JPH0276111A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPH0276111A
JPH0276111A JP22740388A JP22740388A JPH0276111A JP H0276111 A JPH0276111 A JP H0276111A JP 22740388 A JP22740388 A JP 22740388A JP 22740388 A JP22740388 A JP 22740388A JP H0276111 A JPH0276111 A JP H0276111A
Authority
JP
Japan
Prior art keywords
substrate
film
thin film
magnetic
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22740388A
Other languages
Japanese (ja)
Inventor
Hiroshi Akai
寛 赤井
Nobuo Arai
信夫 新井
Hiroaki Ono
裕明 小野
Seiji Kishimoto
清治 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22740388A priority Critical patent/JPH0276111A/en
Publication of JPH0276111A publication Critical patent/JPH0276111A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3176Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps
    • G11B5/3179Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps the films being mainly disposed in parallel planes
    • G11B5/3183Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps the films being mainly disposed in parallel planes intersecting the gap plane, e.g. "horizontal head structure"
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3103Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing

Abstract

PURPOSE:To improve yield and to decrease uneven wear by sticking the rear parts of both the front cores and back core of a 1st substrate on which the two front cores respectively consisting of thin magnetic films are formed and a 2nd substrate on which the back core is formed. CONSTITUTION:The two front cores 3, 4 consisting of the thin magnetic films joined via a gap regulating film 5 are formed on the 1st substrate 1 and the back core 8 consisting of the thin magnetic film is formed on the 2nd substrate 2. The two projecting parts 8a of the back core 8 are formed flush with an interlayer insulating film 10, by which the back core 8 and the rear parts of the front cores 3, 4 are joined. The constituting elements of the one thin-film magnetic head are divided on the two substrates and are formed separately in such a manner and, therefore, the wafer process is decreased and the yield is improved. Since the sliding surface is formed in the form of holding the front cores 3, 4 in place between the 1st and 2nd substrates 1 and 2 on top and bottom thereof, the unequal wear is decreased if the materials having nearly the same wear characteristics are used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気コア、導体コイル、層間絶縁膜を薄膜形
成技術で作成する薄膜磁気ヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin-film magnetic head in which a magnetic core, a conductive coil, and an interlayer insulating film are formed using thin-film forming technology.

〔従来の技術〕[Conventional technology]

近時の磁気記録媒体の高記録密度化に伴ない、従来のフ
ェライトバルク型磁気ヘッドに較べて。
With the recent increase in recording density of magnetic recording media, compared to conventional ferrite bulk type magnetic heads.

インダクタンスが少く、狭トラツク幅化が実現容易な薄
膜磁気ヘッドが実用化されつつある。
Thin film magnetic heads that have low inductance and can easily realize narrow track widths are being put into practical use.

斯る従来における薄膜磁気ヘッドは、例えば。Examples of such conventional thin film magnetic heads include:

特開昭55−84019号公報に示されている如く、基
板上に、下部磁気コア、層間絶縁膜に埋設されたコイル
、上部磁気コア、保S膜等を順次薄膜形成技術及びホト
リソ技術によって成膜するものであった。
As shown in Japanese Unexamined Patent Publication No. 55-84019, a lower magnetic core, a coil embedded in an interlayer insulating film, an upper magnetic core, an S protection film, etc. are sequentially formed on a substrate by thin film formation technology and photolithography technology. It was a film.

これに対し、磁気コアにのみ磁性薄膜を用いた磁気ヘッ
ドも、例えば特開昭61−188704号公報等で公知
であり、該種磁°気ヘッドは2つのコア半休同志を作動
ギャップをもつように接合した後、巻線窓部にコイルを
巻回することによって作製されていた。
On the other hand, a magnetic head in which a magnetic thin film is used only in the magnetic core is also known, for example, in Japanese Patent Laid-Open No. 188704/1988, and this kind of magnetic head has two cores that are half-dormant and have an operating gap. It was fabricated by winding a coil around the winding window after bonding to the winding window.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した前者の薄膜磁気ヘッドにおいては、高精度な作
動ギャップ、パターンの形成が可能ではある。しかしな
がら、従来の該種lt膜磁気ヘッドにおいては、1つの
基板に対し薄膜形成、フォトリソグラフィなどのウェハ
ープロセスが連続して多数工程流されるため、1基板に
対しての製造工程が長くなって完成までに長時間を要し
、このため製造コストが上昇する。また、1基板に対し
てのウェハープロセスが多いので、工程不良などにより
歩留りが悪くなり易い。さらには、該種従来の薄膜磁気
ヘッドは、磁気記録媒体との摺動面が非磁性基板、磁気
コア、保護膜という3つの異種材料で構成されているた
め、摺動面に偏摩耗を生じ易いという問題があった。
In the former thin film magnetic head described above, it is possible to form a highly accurate working gap and pattern. However, in conventional LT-film magnetic heads, multiple wafer processes such as thin film formation and photolithography are sequentially performed on one substrate, resulting in a long manufacturing process for one substrate. It takes a long time to complete the process, which increases manufacturing costs. Further, since many wafer processes are performed for one substrate, the yield is likely to be low due to process defects. Furthermore, in conventional thin-film magnetic heads, the sliding surface with the magnetic recording medium is composed of three different materials: a non-magnetic substrate, a magnetic core, and a protective film, which causes uneven wear on the sliding surface. The problem was that it was easy.

一方、2つのコア半休同士を接合することによって作製
される、前述した後者の磁性薄膜を用いた略々バルク型
の磁気ヘッドは、比較的安価にかつ短時間で作成するこ
とも可能であるが、コイルを巻回するための巻線患部を
確保する必要があることから、磁路長を短かくことがで
きず高効率化を達成できない、また、作動ギャップが2
つのコア半休を貼合わせることによって形成されるので
On the other hand, the latter, described above, which is manufactured by bonding two core halves together, which is essentially a bulk type magnetic head using a magnetic thin film, can be manufactured relatively inexpensively and in a short time. Since it is necessary to secure the affected part of the winding for winding the coil, the magnetic path length cannot be shortened and high efficiency cannot be achieved, and the operating gap is 2.
Because it is formed by pasting together two cores and a half.

ギャップ精度が得にくいという問題があった。There was a problem that it was difficult to obtain gap accuracy.

従って、本発明の解決すべき技術的aysは上記従来技
術のもつ問題点を解消することにあり、その目的とする
ところは、磁気コア、導体コイル、層間絶縁膜などを薄
膜形成技術で作成する薄膜磁気ヘッドにおいて、1つの
基板に対するウェハープロセスを短かくできて歩留りを
向上可能とし、また、偏摩耗の虞れの少い製品を提供す
ることにある。
Therefore, the technical ays to be solved by the present invention is to solve the problems of the above-mentioned prior art, and its purpose is to create magnetic cores, conductor coils, interlayer insulating films, etc. using thin film forming technology. It is an object of the present invention to provide a thin film magnetic head that can shorten the wafer process for one substrate, improve yield, and has less risk of uneven wear.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の薄膜磁気ヘッドは、上記した目的を達成するた
め、ギャップ規制膜を介して接合された磁性薄膜よりな
る2つのフロントコアを形成した第1の基板と、磁性薄
膜よりなるバックコアを形成した第2の基板とを、前記
両フロントコアの後部と前記バックコア同志が接合する
ように貼合せ・一体化するように、構成される。
In order to achieve the above-mentioned object, the thin film magnetic head of the present invention has a first substrate formed with two front cores made of magnetic thin films bonded via a gap regulating film, and a back core made of magnetic thin films. The second substrate is bonded and integrated so that the rear portions of both the front cores and the back cores are joined to each other.

〔作 用〕[For production]

第1の基板上にはギャップ規制膜を介して接合された磁
性薄膜よりなる2つのフロントコアを形成し、また、第
2の基板上には磁性薄膜よりなるバックコアと例えば層
間絶縁膜に埋設された薄膜コイルとが形成される。斯様
に1つの薄膜磁気ヘッドの構成要素を、2つの基板上で
分割して別個に形成しているので、1つの基板に対する
ウェハープロセスを従来の薄膜磁気ヘッドに比して大幅
に低減でき、歩留りも向上して作製時間も短縮できる。
Two front cores made of magnetic thin films bonded via a gap regulating film are formed on the first substrate, and a back core made of magnetic thin films and a back core made of magnetic thin films, for example, embedded in an interlayer insulating film are formed on the second substrate. A thin film coil is formed. In this way, the components of one thin-film magnetic head are divided and formed separately on two substrates, so the wafer process for one substrate can be significantly reduced compared to conventional thin-film magnetic heads. The yield can also be improved and the manufacturing time can be shortened.

また、作動ギャップは、薄膜技術で成膜されるギャップ
規制膜を介してフォトリソ技術を用いて形状規定される
磁性薄膜よりなる2つのフロントコア間に形成されるの
で、トラック幅、ギャップ長、ギヤツブ深さなどを高精
度なものに維持できる。
In addition, since the operating gap is formed between two front cores made of a magnetic thin film whose shape is defined using photolithography via a gap regulating film formed using thin film technology, the track width, gap length, and gear Depth etc. can be maintained with high accuracy.

さらには、第1と第2の基板とが上下でフロントコアを
間に挟んだ形で摺動面を構成するので、両基板をほぼ同
一摩耗特性をもつ材料とすることで、偏摩耗の虞れは大
幅に低減できる。
Furthermore, since the sliding surface is formed by the first and second substrates sandwiching the front core between them, the possibility of uneven wear is eliminated by making both substrates of materials with almost the same wear characteristics. This can be significantly reduced.

[実施例] 以下本発明を図示した実施例によって説明する。[Example] The present invention will be explained below with reference to illustrated embodiments.

第1図〜第4図は本発明の第1実施例に係り、第1図は
薄膜磁気ヘッドの斜視図、第2図は第1図のA−A線断
面図、第3図及び第4図は各々製造工程を示す説明図で
ある。
1 to 4 relate to a first embodiment of the present invention, in which FIG. 1 is a perspective view of a thin film magnetic head, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIGS. Each figure is an explanatory diagram showing the manufacturing process.

第1,2図において、1は上部基板たる第1の基板、2
は下部基板たる第2の基板で、該両基板1.2は、例え
ばセラミック等の非磁性材料よりなっており1両者1.
2は同一の摩耗特性をもつよう同一材料より作成されて
いる。3及び4は、上記第1の基板1上に形成された磁
性薄膜よりなるフロントコアで1両フロントコア3,4
はその前部においてギャップ規制膜5を介して互いに接
合されて作動ギャップ6を形成している。7は第1の基
板1上に形成された非磁性薄膜で、上記両フロントコア
3,4と面一に形成されており、また、前記第1.第2
の基板1.2とほぼ同rの摩耗特性をもつ材料が選定さ
れている。なお、前記フロントコア3,4は、高透磁率
、高飽和磁束密度の非晶質磁性合金あるいは結晶質磁性
合金よりなり、前者の非晶質磁性合金としては、鉄、ニ
ッケル、コバルトのグループから選択された1種以上の
元素と、リン、炭素、ホウ素、ケイ素のグループから選
択された1種以上の元素とからなる合金、またはこれを
主成分として、アルミニウム。
In FIGS. 1 and 2, 1 is a first substrate which is an upper substrate; 2 is a first substrate which is an upper substrate;
1.2 is a second substrate serving as a lower substrate, and both substrates 1.2 are made of a non-magnetic material such as ceramic.
2 are made of the same material to have the same wear characteristics. 3 and 4 are front cores made of a magnetic thin film formed on the first substrate 1; one front core 3 and 4;
are joined to each other via a gap regulating film 5 at the front thereof to form an operating gap 6. Reference numeral 7 denotes a non-magnetic thin film formed on the first substrate 1, which is flush with both the front cores 3 and 4. Second
A material has been selected that has approximately the same wear characteristics as the substrate 1.2. The front cores 3 and 4 are made of an amorphous magnetic alloy or a crystalline magnetic alloy with high magnetic permeability and high saturation magnetic flux density, and the former amorphous magnetic alloy is made of iron, nickel, and cobalt. An alloy consisting of one or more selected elements and one or more elements selected from the group of phosphorus, carbon, boron, and silicon, or aluminum containing this as the main component.

ゲルマニウム、ベリリウム、スズ、モリブデン。Germanium, beryllium, tin, molybdenum.

インジュウム、タングステン、チタン、マンガン、クロ
ム、ジルコニウム、ハフニウム、ニオブなどの元素を添
加した合金、あるいはコバルト、ジルコニウムなどを主
成分として、上述の添加元素を含んだ合金などから適宜
のものが選択可能であり、また、後者の結晶質合金とし
ては鉄−アルミニウム−ケイ素合金、鉄−ケイ素系合金
、鉄−ニッケル系合金などを選択可能であるが、この実
施例では、CoNbZr非晶質磁性合金が用いられてい
る。
Appropriate materials can be selected from alloys containing elements such as indium, tungsten, titanium, manganese, chromium, zirconium, hafnium, and niobium, or alloys containing cobalt, zirconium, etc. as main components and the above-mentioned additive elements. In addition, as the latter crystalline alloy, iron-aluminum-silicon alloy, iron-silicon alloy, iron-nickel alloy, etc. can be selected, but in this example, CoNbZr amorphous magnetic alloy is used. It is being

8は、前記第2の基板2上に形成された磁性薄膜よりな
るバックコアで、前記フロン1〜コア3゜4と同一磁性
材料よりなり、その突部8a(第2図参照)が両フロン
トコア3,4の後部と磁気的的・物理的に接合されてい
る。9は、第2の基板2の上記バックコア8上に、層間
絶縁膜10に埋設される形で配設された薄膜コイルで、
該薄膜コイル9の両端は、第2の基板2の後部上に形成
された外部接続用のポンディングパッド11に各々接続
されている。なお、上記薄膜コイル9は例えばAfiな
どよりなり、上記層間絶縁膜10は例えばS i Oz
などよりなっている。
Reference numeral 8 denotes a back core made of a magnetic thin film formed on the second substrate 2, and made of the same magnetic material as the flons 1 to 3.4, and its protrusion 8a (see FIG. It is magnetically and physically connected to the rear portions of the cores 3 and 4. 9 is a thin film coil disposed on the back core 8 of the second substrate 2 so as to be embedded in the interlayer insulating film 10;
Both ends of the thin film coil 9 are connected to bonding pads 11 for external connection formed on the rear part of the second substrate 2, respectively. The thin film coil 9 is made of, for example, Afi, and the interlayer insulating film 10 is made of, for example, SiOz.
etc.

2aは、前記第2の基板2の前端縁に沿って形成された
突堤部で、該突堤部2aの上面と前記層間絶縁膜10の
上面とは面一に設定されている。
Reference numeral 2a denotes a jetty portion formed along the front edge of the second substrate 2, and the upper surface of the jetty portion 2a and the upper surface of the interlayer insulating film 10 are flush with each other.

そして、この層間絶縁膜10を貫通する形で後述するよ
うに前記バックコア8の2つの突部8aが。
Two protrusions 8a of the back core 8 penetrate through this interlayer insulating film 10, as will be described later.

眉間絶縁膜10の上面までこれと面一に形成されていて
、これによってバッグコア8とフロントコア3,4の後
部とが接合されるようになっている。
It is formed flush with the upper surface of the glabellar insulating film 10, so that the bag core 8 and the rear portions of the front cores 3 and 4 are joined together.

なお、第1,2図において、12は、第1の基板l側と
第2の基板2側との接合・固着面を示しており、該接合
・固着面12は例えば低融点ガラスによってボンディン
グされている。
In addition, in FIGS. 1 and 2, 12 indicates a bonding/fixing surface between the first substrate l side and the second substrate 2 side, and the bonding/fixing surface 12 is bonded with, for example, low melting point glass. ing.

次に第3図及び第4図によって、上記構成の薄膜磁気ヘ
ッドの製造方法を説明する。第3図(a)〜(f)は、
第1の基板1側に形成される前記フロントコア3,4並
びに非磁性薄膜7の形成工程をそれぞれ示す説明図であ
る。
Next, a method of manufacturing the thin film magnetic head having the above structure will be explained with reference to FIGS. 3 and 4. Figures 3(a) to (f) are
FIG. 3 is an explanatory diagram showing the steps of forming the front cores 3 and 4 and the nonmagnetic thin film 7 formed on the first substrate 1 side.

先ず第3図(a)に示すように、非磁性セラミックより
なる第1の基板1の片面上に、第1磁性薄膜13が、例
えばDC対向スパッタリング法などによって約20μm
厚程度に全面被着される。続いて、フォトリソ技術によ
って上記第1磁性薄膜13を、同図(b)に示すように
半分除去した後、第1磁性薄膜13のエツチングされた
端面13aに、5jOzなどからなるギャップ規制膜5
が、例えばマグネトロンスパッタ法などによって所望の
厚みだけ被着・形成される。
First, as shown in FIG. 3(a), a first magnetic thin film 13 is deposited to a thickness of approximately 20 μm on one side of a first substrate 1 made of non-magnetic ceramic by, for example, a DC facing sputtering method.
The entire surface is coated to a certain thickness. Subsequently, after removing half of the first magnetic thin film 13 by photolithography as shown in FIG.
is deposited and formed to a desired thickness by, for example, magnetron sputtering.

続いて同図(c)に示すように、第2磁性薄膜14をD
C対向スパッタリング法などによって、前記第1磁性薄
膜13並びに第1の基板l上に約20μ工程度の厚みに
形成し、同図(d)に示すようにフォトリソ技術により
、第2磁性薄膜14を半分だけ除去し、第1と第2磁性
薄膜13.14が、第1の基板I上に略同−厚みで半分
づつ被着・形成された状態とする。
Subsequently, as shown in FIG. 3(c), the second magnetic thin film 14 is
A second magnetic thin film 14 is formed on the first magnetic thin film 13 and the first substrate l to a thickness of about 20 μm by a C facing sputtering method or the like, and then a second magnetic thin film 14 is formed by photolithography as shown in FIG. Only half of the first and second magnetic thin films 13 and 14 are deposited and formed on the first substrate I with approximately the same thickness.

然る後、同図(e)に示すようにフォトリソ技術によっ
て、第1と第2磁性薄膜13.14をエツチングして、
前記したフロントコア3,4を形成すると共に、所望の
ギャップデプスをもって前記作動ギャップ6を形成し、
続いて同図(f)に示すように1例えば5iOzなどよ
りなる前記非磁性薄膜7を、マグネトロンスパッタ法な
どで約20μ工程度に被着・形成して、両フロントコア
3゜4を非磁性薄膜7に埋込み、最後にフロントコア3
.4並びに非磁性薄膜7の表面を面一となるようにラッ
プすることで、第1の基板l側のウェハープロセスは完
了する。
Thereafter, as shown in FIG. 2(e), the first and second magnetic thin films 13 and 14 are etched by photolithography.
While forming the front cores 3 and 4 described above, forming the working gap 6 with a desired gap depth,
Subsequently, as shown in FIG. 5(f), the nonmagnetic thin film 7 made of 1, for example, 5iOz is deposited and formed using magnetron sputtering or the like in a step size of about 20μ, making both front cores 3.4 nonmagnetic. Embedded in thin film 7, and finally front core 3
.. By lapping the surfaces of 4 and the nonmagnetic thin film 7 so that they are flush with each other, the wafer process on the first substrate l side is completed.

第4図(a)〜(f)は、前記第2の基板2側に形成さ
れる前記バックコア8、薄膜コイル91層間絶縁膜10
などの形成工程をそれぞれ示す説明図である。
FIGS. 4(a) to 4(f) show the back core 8, thin film coil 91, and interlayer insulating film 10 formed on the second substrate 2 side.
It is explanatory drawing which shows the formation process of etc., respectively.

先ず、第4図(a)に示すように、前記第2の基板2の
片面上に、フォトリソ技術とイオンミリング法、あるい
はダイサー加工などの手法を用いて、平坦な凹地2b並
びにバックコア用溝2Cを形成すると共に、これによっ
て第2の基板2の前縁部に前記した突堤部2aを形成す
る。該実施例においては、上記凹地2bの深さは突堤部
2aの上面(元の基板の上面)から約12μm、バック
コア用溝2cの深さは凹地2bから約20μmとされて
いる。
First, as shown in FIG. 4(a), a flat depression 2b and a groove for the back core are formed on one side of the second substrate 2 by photolithography, ion milling, or dicer processing. 2C and thereby form the above-mentioned jetty portion 2a on the front edge of the second substrate 2. In this embodiment, the depth of the recess 2b is approximately 12 μm from the upper surface of the jetty portion 2a (the upper surface of the original substrate), and the depth of the back core groove 2c is approximately 20 μm from the recess 2b.

次に、上述したように加工された第2の基板2上に、同
図(b)に示したように、バックコア用の第3磁性薄膜
15をDC対向スパッタリング法によって約32μm以
上の厚みに被着した後、第3磁性薄膜15を元の基板高
さまでラップ法などで研磨して、同図(C)に示したよ
うに、第3磁性薄膜15の表面を突堤部2aの表面と面
一にする。
Next, on the second substrate 2 processed as described above, as shown in FIG. After adhering, the third magnetic thin film 15 is polished to the original substrate height by a lapping method or the like, so that the surface of the third magnetic thin film 15 is flush with the surface of the jetty portion 2a, as shown in FIG. Make it one.

続いて、第3磁性薄膜15をフォトリソ技術によってエ
ツチングして、同図(d)、 (e)に示したように、
フロントコア3,4の後部と接合される前記した2つの
突部8aを有するバックコア8を形成する。
Subsequently, the third magnetic thin film 15 is etched by photolithography, as shown in FIGS.
A back core 8 is formed having the two protrusions 8a described above that are joined to the rear portions of the front cores 3 and 4.

続いて、同図(f)に示すように、S i Oz膜及び
AΩ膜を各々マグネトロンスパッタ法及びEB蒸着法を
用いて形成すると共に、フォトリソ技術による加工を加
えて、前記薄膜コイル9(該実施例では2層構造)並び
に層間絶縁膜10を形成し、同時に前記ポンディングパ
ッド11も形成する。
Subsequently, as shown in FIG. 3(f), a SiOz film and an AΩ film are formed using magnetron sputtering and EB evaporation, respectively, and processed by photolithography to form the thin film coil 9 (the corresponding one). In the embodiment, a two-layer structure) and an interlayer insulating film 10 are formed, and at the same time, the bonding pad 11 is also formed.

然る後、適宜手法によってポンディングパッド11を露
呈させると共に、適宜平坦化技術によって層間絶縁膜1
0を平坦化することによって、第2の基板2側のウェハ
ープロセスは完了する。
Thereafter, the bonding pad 11 is exposed using an appropriate method, and the interlayer insulating film 1 is removed using an appropriate planarization technique.
By planarizing 0, the wafer process on the second substrate 2 side is completed.

上述したように作成された各種薄膜を成膜・形成された
第1と第2の基板1.2は、適宜治具などを用いて位置
合せして突合わされ、低融点ガラスなどによって第1,
2図示の如く接合・一体化される。これによって、フロ
ントコア3,4とバックコア8とは磁気的に接合されて
、3者3..4゜8で閉ループを形づくることになる。
The first and second substrates 1.2 on which various thin films have been deposited and formed as described above are aligned and butted together using an appropriate jig, and the first and second substrates 1.2 are bonded with low melting point glass or the like.
2. They are joined and integrated as shown in the figure. As a result, the front cores 3, 4 and the back core 8 are magnetically joined, and the three members 3. .. 4°8 will form a closed loop.

このように作製される該実施例の薄膜磁気ヘッドは、1
つの基板に対する薄膜形成、加工プロセス(ウェハープ
ロセス)が少くて済むので1歩留りが向上し、作製時間
も短縮できる。また、第1の基板1側に作動ギャップ6
をもつ磁性薄膜よりなるフロントコア3,4が形成され
ているので、トラック幅、ギャップ長、ギヤツブ深さな
どを高精度なものに維持できる。さらに、20ターンの
薄膜コイル9を形成した場合でも磁路長を約500μm
とバルク型磁気ヘッドに比して1/4程度に短かくでき
、バルク型磁気ヘッドに較べて再生効率を3〜6dBア
ツプと大幅に向上できる。さらにまた、第1図示のよう
に作動ギャップ6から見て、磁気記録媒体との摺動面は
上下及び左右がほぼ同じ摩耗特性をもつ材料がほぼ対称
に配置されているので、偏摩耗を生じることがなく、長
期にわたって良好な摺動特性を得ることができる。
The thin film magnetic head of this example manufactured in this way has 1
Since fewer thin film formation and processing processes (wafer processes) are required for one substrate, yields can be improved and manufacturing time can also be shortened. In addition, there is an operating gap 6 on the first substrate 1 side.
Since the front cores 3 and 4 are formed of a magnetic thin film having the following characteristics, the track width, gap length, gear depth, etc. can be maintained at high precision. Furthermore, even when forming a thin film coil 9 with 20 turns, the magnetic path length is approximately 500 μm.
The length can be reduced to about 1/4 of that of a bulk type magnetic head, and the reproduction efficiency can be greatly improved by 3 to 6 dB compared to a bulk type magnetic head. Furthermore, as shown in the first diagram, when viewed from the working gap 6, the sliding surface with the magnetic recording medium is symmetrically arranged with materials having almost the same wear characteristics on the upper and lower sides and on the left and right sides, resulting in uneven wear. Good sliding characteristics can be obtained over a long period of time.

第5図〜第7図は本発明の第2実施例に係り、。5 to 7 relate to a second embodiment of the present invention.

第5図は薄膜磁気ヘッドの斜視図、第6図は第5図のB
−B線断面図、第7図は製造工程を示す説明図である。
Fig. 5 is a perspective view of the thin film magnetic head, and Fig. 6 is B of Fig. 5.
-B sectional view and FIG. 7 are explanatory diagrams showing the manufacturing process.

なお、同各回において前記した実施例と均等な部材、部
位には同一符号を付し、その説明は重複を避けるため省
略する。
In addition, in each case, the same reference numerals are given to the same members and parts as those in the above-described embodiments, and the explanation thereof will be omitted to avoid duplication.

第5,6図から明らかなように、該実施例における前記
第2の基板2側の構成は前記第1実施例と全く同一であ
る。同図において、15.16は前記第1の基板l上に
形成された前記実施例と同一材料の磁性薄膜よりなるフ
ロントコアで、両フロントコア15,16はその前部に
おいて前記ギャップ規制膜5を介して接合されて作動ギ
ャップ17を形成している。但し、前記実施例において
はフロントコアの膜端面同志がギャップ規制膜を介して
接合されて作動ギャップを形成していたのに対し、該実
施例においては、フロントコア17゜18の前部の膜平
面同志がギャップ規制[1!i5を介して接合されて作
動ギャップ17を形成している。
As is clear from FIGS. 5 and 6, the configuration on the second substrate 2 side in this embodiment is completely the same as that in the first embodiment. In the figure, reference numerals 15 and 16 denote front cores formed on the first substrate l and made of a magnetic thin film made of the same material as in the embodiment, and both front cores 15 and 16 are connected to the gap regulating film 5 at the front portion thereof. are joined to form an operating gap 17. However, in the above embodiment, the membrane end surfaces of the front cores were joined together via a gap regulating membrane to form an operating gap, whereas in this embodiment, the front membranes of the front cores 17 and 18 Plane comrades regulate gap [1! They are joined via i5 to form a working gap 17.

次に第3図によって、第1の基板1側のウェハープロセ
スを説明する。
Next, the wafer process on the first substrate 1 side will be explained with reference to FIG.

先ず第7図(a)に示すように、第1の基、板1の片面
上に、第1磁性薄膜18が、例えばDC対向スパッタリ
ング法によって約10μm厚程度に全面被着される。続
いて、フォトリソ技術によって上記第1磁性薄膜18を
、同図(b)に示すようにエツチングして、前記フロン
トコア15,16の一部をそれぞれ構成するフロントコ
ア単膜15a。
First, as shown in FIG. 7(a), a first magnetic thin film 18 is deposited on one surface of the first substrate 1 to a thickness of about 10 μm by, for example, DC facing sputtering. Subsequently, the first magnetic thin film 18 is etched by photolithography, as shown in FIG. 3(b), to form a front core single film 15a forming a part of the front cores 15 and 16, respectively.

16aを形成する。続いて同図(c)に示すように、非
磁性薄膜7をマグネトロンスパッタ法などによって約1
0μmの厚みで被着して、フロントコア半[115a、
16aを埋込み、然る後、必要に応じ表面を平坦化する
。そして次に、前記ギャップ規制膜5を、マグネトロン
スパッタ法などによってフロントコア単膜15aの作動
ギャップ形成予定領域に被着する。
16a is formed. Subsequently, as shown in FIG.
The front core half [115a,
16a is buried, and then the surface is flattened if necessary. Then, the gap regulating film 5 is deposited on the region of the front core single film 15a where the working gap is to be formed by magnetron sputtering or the like.

続いて同図(d)に示すように、第2磁性薄膜19をD
C対向スパッタリング法などによって、約lOμm程度
の厚みに全面被着した後、フォトリソ技術によって第2
磁性薄fi19をエツチングして、同図(e)に示すよ
うに、フロントコア単膜15b、16bを形成する。こ
れによって、フロントコア単膜15aと15bで前記一
方のフロントコア15が、フロントコア半gj 16 
aと16bで前記他方のフロントコア16が各々形成さ
れ、また、同時に所望のギャップデプスをもつ作動ギャ
ップ17も形成されることとなる。
Subsequently, as shown in FIG. 3(d), the second magnetic thin film 19 is
After coating the entire surface to a thickness of approximately 10 μm by C facing sputtering method, a second layer is deposited using photolithography.
The magnetic thin film 19 is etched to form front core single films 15b and 16b, as shown in FIG. 2(e). As a result, one of the front cores 15 with the front core single films 15a and 15b has a front core half gj 16
The other front core 16 is formed by a and 16b, and at the same time, an operating gap 17 having a desired gap depth is also formed.

続いて同図(f)に示すように、非磁性薄膜7を、マグ
ネトロンスパッタ法で約10μ工程度に被着・形成して
、両フロントコア15,16を非磁性薄膜7に埋込み、
最後に表面を面一となるようにラップすることで、第1
の基板l側のウェハープロセスは完了する。
Subsequently, as shown in FIG. 6(f), a nonmagnetic thin film 7 is deposited and formed in a step of about 10μ by magnetron sputtering, and both front cores 15 and 16 are embedded in the nonmagnetic thin film 7.
Finally, by wrapping the surface flush, the first
The wafer process on the substrate l side is completed.

上述したように作成された各種薄膜を成膜・形成された
第1の基板1と、前述した第1実施例と同一手法で各種
薄膜を成膜・形成された第2の基板2とは、前述と同様
に、適宜治具などを用いて位置合せして突合わされ、低
融点ガラスなどによって第5,6図示の如く接合・一体
化される。これによって、フロントコア15,16とバ
ックコア8とは磁気的に接合されて、3者15,16゜
8で閉ループを形づくることになる。
The first substrate 1 on which various thin films were formed as described above and the second substrate 2 on which various thin films were formed using the same method as in the first embodiment described above are: As described above, they are aligned and butted together using an appropriate jig, and then joined and integrated using low melting point glass or the like as shown in FIGS. 5 and 6. As a result, the front cores 15, 16 and the back core 8 are magnetically joined, and a closed loop is formed by the three members 15, 16°8.

このように作製される該第2実施例の薄膜磁気ヘッドも
、前記第1実施例と同等の効果を奏することができる。
The thin film magnetic head of the second embodiment manufactured in this manner can also exhibit the same effects as those of the first embodiment.

ここで、前述した第1.第2実施例では、バックコア8
の突部8aの高さを前記した接合・固着面12と面一の
ものとして説明したが、第8図に示す第3実施例のよう
に、バックコア8の突部8aの高さを接合・固着面12
よりも高くして、フロントコア20,21の後部と接合
するようにしても良い。(なお、該第3実施例のフロン
トコア20.21の平面形状は前記第2実施例のものと
略同−で、作動ギャップ22の形成部分のみがギャップ
規制膜を介して2層に形成・接合されている。)あるい
はまた、第9図に示す第4実施例のように、バックコア
8′を突部のない形状として、前記第1実施例と略同等
構成のフロントコア3′。
Here, the above-mentioned 1. In the second embodiment, the back core 8
Although the height of the protrusion 8a of the back core 8 was explained as being flush with the joining/fixing surface 12, as in the third embodiment shown in FIG.・Fixed surface 12
It may be made higher than that and joined to the rear portions of the front cores 20 and 21. (The planar shape of the front core 20.21 of the third embodiment is approximately the same as that of the second embodiment, and only the portion where the operating gap 22 is formed is formed in two layers with a gap regulating film interposed therebetween. ) Alternatively, as in a fourth embodiment shown in FIG. 9, a front core 3' having a structure substantially the same as that of the first embodiment except that the back core 8' is shaped without a protrusion.

4′の後部に突部3a’、4a’を形成して、フロント
コア3’、4’とバックコア8′とを接合するようにし
ても良い、なおまた、前述した実施例では第1と第2の
基板1,2を同一材料で作成するようにしているが、第
1の基板1と第2の基板2はほぼ同じ摩耗特性をもつも
のであれば、別異の材料であってもよい。
The front cores 3', 4' and the back core 8' may be joined by forming protrusions 3a', 4a' at the rear of the core 4'. Although the second substrates 1 and 2 are made of the same material, the first substrate 1 and the second substrate 2 may be made of different materials as long as they have approximately the same wear characteristics. good.

以上本発明を図示した各実施例によって説明したが、当
業者には本発明の精神を逸脱しない範囲で種々の変形が
考えられるところである。
Although the present invention has been described above with reference to the illustrated embodiments, those skilled in the art will be able to make various modifications without departing from the spirit of the present invention.

[発明の効果] 叙上のように本発明によれば、磁気コア、導体コイル、
層間絶縁膜などを薄膜技術で作成する磁路長が短かく再
生効率等が良好で、かつ作動ギャップ精度の高い薄膜磁
気ヘッドにおいて、1つの基板に対するウェハープロセ
スを短縮できて1歩留りを大幅に向上させることが可能
となり、該種薄膜磁気ヘッドにあってその産業的価値は
多大である。また、第1と第2の基板とをほぼ同じ摩耗
特性をもつものとできるので、偏摩耗の虞れがなく、長
期にわたって安定した摺動特性を保証できる。
[Effect of the invention] As described above, according to the present invention, the magnetic core, the conductor coil,
In thin-film magnetic heads, in which interlayer insulating films and other materials are created using thin-film technology, the magnetic path length is short, playback efficiency is good, and operating gap accuracy is high, the wafer process for one substrate can be shortened and the yield can be significantly improved. Therefore, this kind of thin film magnetic head has great industrial value. Further, since the first and second substrates can have substantially the same wear characteristics, there is no risk of uneven wear, and stable sliding characteristics can be guaranteed over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の第1実施例に係り、第1図は
薄膜磁気ヘッドの斜視図、第2図は第1図のA−A線断
面図、第3図及び第4図は各々製造工程を示す説明図、
第5図〜第7図は本発明の第2実施例に係り、第5図は
薄膜磁気ヘッドの斜視図、第6図は第5図のB−B線断
面図、第7図は製造工程を示す説明図、第8図は本発明
の第3実施例に係る薄膜磁気ヘッドの断面図、第9図は
本発明の第4実施例に係る薄膜磁気ヘッドの断面図であ
る。 1・・・・・・第1の基板、2・・・・・・第2の基板
、2a・・・・・・突堤部、2b・・・・・・凹地、2
c・・・・・・バックコア用溝、3,4.3’、4’1
5,16,20.21・・・・・・フロントコア、3 
aI 、 4 aI・・・・・・突部、5・・・・・・
ギャップ規制膜、6,17.22・・・・・・作動ギャ
ップ、7・・・・・・非磁性薄膜、8.8’・・・・・
・バックコア、8a・・・・・・突部、9・・・・・・
薄膜コイル、10・・・・・・層間絶縁膜、11・・・
・・・ポンディングパッド、12・・・・・・接合・固
着面。 第2図 81g 第3図 (a)             (b)(e)   
           (f)4/14ノ 第4図 2                        
l第5図 第6図 第7図 第8図 第9図
1 to 4 relate to a first embodiment of the present invention, in which FIG. 1 is a perspective view of a thin film magnetic head, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIGS. The figures are explanatory diagrams showing the manufacturing process,
5 to 7 relate to a second embodiment of the present invention, in which FIG. 5 is a perspective view of a thin film magnetic head, FIG. 6 is a sectional view taken along line B-B in FIG. 5, and FIG. 7 is a manufacturing process. FIG. 8 is a cross-sectional view of a thin-film magnetic head according to a third embodiment of the present invention, and FIG. 9 is a cross-sectional view of a thin-film magnetic head according to a fourth embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...First substrate, 2...Second substrate, 2a... Jetty portion, 2b... Depression, 2
c...Back core groove, 3, 4.3', 4'1
5, 16, 20. 21...Front core, 3
aI, 4 aI...protrusion, 5...
Gap regulating film, 6, 17.22... Working gap, 7... Non-magnetic thin film, 8.8'...
・Back core, 8a... Protrusion, 9...
Thin film coil, 10... Interlayer insulating film, 11...
...Ponding pad, 12...Bonding/fixing surface. Figure 2 81g Figure 3 (a) (b) (e)
(f) 4/14 Figure 4 2
lFigure 5Figure 6Figure 7Figure 8Figure 9

Claims (1)

【特許請求の範囲】 1、ギャップ規制膜を介して接合された磁性薄膜よりな
る2つのフロントコアを形成した第1の基板と、磁性薄
膜よりなるバックコアを形成した第2の基板とを、前記
両フロントコアの後部と前記バックコア同志が接合する
ように貼合せ・一体化したことを特徴とする薄膜磁気ヘ
ッド。 2、請求項1記載において、前記第2の基板には層間絶
縁膜に埋設された形で薄膜コイルが形成され、前記層間
絶縁膜を貫通する形で、前記両フロントコアの後部と前
記バックコアとが接合されることを特徴とする薄膜磁気
ヘッド。 3、請求項1記載において、前記2つのフロントコアは
、その膜端面同志が前記ギャップ規制膜を介して接合さ
れたことを特徴とする薄膜磁気ヘッド。 4、請求項1記載において、前記2つのフロントコアは
、その前部の膜平面同志が前記ギャップ規制膜を介して
接合されたことを特徴とする薄膜磁気ヘッド。 5、請求項1記載において、前記第1と第2の基板とは
、両者がほぼ同じ摩耗特性をもつ非磁性材料から形成さ
れていることを特徴とする薄膜磁気ヘッド。 6、請求項1記載において、前記第2の基板の前縁部の
突堤部が、前記第1の基板の前記両フロントコアの少く
とも一方と作動ギャップ近傍で密着し、前記突堤部の前
端面が磁気記録媒体との摺動面の一部を構成することを
特徴とする薄膜磁気ヘッド。
[Claims] 1. A first substrate on which two front cores made of a magnetic thin film are formed and a second substrate on which a back core made of a magnetic thin film is formed, which are bonded via a gap regulating film. A thin film magnetic head characterized in that the rear parts of both the front cores and the back cores are bonded and integrated so as to be joined to each other. 2. In claim 1, a thin film coil is formed in the second substrate in a form embedded in an interlayer insulating film, and a thin film coil is formed in the second substrate in a form that penetrates the interlayer insulating film and connects the rear parts of the front cores and the back core. A thin film magnetic head characterized in that: 3. The thin-film magnetic head according to claim 1, wherein the two front cores are bonded at their film end surfaces via the gap regulating film. 4. The thin-film magnetic head according to claim 1, wherein the two front cores have front film planes joined to each other via the gap regulating film. 5. The thin-film magnetic head according to claim 1, wherein the first and second substrates are made of non-magnetic materials having substantially the same wear characteristics. 6. In claim 1, a jetty portion at a front edge of the second substrate is in close contact with at least one of the front cores of the first substrate near the working gap, and the front end surface of the jetty portion is in close contact with at least one of the front cores of the first substrate. 1. A thin-film magnetic head characterized in that: forms part of a sliding surface with a magnetic recording medium.
JP22740388A 1988-09-13 1988-09-13 Thin film magnetic head Pending JPH0276111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22740388A JPH0276111A (en) 1988-09-13 1988-09-13 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22740388A JPH0276111A (en) 1988-09-13 1988-09-13 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPH0276111A true JPH0276111A (en) 1990-03-15

Family

ID=16860285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22740388A Pending JPH0276111A (en) 1988-09-13 1988-09-13 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH0276111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467263A2 (en) * 1990-07-17 1992-01-22 Sony Corporation Thin film magnetic head and method for manufacturing the same
WO2001071714A1 (en) * 2000-03-22 2001-09-27 Commissariat A L'energie Atomique Integrated magnetic head for helical magnetic recording on tape and method for making same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467263A2 (en) * 1990-07-17 1992-01-22 Sony Corporation Thin film magnetic head and method for manufacturing the same
US5296992A (en) * 1990-07-17 1994-03-22 Sony Corporation Thin film magnetic head having increased core cross section
WO2001071714A1 (en) * 2000-03-22 2001-09-27 Commissariat A L'energie Atomique Integrated magnetic head for helical magnetic recording on tape and method for making same
FR2806826A1 (en) * 2000-03-22 2001-09-28 Commissariat Energie Atomique INTEGRATED MAGNETIC HEAD FOR HELICOIDAL MAGNETIC RECORDING ON TAPE AND ITS MANUFACTURING METHOD
US6885520B2 (en) 2000-03-22 2005-04-26 Commissariat A L'energie Atomique Integrated magnetic head comprising a thin layer structure

Similar Documents

Publication Publication Date Title
JPH0546010B2 (en)
JP3394266B2 (en) Method of manufacturing magnetic write / read head
JPH0276111A (en) Thin film magnetic head
JPH045046Y2 (en)
JPH0548244Y2 (en)
JP2891817B2 (en) Magnetic head manufacturing method
JPH09231512A (en) Manufacture of magnetic head
JPS62246112A (en) Production of magnetic head
JPH06259717A (en) Magnetic head and its production
JPH0283807A (en) Production of magnetic head
JPH0648529B2 (en) Magnetic head
JP2002279608A (en) Thin-film magnetic head and its manufacturing method
JPS59203210A (en) Magnetic core and its production
JPH01185811A (en) Magnetic head
JPH0156445B2 (en)
JPH02302908A (en) Magnetic head
JPH0278007A (en) Thin film magnetic head and production thereof
JPH04168614A (en) Manufacture of magnetic head
JPH0770023B2 (en) Magnetic head
JPS63255801A (en) Manufacture of composite magnetic head
JPH0346108A (en) Magnetic head
JPH04229407A (en) Magnetic head
JPH0335410A (en) Multitrack type thin-film magnetic head
JPS63288407A (en) Production of magnetic head
JPS6276013A (en) Magnetic core