JPH0392687A - Motion confirming mechanism fop direction control valve - Google Patents

Motion confirming mechanism fop direction control valve

Info

Publication number
JPH0392687A
JPH0392687A JP23066589A JP23066589A JPH0392687A JP H0392687 A JPH0392687 A JP H0392687A JP 23066589 A JP23066589 A JP 23066589A JP 23066589 A JP23066589 A JP 23066589A JP H0392687 A JPH0392687 A JP H0392687A
Authority
JP
Japan
Prior art keywords
control valve
flow
direction control
directional control
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23066589A
Other languages
Japanese (ja)
Inventor
Katsumi Nakayama
中山 勝己
Keiichi Minegishi
峯岸 敬一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMC Corp
Original Assignee
SMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMC Corp filed Critical SMC Corp
Priority to JP23066589A priority Critical patent/JPH0392687A/en
Publication of JPH0392687A publication Critical patent/JPH0392687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indication Of The Valve Opening Or Closing Status (AREA)

Abstract

PURPOSE:To facilitate confirmation of the motion of a flow by a method wherein a sensor having a detecting element to detect the presence of the flow of fluid is disposed between a direction control valve in an air pressure circuit and a drive device driven by the direction control valve. CONSTITUTION:A sensor 1 is disposed in a piping 2 with which a flow passage running between a direction control valve and a drive device driven by the direction control valve is formed. A detecting element 3 of the sensor 1 is formed of a resistance type temperature sensitive element, and is secured in a holder 4, formed of a material having excellent chemical resistance, by means of a securing material 5 having excellent thermal conductivity and insulating ability. A holder 4 is inserted in a screwing-in manner into the piping and secured by means of a nut 6, and the element 3 is caused to front on a flow passage in the piping 2. When air is fed in the piping 2 and the flow of air is generated, an amount of heat radiated through the holder 4 and the securing material 5 is increased, resulting in the change of the resistance value of the element 3. The change of the resistance value is measured to detect the presence of the flow of air.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、空気圧回路における方向制御弁の動作、即ち
、方向制御弁の下流における空気の流れの有無、流速、
流量等を確認するための動作確認機構に関するものであ
る。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to the operation of a directional control valve in a pneumatic circuit, that is, the presence or absence of air flow downstream of the directional control valve, the flow rate,
This relates to an operation confirmation mechanism for confirming flow rate, etc.

[従来の技術] 最近の自動化ラインにおける空気圧回路は、方向制御弁
やシリンダなどの小型化に伴い、高密度に設計すること
が多くなっている。このような空気圧回路は非常に複雑
になるため、保守管理の上でそれぞれの構成機器の動作
確認が必要になっている。
[Prior Art] Pneumatic circuits in recent automated lines are often designed with high density as directional control valves, cylinders, etc. become smaller. Since such pneumatic circuits are extremely complex, it is necessary to check the operation of each component for maintenance management.

上記動作確認のための手段として、シリンダ等のアクチ
ュエー夕については、磁気センサが多用され、比較的問
題なくその動作確認が行われているが、方向制御弁につ
いては十分に満足できるものが提案されていない。
As a means of confirming the above-mentioned operation, magnetic sensors are often used for actuators such as cylinders, and their operation has been confirmed without any problems. However, for directional control valves, a fully satisfactory method has not been proposed. Not yet.

例えば、シリコンチップ等による半導体式スイッチは、
高感度ではあるが構造が複雑で、小型化が困難であり、
また、リードスイッヂ、ダイヤフラム式スイッチも小型
化が誼しく、いずれもこの目的には利用が困難である。
For example, a semiconductor switch using a silicon chip, etc.
Although it has high sensitivity, the structure is complex and it is difficult to miniaturize.
Furthermore, reed switches and diaphragm switches are also difficult to miniaturize, making them difficult to use for this purpose.

[発明が解決しようとする課題] 方向制御弁の動作確認のための手段に対して要求される
機能としては、基本的に、その確認出力が各種制御のた
めの電気的信号として得られること、弁体やその弁操作
部自体の動きではなく、それらの故障をも考慮して、出
力側における流体の流れ自体についての検出を行うこと
、などが必要である。しかも、上述の高密度化に伴い、
最近では方向制御弁のマニホールド化が進んでおり、こ
れらに対応できるような、小型高寿命で、構造や取付け
が簡単な動作確認機構が必要になっている。
[Problems to be Solved by the Invention] The functions required of a means for confirming the operation of a directional control valve are basically that its confirmation output can be obtained as an electrical signal for various controls; It is necessary to detect the fluid flow itself on the output side, taking into account not only the movement of the valve element or its valve operating part itself, but also their failure. Moreover, with the increase in density mentioned above,
Recently, directional control valves have become increasingly manifold-based, and there is a need for an operation confirmation mechanism that is compact, long-life, and easy to structure and install.

本発明の技術的課題は、このような要求を満たず方向制
御弁の動作確認機構を得ることにある。
A technical object of the present invention is to obtain an operation confirmation mechanism for a directional control valve that does not satisfy such requirements.

[課題を解決するための手段] 上記課題を解決するための本発明の動作確認機横は、空
気圧回路における方向制御弁とそれによって駆動制御さ
れる駆動機器との間に、流体の流れの有無を検出する検
出素子を備えたセンサを配設してなり、上記検出素子を
抵抗式感温素子によって構成したことを特徴とずるちの
である。
[Means for Solving the Problems] In order to solve the above problems, the operation check machine of the present invention is designed to check whether or not there is a fluid flow between a directional control valve in a pneumatic circuit and a drive device driven and controlled thereby. It is characterized in that a sensor is provided with a detection element for detecting the temperature, and the detection element is constituted by a resistance type temperature sensing element.

上記センサは、方向制御弁の弁本体に取{1(つるこど
もでき、その場合には、方向制御弁の弁本体に、弁体に
よって開閉される弁座を設け、この弁座の出力側におい
て弁本体に取イ11けられる。
The above sensor is attached to the valve body of the directional control valve. 11 is attached to the valve body.

[作 用1 抵抗式感温素子からなる検出素子は、一定電流の供給に
より発熱し、発熱量と熱放散量が平衡状態で安定するが
、周囲の空気の流れによる対流の発生によって熱放散量
が大きくなり、平衡状態での温度が変化する。一方、感
温素子は温度によって抵抗値が異り、従って感温素子の
抵抗値を測定することにより、流体の流れの有黒、ひい
ては流速、流はを検出することができる。
[Function 1] A detection element consisting of a resistance type thermosensor generates heat when a constant current is supplied, and the amount of heat generated and the amount of heat dissipation are stable in an equilibrium state, but the amount of heat dissipated is increases, and the temperature at equilibrium changes. On the other hand, the resistance value of a temperature sensing element varies depending on the temperature, and therefore, by measuring the resistance value of the temperature sensing element, it is possible to detect the presence or absence of a fluid flow, as well as the flow velocity and flow.

また、特に上記流体の流れの検出に抵抗式感温素子を用
いているため、小型高寿命で、構造や取付けが簡単な動
作確認機構を得ることが可能になる。
In addition, since a resistance type temperature sensing element is used particularly for detecting the flow of the fluid, it is possible to obtain an operation confirmation mechanism that is small, has a long life, and is simple in structure and installation.

[実施例] 第1図は、本発明に係る動作確認機構の基本的な構成を
例示するものである。
[Example] FIG. 1 illustrates the basic configuration of an operation confirmation mechanism according to the present invention.

この動作確認機構は、空気圧回路における方向制御弁の
動作を、その方向制御弁の下流における空気の流れの有
無、流速、流量等の検出によって確認するちのであり、
その検出のためのセンサ1は、方向制御弁とそれによっ
て駆動制御される駆動機器との間の流路を形成する配管
2中に配設している。
This operation confirmation mechanism confirms the operation of the directional control valve in the pneumatic circuit by detecting the presence or absence of air flow downstream of the directional control valve, the flow velocity, the flow rate, etc.
A sensor 1 for this detection is disposed in a pipe 2 that forms a flow path between the directional control valve and a driving device controlled by the directional control valve.

−ヒ記センサlにおける検出素子3は、抵抗式感温素子
により形成したもので、それを耐薬性に優れた材料から
成るホルダー4の内部に、熱伝導性及び絶縁性に優れた
固定材料5により固定し、そのホルダー4を配管2に螺
挿してナッ1・6で固定し、検出素子3を配管2内の流
路中に臨ませている。
- The detection element 3 in the sensor 1 is formed of a resistance type temperature sensing element, and it is placed inside a holder 4 made of a material with excellent chemical resistance, and a fixing material 5 with excellent thermal conductivity and insulation properties. The holder 4 is screwed into the pipe 2 and fixed with nuts 1 and 6, so that the detection element 3 faces into the flow path inside the pipe 2.

上記検出素子3を構賎する抵抗式感温素子としては、N
TCサーミスタ、PTCサーミスタ、あるいは白金抵抗
体のいずれかを用いるのが望ましい。これらは、構造が
極めて簡単で小型であり、空気圧回路の動作確認用とし
て最適なものである。
As the resistance type temperature sensing element that constitutes the detection element 3, N
It is desirable to use either a TC thermistor, a PTC thermistor, or a platinum resistor. These are extremely simple and compact in structure and are ideal for checking the operation of pneumatic circuits.

上記構成を有する動作確認機構においては、検出素子3
に空気中で一定電流を供給すると、その抵抗値の大小に
応じて発熱し、発熱量と熱放散量が平衡する状態で安定
する。この際、感温素子からの熱放散量は、輻射、対流
現象等によって異なるが、特に周囲の空気の流れによる
対流の発生によって熱放散量が変動し、それに伴って発
熱量と熱放散量が平衡状態になる温度が変化する。
In the operation confirmation mechanism having the above configuration, the detection element 3
When a constant current is supplied to the device in air, it generates heat depending on its resistance value, and stabilizes in a state where the amount of heat generated and the amount of heat dissipation are balanced. At this time, the amount of heat dissipated from the temperature-sensitive element varies depending on radiation, convection, etc., but in particular, the amount of heat dissipated changes due to the occurrence of convection due to the flow of the surrounding air, and accordingly, the amount of heat generated and the amount of heat dissipated change. The temperature at which equilibrium is reached changes.

一方、この感温素子は温度によって抵抗値が異なること
か知られている。従って、空気中で一定電流を供給しな
がら素子の抵抗値を測定すると、通電後、抵抗値が徐々
に変化し、やかて一定イ―に達ずる。
On the other hand, it is known that the resistance value of this temperature-sensitive element varies depending on the temperature. Therefore, when measuring the resistance value of an element while supplying a constant current in the air, the resistance value gradually changes after the current is applied and soon reaches a constant value.

このような感温素子をヒ述した配管2中に配置し、力向
制御弁によってその配管2に空気か供給されて、空気の
流れか発生ずると、ホルダー4及び固定材料5を通して
放散するQ fJか多くなり、それによって検出素子3
の抵抗値が変化する。そこで、感温素子の抵抗値を測定
することにより、空気の流れの有焦、ひいては流速、流
量を検出することができる。
Such a temperature sensing element is placed in the piping 2 described above, and when air is supplied to the piping 2 by the force direction control valve and an air flow is generated, Q dissipates through the holder 4 and the fixing material 5. fJ increases, thereby detecting element 3
resistance value changes. Therefore, by measuring the resistance value of the temperature sensing element, it is possible to detect the focus of the air flow, as well as the flow velocity and flow rate.

[3 第2図Aは、上記検出素子としてNTCサーミスタを用
い、その検出素子の部分に空気の流れを発生させたとき
の配管内の圧力の出力波形であハ リ、同図Bはこの圧力の変化に伴って変化する検出素子
の出力波形である。同図Cには、検出素子3として−上
記NTCサーミスタを用いた場合の測定回路図を示して
いる。
[3 Figure 2A shows the output waveform of the pressure inside the piping when an NTC thermistor is used as the detection element and air flow is generated in the detection element, and Figure 2B shows the output waveform of the pressure in the pipe. This is the output waveform of the detection element that changes with the change. FIG. 3C shows a measurement circuit diagram when the above-mentioned NTC thermistor is used as the detection element 3.

また、第31aA−Cは、検出素子3をPrCザーミス
タとした揚名の同様の波形及び測定回路図を示している
31aA-C show similar waveforms and measurement circuit diagrams using a PrC thermistor as the detection element 3.

このように、感温素子はその抵抗値変化を電圧または電
流に変換することが容易であるため、流れの有無を簡単
に電気的な信号として検知することができる。
In this manner, since the temperature sensing element can easily convert changes in its resistance value into voltage or current, the presence or absence of flow can be easily detected as an electrical signal.

さらに、流体の流れの大小によって感温素子の出力の大
きさが直線的に変化するため、流体の流速、流量ち検知
することができる。
Furthermore, since the magnitude of the output of the temperature sensing element changes linearly depending on the magnitude of the fluid flow, the flow velocity and flow rate of the fluid can be detected.

なお、他の抵抗式感温素子も、構造が簡単で小型化でき
る範囲内において利用することができ、それらによって
も、空気圧回路における同様の検出を行うことが可能で
ある。
Note that other resistance type temperature sensing elements can also be used within the range of simple structure and miniaturization, and similar detection in the pneumatic circuit can be performed using them as well.

上述した動作確認機構は、方向制御弁自体に内蔵させる
こどもできる。第4図は、その方向制御弁の構成を例示
するもので、その弁本休10には、ソレノイド1lで駆
動される弁体12により開閉される弁座13を設け、セ
ンサ1をこの弁座l3の出力側において弁本体10に取
付け、その検出素子3を弁本体10内の流路に臨ませて
いる。なお、センザ自体の構成は、先に説明した実施例
と変わるところがない。
The above-mentioned operation confirmation mechanism can be built into the directional control valve itself. FIG. 4 shows an example of the structure of the directional control valve.The valve main valve 10 is provided with a valve seat 13 that is opened and closed by a valve body 12 driven by a solenoid 1l, and the sensor 1 is attached to this valve seat. The detection element 3 is attached to the valve body 10 on the output side of the valve l3, and its detection element 3 faces the flow path within the valve body 10. Note that the configuration of the sensor itself is the same as that of the previously described embodiment.

方向制御弁をこのように構成すると、弁体l2の駆動に
伴って弁座13の出力側に流体の流れが発生したとき、
前述したように検出素子3の出力が変化し、方向制御弁
の動作確認が可能になる。
When the directional control valve is configured in this way, when a fluid flow occurs on the output side of the valve seat 13 as the valve body l2 is driven,
As described above, the output of the detection element 3 changes, making it possible to confirm the operation of the directional control valve.

なお、上記センザは、才ンーオフ的な動作を行う方向制
御弁ばかりでなく、比例的出力を得るような制御弁に対
しても適用することができる。
Note that the above sensor can be applied not only to directional control valves that perform on-off operations, but also to control valves that obtain a proportional output.

F発明の効果] 以上に詳述したように、本発明によれば、方向制御弁の
マ二ホールド化等に対応し、小型高寿命で、構造や取付
けが簡単な動作確認機構を得ることができ、それによっ
て、方向制御弁による流体の流れの動作確認を容易に行
うことが可能になり、機器の制御を確実、安定的に行う
ことができる。
F. Effects of the Invention] As detailed above, according to the present invention, it is possible to obtain an operation confirmation mechanism that is compact, long-life, and easy to structure and install, compatible with manifolding of directional control valves, etc. As a result, it becomes possible to easily check the operation of the fluid flow by the directional control valve, and the equipment can be controlled reliably and stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る動作確認機構の基本的な構成を例
示する要部断面図、第2図A,Bは検出素子としてNT
Cサーミスタを用た場合の配管内圧力、及びそれに対応
ずる検出素子出力の波形図、同図Cは上記NTCザーミ
スタを用いた場合の測定回路図、第3図A〜Cは検出素
子をPTCサーミスタとした場合の第2図A〜Cに対応
ずる波形図及び測定回路図、第4図は動作確認機構を内
蔵した方向制御弁の断面図である。 1 ・・センサ、   3 ・・検出素子、10・・弁
本体、   12・・弁体、13・・弁座。 第 2 図
FIG. 1 is a cross-sectional view of the main parts illustrating the basic configuration of the operation confirmation mechanism according to the present invention, and FIGS. 2A and B show NT as a detection element.
A waveform diagram of the pressure inside the pipe and the corresponding output of the detection element when a C thermistor is used, Figure C is a measurement circuit diagram when the above NTC thermistor is used, and Figures A to C are the detection element when the PTC thermistor is used. In this case, FIGS. 2A to 2C are waveform diagrams and measurement circuit diagrams, and FIG. 4 is a sectional view of a directional control valve incorporating an operation confirmation mechanism. 1...sensor, 3...detection element, 10...valve body, 12...valve body, 13...valve seat. Figure 2

Claims (1)

【特許請求の範囲】 1、空気圧回路における方向制御弁とそれによって駆動
制御される駆動機器との間に、流体の流れの有無を検出
する検出素子を備えたセンサを配設してなり、上記検出
素子を抵抗式感温素子によって構成したことを特徴とす
る方向制御弁の動作確認機構。 2、方向制御弁の弁本体に、弁体によって開閉される弁
座を設け、センサをこの弁座の出力側において弁本体に
取付けたことを特徴とする特許請求の範囲第1項記載の
方向制御弁の動作確認機構。
[Claims] 1. A sensor equipped with a detection element for detecting the presence or absence of fluid flow is disposed between the directional control valve in the pneumatic circuit and the drive device driven and controlled by the directional control valve, and the above-mentioned An operation confirmation mechanism for a directional control valve, characterized in that a detection element is constituted by a resistance type temperature sensing element. 2. The direction according to claim 1, characterized in that the valve body of the directional control valve is provided with a valve seat that is opened and closed by a valve body, and a sensor is attached to the valve body on the output side of the valve seat. Control valve operation confirmation mechanism.
JP23066589A 1989-09-06 1989-09-06 Motion confirming mechanism fop direction control valve Pending JPH0392687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23066589A JPH0392687A (en) 1989-09-06 1989-09-06 Motion confirming mechanism fop direction control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23066589A JPH0392687A (en) 1989-09-06 1989-09-06 Motion confirming mechanism fop direction control valve

Publications (1)

Publication Number Publication Date
JPH0392687A true JPH0392687A (en) 1991-04-17

Family

ID=16911379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23066589A Pending JPH0392687A (en) 1989-09-06 1989-09-06 Motion confirming mechanism fop direction control valve

Country Status (1)

Country Link
JP (1) JPH0392687A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4328879A1 (en) * 1993-08-27 1995-03-02 Ebro Armaturen Gebr Broeer Gmb Shut-off fitting
DE102008028500A1 (en) 2007-06-18 2009-01-02 Smc Corp. Two-way solenoid valve
DE102010037148A1 (en) * 2010-08-24 2012-03-01 Woco Industrietechnik Gmbh Multi-way valve and fluid circuit with such
CN103162006A (en) * 2011-12-08 2013-06-19 中国航空工业集团公司北京长城计量测试技术研究所 Manually-operated valve capable of intelligently identifying valve location
JP2014031861A (en) * 2012-08-06 2014-02-20 Ricoh Co Ltd Valve failure detection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4328879A1 (en) * 1993-08-27 1995-03-02 Ebro Armaturen Gebr Broeer Gmb Shut-off fitting
DE102008028500A1 (en) 2007-06-18 2009-01-02 Smc Corp. Two-way solenoid valve
US7959129B2 (en) 2007-06-18 2011-06-14 Smc Corporation Two-port solenoid valve
DE102008028500B4 (en) * 2007-06-18 2012-02-02 Smc Corp. Two-way solenoid valve
DE102010037148A1 (en) * 2010-08-24 2012-03-01 Woco Industrietechnik Gmbh Multi-way valve and fluid circuit with such
CN103162006A (en) * 2011-12-08 2013-06-19 中国航空工业集团公司北京长城计量测试技术研究所 Manually-operated valve capable of intelligently identifying valve location
JP2014031861A (en) * 2012-08-06 2014-02-20 Ricoh Co Ltd Valve failure detection device

Similar Documents

Publication Publication Date Title
US6023969A (en) Flow modulated mass flow sensor
US7467891B2 (en) Sensor arrangement for measuring a pressure and a temperature in a fluid
US7568835B2 (en) Temperature sensor
KR20030090485A (en) Chemically inert flow control with non-contaminating body
JP2007525622A (en) Diaphragm monitoring for flow control devices
EP1790964B1 (en) A sensor arrangement for measuring a pressure and a temperature in a fluid
JP4537067B2 (en) Apparatus and method for thermal management of mass flow controller
US6443003B1 (en) Thermoelectric air flow sensor
JP2002530635A (en) Position detection device
JPH0392687A (en) Motion confirming mechanism fop direction control valve
GB2138566A (en) Thermal mass flow sensor for fluids
JP2005514612A (en) Apparatus and method for thermal isolation of a thermal mass flow sensor
JP2005514614A (en) Apparatus and method for heat dissipation in a thermal mass flow sensor
GB2159631A (en) Fluid flow measurement
JPH02206738A (en) Semiconductor pressure detecting device
JP3609829B2 (en) Pressure transducer for detecting the pressure in the combustion chamber of an internal combustion engine
JP3267513B2 (en) Flow velocity detector
JPH07260614A (en) Magnetic circuit that is used with hall-effect sensor pressure transducer and hall- cell device
JP3184126B2 (en) Flow sensor
JPH07113710A (en) Pressure sensor
JPH06323884A (en) Flow sensor
JP2001317977A (en) Flow rate measuring apparatus
JPS61167820A (en) Flow rate detector
JPS641624Y2 (en)
JPH0547908Y2 (en)