbubbles and processed into products is reduced, and the foam quality of the product is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例に使用される装置の全体
の説明図、第2図は上記装置におけるバブリング管上端
付近の縦断面図、第3図は上記第一の実施例において浮
上した気泡の説明図、第4図は本発明の第二の実施例に
使用される装置の要部の縦断面図、第5図は上記第二の
実施例における気泡の移動・浮上を示す説明図、第6図
は本発明の第三の実施例に使用される装置の要部の縦断
面図である。 1・・・熔解槽底部敷瓦、  2・・・熔融硝子。 3・・・バブラー管、     3a・・・噴出口。 5・・・微小硝子片を懸濁した固気混合ガス。 6・・・気泡、      9・・・気泡内表面の微細
凹凸面。 10・・・熔融硝子の自由上表面。 代理人  弁理士 坂 間   暁 外2名 箆2図 第1図 箆4図 稟5図 手 続 補 書(自発) 昭和63年11月
FIG. 1 is an explanatory diagram of the entire apparatus used in the first embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view of the vicinity of the upper end of the bubbling tube in the above-mentioned apparatus, and FIG. 3 is a diagram illustrating the apparatus in the first embodiment. An explanatory diagram of floating bubbles, FIG. 4 is a vertical cross-sectional view of the main part of the device used in the second embodiment of the present invention, and FIG. 5 shows the movement and floating of bubbles in the second embodiment. The explanatory drawing, FIG. 6, is a longitudinal sectional view of the main part of the apparatus used in the third embodiment of the present invention. 1... Melting tank bottom tile, 2... Molten glass. 3... Bubbler tube, 3a... Spout. 5...Solid-gas mixture in which minute glass pieces are suspended. 6...Bubble, 9...Fine uneven surface on the inner surface of the bubble. 10...Free upper surface of molten glass. Agent: Patent Attorney Akigai Sakama, 2 persons, Figure 1, Figure 4, Figure 5, Procedure Supplement (self-motivated), November 1988.

Claims (2)

【特許請求の範囲】[Claims] (1)硝子熔解槽の底部から同熔解槽内の熔融硝子中に
挿入された噴気管からガスを熔融硝子中に強制的に噴出
させることによって、熔融硝子中に気泡を発生させ、同
気泡の浮上によってバブリングを行なう熔融硝子の処理
方法において、上記噴気管から噴出されるガス中に熔融
硝子と同一成分を有する微小硝子片を予め懸濁させ、上
記気泡が噴気管より離脱して熔融硝子中の浮上を開始す
るまでに上記硝子微小片が気泡内表面に衝突融着して同
気泡内表面に多数の微細凹凸面を形成させることを特徴
とする熔融硝子の処理方法。
(1) Gas is forcibly ejected into the molten glass from the bottom of the glass melting tank through a blow tube inserted into the molten glass in the glass melting tank, thereby generating air bubbles in the molten glass. In a method for processing molten glass that involves bubbling by flotation, microscopic glass pieces having the same composition as the molten glass are suspended in advance in the gas ejected from the fumarole, and the bubbles are released from the fumarole and into the molten glass. A method for treating molten glass, characterized in that the glass particles collide and fuse with the inner surface of the bubble to form a large number of fine uneven surfaces on the inner surface of the bubble before the glass starts floating.
(2)噴気管からほぼ水平にガスを噴出させることを特
徴とする請求項1に記載の熔融硝子の処理方法。
(2) The method for treating molten glass according to claim 1, characterized in that the gas is ejected substantially horizontally from the fumarole pipe.
JP22976788A 1988-09-16 1988-09-16 Treatment of molten glass Pending JPH0280327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22976788A JPH0280327A (en) 1988-09-16 1988-09-16 Treatment of molten glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22976788A JPH0280327A (en) 1988-09-16 1988-09-16 Treatment of molten glass

Publications (1)

Publication Number Publication Date
JPH0280327A true JPH0280327A (en) 1990-03-20

Family

ID=16897355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22976788A Pending JPH0280327A (en) 1988-09-16 1988-09-16 Treatment of molten glass

Country Status (1)

Country Link
JP (1) JPH0280327A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269347A (en) * 2003-02-18 2004-09-30 Nippon Electric Glass Co Ltd Glass composition
JP2005053712A (en) * 2003-08-04 2005-03-03 Nippon Electric Glass Co Ltd Alkali-free glass
KR101011418B1 (en) * 2002-11-29 2011-01-28 니폰 덴키 가라스 가부시키가이샤 Glass melting furnace
WO2015193097A1 (en) * 2014-06-17 2015-12-23 Agc Glass Europe Gaseous fluid injection device
CN107531535B (en) * 2015-03-06 2020-08-21 康宁股份有限公司 Apparatus and method for conditioning molten glass

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101011418B1 (en) * 2002-11-29 2011-01-28 니폰 덴키 가라스 가부시키가이샤 Glass melting furnace
JP2004269347A (en) * 2003-02-18 2004-09-30 Nippon Electric Glass Co Ltd Glass composition
JP2005053712A (en) * 2003-08-04 2005-03-03 Nippon Electric Glass Co Ltd Alkali-free glass
US7582581B2 (en) 2003-08-04 2009-09-01 Nippon Electric Glass Co., Ltd. Alkali-free glass
WO2015193097A1 (en) * 2014-06-17 2015-12-23 Agc Glass Europe Gaseous fluid injection device
EP2957545A1 (en) * 2014-06-17 2015-12-23 AGC Glass Europe Device for injecting gaseous fluid
JP2017518953A (en) * 2014-06-17 2017-07-13 エージーシー グラス ユーロップAgc Glass Europe Gaseous fluid injection device
CN107531535B (en) * 2015-03-06 2020-08-21 康宁股份有限公司 Apparatus and method for conditioning molten glass

Similar Documents

Publication Publication Date Title
US5660614A (en) Gas treatment of molten metals
JP4198950B2 (en) Method for adjusting foam generated in vacuum clarification
CN100381377C (en) Clarifying device and method for centrifugally clarifying giass
US4426068A (en) Rotary gas dispersion device for the treatment of a bath of liquid metal
US4816056A (en) Heating and agitating method for multi-stage melting and refining of glass
JP4050311B2 (en) Gas treatment of molten metal
JPS6325226A (en) Foam control for vacuum clarification of glass material
JPH0364457B2 (en)
JPH06501746A (en) Jet flow device for injecting gas into molten metal
JPH0280327A (en) Treatment of molten glass
JP5161074B2 (en) Bubble formation in liquid such as molten glass
JPH0280328A (en) Treatment of molten glass
PL143335B1 (en) Method of producing metal powder and apparatus therefor
CN110438361B (en) Device and method for preparing foamed aluminum material by air blowing method
JPS607959B2 (en) Anaerobic digester equipment
JPH0563529B2 (en)
EP3935019A1 (en) A continuous glass melting tank with an immersed stirring body
CA2073706A1 (en) Apparatus and process for the refinement of molten metal
RU2238990C1 (en) Device for degassing and refining melts of metals and their alloys (versions)
CN117660792B (en) Metal smelting composite stirring degassing device
JPH02301526A (en) Method and device for generating fine bubble in molten metal
RU30751U1 (en) Device for degassing and refining molten metals and their alloys (options)
JPH07238312A (en) Production of ultra low carbon steel and vacuum degassing equipment
JPH08199220A (en) Blowing method by top blowing converter and top blowing lance used therewith
CN117660792A (en) Metal smelting composite stirring degassing device