JPH0278926A - Pressure detector - Google Patents

Pressure detector

Info

Publication number
JPH0278926A
JPH0278926A JP23068088A JP23068088A JPH0278926A JP H0278926 A JPH0278926 A JP H0278926A JP 23068088 A JP23068088 A JP 23068088A JP 23068088 A JP23068088 A JP 23068088A JP H0278926 A JPH0278926 A JP H0278926A
Authority
JP
Japan
Prior art keywords
pressure
voltage
displacement
output
hall element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23068088A
Other languages
Japanese (ja)
Inventor
Takuji Tsuda
津田 卓爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP23068088A priority Critical patent/JPH0278926A/en
Publication of JPH0278926A publication Critical patent/JPH0278926A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

PURPOSE:To detect fine pressure with high accuracy by providing a displacement quantity detecting means in a device main body and detecting the quantity of displacement of a pressure sensing elastic body in terms of magnetic flux density, and providing a signal output circuit which leads out the output of said displacement quantity detecting means as an output voltage corresponding to pressure. CONSTITUTION:When air M is sent into the passage 6 of the device main body 1, a bellows 8 extends and deforms according to its pressure, so a magnet 10 is displaced upward in response to that. The gap G formed with a Hall element 11 varies owing to the upward displacement of the magnet 10, and consequently the magnetic flux density of a magnetic field to the Hall element 11 varies, so that the Hall element 11 varies in the level of a voltage generated at right angles to a current. An arithmetic circuit 20 extracts the voltage of the difference between the voltage and a reference voltage and the difference voltage is amplified by a DC amplifying circuit 21. Consequently, the output voltage corresponding to the pressure is generated between a couple of output terminals 22 and 23 and used for the control signal of, for example, an air blower controller.

Description

【発明の詳細な説明】 〈発明の分野〉 この発明は気体ないしは液体等の流体の圧力を検出して
機器の制御の用に供される圧力検出装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a pressure detection device used for controlling equipment by detecting the pressure of a fluid such as gas or liquid.

〈従来技術と課題〉 たとえば、空調システム等においては、送風機からの送
風圧を検出して各室の送風量を一定にコントロールする
構成が採られるが、システムの規模により微小圧の高精
度の検出が要求される場合がある。
<Prior art and issues> For example, in air conditioning systems, etc., a configuration is adopted that detects the air blowing pressure from a blower and controls the amount of air blowing to each room at a constant level, but depending on the scale of the system, it is difficult to detect minute pressures with high accuracy may be required.

従来のこの種装置として、シリコンダイヤフラムの主面
に拡散抵抗体による歪ゲージを形成し、圧力によるシリ
コンダイヤプラムの変形を抵抗値変化として取り出すよ
うにした半導体拡散抵抗膨圧カセンサがある。これは、
シリコンダイヤフラムのばね定数が一定で大きく、大気
圧よりも比較的大きい圧力レベルの検出には有効である
が、数mm820程度の大気圧近傍レベルの微小圧の検
出には精度が悪く、対応しにくいものである。微小圧を
検出できるようにしようとすれば、シリコンダイヤフラ
ムを構成する高価なチップを大形にしなければならず、
コストの大幅な上昇は避けられず、非現実的である。
As a conventional device of this type, there is a semiconductor diffused resistor turgor pressure sensor in which a strain gauge made of a diffused resistor is formed on the main surface of a silicon diaphragm, and deformation of the silicon diaphragm due to pressure is detected as a change in resistance value. this is,
The spring constant of the silicon diaphragm is constant and large, and it is effective in detecting pressure levels that are relatively higher than atmospheric pressure, but it has poor accuracy and is difficult to detect minute pressures at a level near atmospheric pressure of several mm 820. It is something. In order to be able to detect minute pressures, the expensive chip that makes up the silicon diaphragm must be made larger.
Significant increases in costs are unavoidable and unrealistic.

また、管内圧力の変化を管体の形状変化から検出するブ
ルドン管でも、当然、上記微小圧の高精度の検出に対応
することは不可能である。
Further, even with a Bourdon tube that detects changes in the pressure inside the tube from changes in the shape of the tube, it is naturally impossible to cope with the highly accurate detection of the above-mentioned minute pressure.

〈発明の目的〉 この発明は上記従来のものの問題点を解消するためにな
されたもので、微小圧の検出の高精度化を容易に達成し
得る圧力検出装置を提供することを目的としている。
<Objective of the Invention> The present invention has been made in order to solve the problems of the conventional devices described above, and an object of the present invention is to provide a pressure detection device that can easily achieve high accuracy in detecting minute pressures.

〈発明の構成と効果〉 この発明に係る圧力検出装置は、流体が取り入れられる
通路をもった装置本体内に、流体の圧力に応じて弾性変
形する感圧弾性体を設置し、上記感圧弾性体の変位量を
磁束密度ないしは光量変化に変えて検出する変位量検出
手段を上記装置本体内に配設して、上記変位量検出手段
からの出力を信号出力回路により、上記圧力に対応する
出力電圧として取り出すようにしたものである。
<Structure and Effects of the Invention> The pressure detection device according to the present invention includes a pressure-sensitive elastic body that is elastically deformed according to the pressure of the fluid, installed in a device main body having a passage through which fluid is taken in, and Displacement detection means for detecting the displacement of the body by converting it into a change in magnetic flux density or light intensity is disposed in the device main body, and the output from the displacement detection means is outputted by a signal output circuit corresponding to the pressure. It is designed to be extracted as voltage.

この発明によれば、感圧弾性体の変位量を、たとえばマ
グネットと磁電変換素子を用いて大きな磁束密度の変化
に変えられるため、高価な材料や特殊部品を採用するこ
となく、微小圧の検出が容易に実現でき、しかも上記感
圧弾性体の材料選択等によるばね定数を変えるだけで、
検出精度が高められ、とくに感圧弾性体の変位量を摩擦
なしで取り出すことができ、動作性の安定化を図ること
ができる。
According to this invention, the amount of displacement of the pressure-sensitive elastic body can be changed into a large change in magnetic flux density using, for example, a magnet and a magnetoelectric transducer, so minute pressure can be detected without using expensive materials or special parts. can be easily realized by simply changing the spring constant by selecting the material of the pressure-sensitive elastic body, etc.
Detection accuracy is improved, and in particular, the amount of displacement of the pressure-sensitive elastic body can be detected without friction, and operability can be stabilized.

〈実施例の説明〉 以下、この発明の一実施例を図面にしたがって説明する
<Description of Embodiment> An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明に係る圧力検出装置の一例を示す断面
である。
FIG. 1 is a cross-sectional view showing an example of a pressure detection device according to the present invention.

同図において、lは金属ないしは合成樹脂等からなる装
置本体で、この装置本体1は、たとえば上ケース2とこ
の上ケース2の下面側に嵌着された下ケース3と、上ケ
ース2に形成された凹所4の開口を閉塞するカバー5と
からなり、上記下ケース3には、流体、たとえば空気M
を取り入れる通路6が側面から上面にかけて形成されて
いる。
In the figure, l is a device main body made of metal or synthetic resin, etc., and the device main body 1 consists of, for example, an upper case 2, a lower case 3 fitted to the lower surface of the upper case 2, and a structure formed in the upper case 2. and a cover 5 that closes the opening of the recess 4, and the lower case 3 is filled with a fluid such as air M
A passage 6 for taking in the water is formed from the side surface to the top surface.

7は上記通路6に対応して上記上ケース2に形成された
空所である。
7 is a space formed in the upper case 2 corresponding to the passage 6.

8は上記空所7内に配置されて上記空気Mの圧力によっ
て弾性変形する感圧弾性体、たとえば銅製基材の両側面
にニッケルの薄膜を形成してなるベローズであり、その
下端周縁部8aは上ケース2の下端側に形成された切欠
部9に嵌入されて下ケース3の上面との間で挟着会固定
されている。
Reference numeral 8 denotes a pressure-sensitive elastic body disposed in the space 7 and elastically deformed by the pressure of the air M, such as a bellows made of a copper base material with thin nickel films formed on both sides thereof, and a lower peripheral edge 8a thereof. is fitted into a notch 9 formed on the lower end side of the upper case 2 and fixed to the upper surface of the lower case 3 with a clamp.

上記ベローズ8の主面8bの中央には、ベローズ8の伸
縮変形に応動する磁性部材、たとえばマグネツ)10が
接着剤等で固定されている。11はマグネツ)10の上
面にギャップGを存して対向配設された磁電変換素子、
たとえばホール素子であり、ベローズ8の変位量は、上
記マグネット10とホール素子11との間のギャップG
の変化にともなう磁束密度の変化に置換されるようにな
っている。すなわち、上記ホール素子11はマグネット
10とで感圧弾性体8の変位量検出手段12を構成して
いる。13は上記ホール素子11が装着された第1のプ
リント配線基板であり、後述する第2のプリント配線基
板に吊持部材14A、14Bを介して取り付けられてい
る。
At the center of the main surface 8b of the bellows 8, a magnetic member (for example, a magnet) 10 that responds to the expansion and contraction deformation of the bellows 8 is fixed with an adhesive or the like. 11 is a magnet) 10 magneto-electric conversion elements are arranged facing each other with a gap G on the upper surface;
For example, it is a Hall element, and the amount of displacement of the bellows 8 is determined by the gap G between the magnet 10 and the Hall element 11.
This is replaced by a change in magnetic flux density due to a change in . That is, the Hall element 11 and the magnet 10 constitute a displacement detection means 12 for the pressure-sensitive elastic body 8 . Reference numeral 13 denotes a first printed wiring board on which the Hall element 11 is mounted, and is attached to a second printed wiring board, which will be described later, via hanging members 14A and 14B.

15は第2のプリント配線基板であり、上記凹所4の内
壁に形成された段部16.17に支承されており、−側
面には、第2図に示す信号出力回路18を構成する回路
素子19が装着されている。上記信号出力回路18は、
たとえば第2図に示すように上記磁束密度の変化による
ホール素子11の出力変化を検出する演算回路20と、
この演算回路20からの出力を増幅する直流増幅回路2
1とを有し、直流増幅回路21の出力は1対の出力端子
22.23に、圧力に応じた出力電圧として取り出され
るようになっている。24は歪ゲージ14に一定の電圧
を供給する定電圧回路。
Reference numeral 15 designates a second printed wiring board, which is supported by a stepped portion 16.17 formed on the inner wall of the recess 4, and a circuit constituting the signal output circuit 18 shown in FIG. 2 is mounted on the side surface. Element 19 is attached. The signal output circuit 18 is
For example, as shown in FIG. 2, an arithmetic circuit 20 that detects a change in the output of the Hall element 11 due to a change in the magnetic flux density;
DC amplifier circuit 2 that amplifies the output from this arithmetic circuit 20
1, and the output of the DC amplifier circuit 21 is taken out to a pair of output terminals 22 and 23 as an output voltage corresponding to the pressure. 24 is a constant voltage circuit that supplies a constant voltage to the strain gauge 14;

25は電源端子、26.27は演算回路20の基準電圧
設定用の抵抗体である。
25 is a power supply terminal, and 26 and 27 are resistors for setting the reference voltage of the arithmetic circuit 20.

なお、第1図中、28はプリント配線基板15に接続さ
れた信号送出用のケーブル、29は上記通路6の入口ポ
ー)6aに形成されて空気供給管用ジヨイント(図示せ
ず)が螺合して結合されるねじ部である。
In FIG. 1, 28 is a signal sending cable connected to the printed wiring board 15, and 29 is formed at the entrance port 6a of the passage 6, into which an air supply pipe joint (not shown) is screwed. It is a threaded part that is connected by

つぎに、上記構成の動作について説明する。Next, the operation of the above configuration will be explained.

装置本体lの通路6に空気Mが取り込まれると、その圧
力に応じてベローズ8が伸張変形するため、マグネツ)
10もこれに応動して上方へ変位する。マグネット10
の上方変位により、ホール素子11との間のギャップG
が変化し、このため、ホール素子11に対する磁界の磁
束密度が変化し、ホール素子11には、電流と直交方向
に発生する電圧Vlが変化する。演算回路20により、
上記電圧Vlと基準電圧v2との差の電圧が取り出され
た後、直流増幅回路21で増幅される。すなわち、この
結果、1対の出力端子22゜23間には、第3図に示す
特性にしたがって圧力に応じた出力電圧が生起し、これ
は、たとえば送風機コントローラ(図示せず)の制御信
号に用いられる。
When air M is taken into the passage 6 of the device main body l, the bellows 8 expands and deforms according to the pressure, so the magnet)
10 is also displaced upward in response to this. magnet 10
Due to the upward displacement of G, the gap G between the Hall element 11 and
As a result, the magnetic flux density of the magnetic field to the Hall element 11 changes, and the voltage Vl generated in the Hall element 11 in a direction orthogonal to the current changes. By the arithmetic circuit 20,
After the voltage difference between the voltage Vl and the reference voltage v2 is extracted, it is amplified by the DC amplifier circuit 21. That is, as a result, an output voltage corresponding to the pressure is generated between the pair of output terminals 22 and 23 according to the characteristics shown in FIG. used.

ここで、空気Mの圧力を受けたベローズ8の変位量をマ
グネット10とホール素子11とにより、大きな磁束密
度の変化に置換して検出するようにしたから、構成も比
較的簡単であるうえ、数mmH二〇程度の微小圧の検出
に容易に対応でき、しかも、従来のシリコンダイヤフラ
ム等を用いるものに比して安価に得ることができる。
Here, since the amount of displacement of the bellows 8 subjected to the pressure of the air M is detected by replacing it with a large change in magnetic flux density using the magnet 10 and the Hall element 11, the configuration is relatively simple, and It can easily cope with the detection of minute pressures of about several mmH20, and moreover, it can be obtained at a lower cost than those using conventional silicon diaphragms or the like.

また、上記ベローズ8の材質等の選択によりばね定数を
変えるだけで、検出レンジを調整でき、高・精度の検出
が可能となる。
Further, by simply changing the spring constant by selecting the material of the bellows 8, the detection range can be adjusted, and high precision detection can be achieved.

さらに、上記ベローズ8に設けたマグネット10とホー
ル素子11との間は無接触状態のため1両者io、tt
間の摩擦もなく、したがって、検出動作の安定化が確保
される。
Furthermore, since there is no contact between the magnet 10 provided on the bellows 8 and the Hall element 11, both io, tt
There is no friction between the two, thus ensuring a stable detection operation.

勿論、上記ホール素子11に限らず、他の磁電変換素子
であってもよい。
Of course, the present invention is not limited to the Hall element 11 described above, and other magnetoelectric conversion elements may be used.

また、上記ベローズ8の変位量を検出する手段12は、
上記のものに限らず、差動トランスを使用するものや、
光学的手段の介在により、受光量を変えるもの等、他の
構成を採ることも可能である。
Further, the means 12 for detecting the amount of displacement of the bellows 8 includes:
Not limited to the above, those that use a differential transformer,
It is also possible to adopt other configurations, such as one in which the amount of received light is changed by intervening optical means.

さらに、上記実施例では、感圧弾性体としてベローズ8
を用いたものであるが、ダイヤフラム等の他の感圧弾性
体であっても同様の効果を奏することができる。
Furthermore, in the above embodiment, the bellows 8 is used as the pressure sensitive elastic body.
However, similar effects can be achieved using other pressure-sensitive elastic bodies such as diaphragms.

さらにまた、上記実施例では、空気の気体圧力を検出す
るもので説明したが、液体等の他の流体の圧力を検出す
るものにも適用可能である。
Furthermore, although the above embodiments have been described for detecting the gas pressure of air, the present invention can also be applied to detecting the pressure of other fluids such as liquids.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る圧力検出装置の一例を示す断面
図、第2図は同装置における歪ゲージの出力を取り出す
ための信号出力回路等を示すブロック図、第3図は圧力
と出力電圧との関係を示す特性図である。 1・・・装置本体、8・・・感圧弾性体、12・・・変
位量検出手段、18・・・信号出力回路、M・・・流体
。 第1図 M:i(、$。
Fig. 1 is a sectional view showing an example of a pressure detection device according to the present invention, Fig. 2 is a block diagram showing a signal output circuit etc. for extracting the output of a strain gauge in the same device, and Fig. 3 shows pressure and output voltage. FIG. DESCRIPTION OF SYMBOLS 1... Apparatus body, 8... Pressure-sensitive elastic body, 12... Displacement detection means, 18... Signal output circuit, M... Fluid. Figure 1 M:i(, $.

Claims (1)

【特許請求の範囲】[Claims] (1)流体が取り入れられる通路をもつた装置本体と、
上記装置本体内に設置されて上記流体の圧力に応じて弾
性変形する感圧弾性体と、上記装置本体内に配設されて
上記感圧弾性体の変位量を磁束密度ないしは光量変化に
変えて検出する変位量検出手段と、上記変位量検出手段
からの出力を上記圧力に対応する出力電圧として取り出
す信号出力回路とを具備したことを特徴とする圧力検出
装置。
(1) A device body having a passage through which fluid is taken in;
A pressure-sensitive elastic body is installed in the device body and elastically deforms according to the pressure of the fluid; A pressure detection device comprising: a displacement amount detection means for detecting the displacement amount; and a signal output circuit for taking out an output from the displacement amount detection means as an output voltage corresponding to the pressure.
JP23068088A 1988-09-14 1988-09-14 Pressure detector Pending JPH0278926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23068088A JPH0278926A (en) 1988-09-14 1988-09-14 Pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23068088A JPH0278926A (en) 1988-09-14 1988-09-14 Pressure detector

Publications (1)

Publication Number Publication Date
JPH0278926A true JPH0278926A (en) 1990-03-19

Family

ID=16911626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23068088A Pending JPH0278926A (en) 1988-09-14 1988-09-14 Pressure detector

Country Status (1)

Country Link
JP (1) JPH0278926A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104545U (en) * 1991-02-19 1992-09-09 矢崎総業株式会社 electric oil pressure sensor
US5633707A (en) * 1993-05-18 1997-05-27 Seemann; Henry R. Method for non-destructive inspection of an aircraft
US6880405B2 (en) * 2002-12-30 2005-04-19 Pti Technologies, Inc. Electrical/visual differential pressure indicator with solid state sensor
FR2889872A1 (en) * 2005-08-19 2007-02-23 Otto Egelhof Gmbh & Co Kg TEMPERATURE SENSOR
US11275281B2 (en) 2018-06-29 2022-03-15 Panasonic Intellectual Property Management Co., Ltd. Display, display system, image projection system, and movable object

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104545U (en) * 1991-02-19 1992-09-09 矢崎総業株式会社 electric oil pressure sensor
US5633707A (en) * 1993-05-18 1997-05-27 Seemann; Henry R. Method for non-destructive inspection of an aircraft
US6880405B2 (en) * 2002-12-30 2005-04-19 Pti Technologies, Inc. Electrical/visual differential pressure indicator with solid state sensor
FR2889872A1 (en) * 2005-08-19 2007-02-23 Otto Egelhof Gmbh & Co Kg TEMPERATURE SENSOR
US11275281B2 (en) 2018-06-29 2022-03-15 Panasonic Intellectual Property Management Co., Ltd. Display, display system, image projection system, and movable object
US11709401B2 (en) 2018-06-29 2023-07-25 Panasonic Intellectual Property Management Co., Ltd. Display, display system, image projection system, and movable object
US11709400B2 (en) 2018-06-29 2023-07-25 Panasonic Intellectual Property Management Co., Ltd. Display, display system, image projection system, and movable object
US11726374B2 (en) 2018-06-29 2023-08-15 Panasonic Intellectual Property Management Co., Ltd. Display, display system, image projection system, and movable object
US11733570B2 (en) 2018-06-29 2023-08-22 Panasonic Intellectual Property Management Co., Ltd. Display, display system, image projection system, and movable object
US11740517B2 (en) 2018-06-29 2023-08-29 Panasonic Intellectual Property Management Co., Ltd. Display, display system, image projection system, and movable object
US11754890B2 (en) 2018-06-29 2023-09-12 Panasonic Intellectual Property Management Co., Ltd. Display, display system, image projection system, and movable object
US11768410B2 (en) 2018-06-29 2023-09-26 Panasonic Intellectual Property Management Co., Ltd. Display, display system, image projection system, and movable object
US11768411B2 (en) 2018-06-29 2023-09-26 Panasonic Intellectual Property Management Co., Ltd. Display, display system, image projection system, and movable object
US11789324B2 (en) 2018-06-29 2023-10-17 Panasonic Intellectual Property Management Co., Ltd. Display, display system, image projection system, and movable object

Similar Documents

Publication Publication Date Title
JP3182807B2 (en) Multifunctional fluid measurement transmission device and fluid volume measurement control system using the same
US7493823B2 (en) Pressure transducer with differential amplifier
CA2535158C (en) Flow sensor and fire detection system utilizing same
US5763787A (en) Carrier assembly for fluid sensor
US6901794B2 (en) Multiple technology flow sensor
JPH04102441U (en) pressure gauge
US5528940A (en) Process condition detecting apparatus and semiconductor sensor condition detecting circuit
JPH04232436A (en) Automatic transducer selecting system for measuring pressure
JPH0278926A (en) Pressure detector
CA1045410A (en) Pulp density meter
JP3470129B2 (en) Pressure sensor using hall element and method of assembling the same
JPH0278924A (en) Pressure detector
US3869920A (en) Symmetrically arranged, deflection type differential pressure transmitters for controlling industrial systems and processes
JPH10197316A (en) Density correction-type liquid level detecting device
US6425291B1 (en) Relative-pressure sensor having a gas-filled bellows
JPS58117433A (en) Pressure measuring device
KR102498987B1 (en) Load detection device
JPH0392687A (en) Motion confirming mechanism fop direction control valve
US3331248A (en) Differential pressure sensor
JPH085435A (en) Gas meter
SE9601581D0 (en) Device for differential pressure measurement
US3383912A (en) Force measuring apparatus
JPS601399Y2 (en) Pipe pressure sensor
SU741075A1 (en) Semiconductor pressure sensor
JPH09113325A (en) Semiconductor flowmeter