JPH0275773A - Tehrmally-driven engine - Google Patents

Tehrmally-driven engine

Info

Publication number
JPH0275773A
JPH0275773A JP22804588A JP22804588A JPH0275773A JP H0275773 A JPH0275773 A JP H0275773A JP 22804588 A JP22804588 A JP 22804588A JP 22804588 A JP22804588 A JP 22804588A JP H0275773 A JPH0275773 A JP H0275773A
Authority
JP
Japan
Prior art keywords
water tank
belt
memory
pulley
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22804588A
Other languages
Japanese (ja)
Inventor
Akira Osono
大園 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22804588A priority Critical patent/JPH0275773A/en
Publication of JPH0275773A publication Critical patent/JPH0275773A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To enable the generation of a power with high efficiency by a method wherein by utilizing a difference in a force between a force by means of which deformation is created at a low temperature phase and a shape memory restoring force by means of which restoration to a state before deformation after martensite reverse transformation is created, a memory belt circulating between a cold water tank and a hot water tank is used. CONSTITUTION:A memory belt 1 made of a shape memory alloy cooled in a cold water tank 7 for stretch enters a water tank 6 at a point (a) to gradually increase temperature. When temperature is increased to some value, martensite transformation occurs, and a shape memory restoration stress is generated. When the shape restoration stress exceeds a given force, length is shortened at points (e) - (f) and a shape is restored, tension between points (d) - (h), and the memory belt 1 is moved in the direction of an arrow mark. The belt enters the cold water tank from a point (j) for cooling, martensite transformation occurs at a point (k) and is stretched between points (k) - (o). The memory belt 1 enters the hot water tank 6 from the point (a) again and is continuously moved. The above movement is taken out as a rotation force from a shaft 8.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は地熱や温排水、太陽熱、等の比較的利用酒値の
低い低品位の熱エネルギーを機械エネルギーに変換しエ
ネルギーの有効利用を図る事の出来る熱駆動エンジン。
[Detailed Description of the Invention] (Industrial Application Field) The present invention converts low-grade thermal energy such as geothermal heat, heated waste water, solar heat, etc., which has a relatively low utility value, into mechanical energy and aims to utilize energy effectively. A heat-driven engine that can do a lot of things.

(従来の技術) 第6図に示す様に2つの異径のプーリー100゜101
にループ状に形成された形状記憶合金にて製作された記
憶ベルト104が掛けられ、同径のプーリー102,1
03はプーリー100,101にそれぞれ固定され、通
常のベルト105が掛けられて居る。
(Prior art) As shown in Fig. 6, two pulleys of different diameters 100°101
A memory belt 104 made of a shape memory alloy formed in a loop shape is hung over the pulleys 102 and 1 of the same diameter.
03 are fixed to pulleys 100 and 101, respectively, and a normal belt 105 is hung thereon.

A部を加熱しB部を冷却する事によりプーリー100.
101が回転する熱駆動エンジンが考えられて居るが、
構造上記憶ベルト104を加熱冷却する温水槽、冷水槽
、が皿状となり熱容量が小さくなるのでので温水、冷水
、の温度が安定しない、さらに記憶ベルト104の高温
相の引っ張り力が低温相に及ぼし過大応力により記憶ベ
ルト104の寿命が短かくなる故高温相応力の大きさが
制限され、外部へ大きな動力を取り出す事が出来ない。
By heating part A and cooling part B, the pulley 100.
A thermally driven engine in which 101 rotates is considered,
Due to the structure, the hot water tank and cold water tank that heat and cool the memory belt 104 are dish-shaped and have a small heat capacity, so the temperature of the hot water and cold water is not stable.Furthermore, the tensile force of the high temperature phase of the memory belt 104 is exerted on the low temperature phase. Since the life of the memory belt 104 is shortened due to excessive stress, the magnitude of high temperature phase stress is limited, and large power cannot be extracted to the outside.

(実施例) 形状記憶合金と云われる金属を変態温度以下での低温相
(マルテンサイト相)の状態にて力を加えると見掛けの
塑性変形を起こすが加熱し高温和(オーステナイト相)
にすると変形前の状態に戻る。低温相から高温相に変わ
る変態をマルテンサイト逆変態、高温相から低温相に変
わる変態をマルテンサイト変態と云う、低温相での変形
させる力よりもマルテンサイト逆変悪決に変形前の状態
に戻る形状記憶回復力の方が大きいので其の力の差を利
用して動力を得るものである。第1図に於いて、プーリ
ー4、プーリー3は軸9、軸8に楔着され、プーリー5
はアイドラーで冷水槽7の中に入って居る。プーリー2
は温水槽6の中に入っており、プーリー2.3.4,5
の直径は全て同じである。スプロケット11はプーリー
2に、スプロケット12はプーリー3にそれぞれ固定さ
れ、スプロケット11とスプロケット12は同径で、チ
ェーン13にて連結されて居る。スプロケット14はチ
ェーン13のテンション用である。プーリー5以外は全
て伝導miにて連結され、回転方向はプーリー3が時計
方向回転でプーリー4.プーリー2は反時計方向回転す
る様になっている。減速tl110により軸9は軸8に
対して逆方向回転で、減速され減速比を1とし、iは手
動又は自動にて変更できる。形状記憶合金にて製作され
て冷水槽7にて冷やされて引き伸ばされた記憶ベルト1
が点イより温水槽6の中に入り徐々に昇温しある温度に
達すると点口にてマルテンサイト逆変態を起こし弾性係
数が2に増加し形状記憶回復応力が生ずる。形状回復応
力は昇温と共に増加し軸8より外部に取り出す力の応力
と低温相の記憶ベルト1を引き伸ばすための応力の合計
より上回った時点ホ〜点へにて長さが縮小、形状記憶回
復し点二〜点千間の張力が増しプーリー4とプーリー2
に張力が及ぼし記憶ベルトlは矢印方向に動き冷水槽7
に点ヌより入り冷却され点ルにてマルテンサイト変態し
弾性係数が減少し点ル〜点ヨ間で引き伸ばされる。記憶
ベルト1は再び点イより温水槽6に入り連続して動き続
ける。記憶ベルト1とプーリーの動きに付いて説明する
と第1図に於いて点ホ〜点へ間にて形状記憶回復して記
憶ベルト1は縮小し、点二〜点千間の張力が増しプーリ
ー4を時計方向回転させようとし、プーリー2を反時計
方向回転させようとする。今記憶ベルト1の張力のプー
リー4側をFl、プーリー2側をF2としプーリー4.
2の半径をR、プーリー3に対するプーリー4の減速比
をiとし1時計方向回転を十反時計方向回転を−とすれ
ば、プーリー2とプーリー3はスプロケット11.12
、チェーン13により逆方向回転、同回転速度になって
居る故、Flにて軸8を回転させようとするモーメント
M1はM、=FIRi X (−1) =−FIRi 
 であり、F、にて軸8を回転させようとするるモーメ
ントM、はMx= (FIR)X(1)=F2Rであり
F、=F2、i<1なので1−F、Ri l <F、R
なので M、<M!  故に軸8は時計方向回転し、記
憶ベルト1は矢印方向に送られる。又記憶ベルト1の形
状記憶回復量と速度の関係を説明すればV、は低温相の
記憶ベルト1の動く速さ、■2は高温相の記憶ベルト1
の動く速さ、減速比をiとし、単位時間当たりの形状記
憶回復量をSとすれば Vオ=iV、  ・・・・・・■ S=V、−V、・・・・・・■ 0式を0式に代入し整理すれば V+=S/(1−i) Vx=S/l(1/i)  11 であり図で表すと第2図となりiの添字の数が大きい程
減速比が小さい事を示す、減速比iを一定とすると、v
l、■2はSが大きくなるほど大きくなる事を示し、S
が同じとすると減速比が小さくなる程■1、■、が大き
くなる事を示す。
(Example) When a force is applied to a metal called a shape memory alloy while it is in a low-temperature phase (martensitic phase) below its transformation temperature, it undergoes apparent plastic deformation, but when heated, it undergoes a high-temperature alloy (austenite phase).
If you do this, it will return to its pre-transformed state. The transformation from a low-temperature phase to a high-temperature phase is called martensitic reverse transformation, and the transformation from a high-temperature phase to a low-temperature phase is called martensitic transformation. Since the returning shape memory recovery force is greater, power is obtained by utilizing the difference in force. In FIG. 1, pulley 4 and pulley 3 are wedged to shaft 9 and shaft 8, and pulley 5
is an idler and is located in cold water tank 7. Pulley 2
is in the hot water tank 6, and the pulleys 2, 3, 4, 5
All diameters are the same. Sprocket 11 is fixed to pulley 2, and sprocket 12 is fixed to pulley 3. Sprocket 11 and sprocket 12 have the same diameter and are connected by chain 13. Sprocket 14 is for tensioning chain 13. All the pulleys except pulley 5 are connected by conduction mi, and the rotation direction is that pulley 3 rotates clockwise and pulley 4. Pulley 2 is designed to rotate counterclockwise. By the deceleration tl110, the shaft 9 rotates in the opposite direction to the shaft 8 and is decelerated to a deceleration ratio of 1, and i can be changed manually or automatically. Memory belt 1 made of shape memory alloy, cooled and stretched in a cold water tank 7
enters the hot water tank 6 from point A and gradually heats up, and when it reaches a certain temperature, martensite reverse transformation occurs at the point A, the elastic modulus increases to 2, and shape memory recovery stress is generated. The shape recovery stress increases as the temperature rises, and when it exceeds the sum of the stress of the force taken out from the shaft 8 and the stress for stretching the memory belt 1 in the low temperature phase, the length decreases and shape memory recovery occurs. The tension between points 2 and 1000 increases between pulley 4 and pulley 2.
The storage belt l moves in the direction of the arrow and reaches the cold water tank 7.
It enters from point N and is cooled, undergoes martensitic transformation at point L, its elastic modulus decreases, and is stretched between point L and point Y. The memory belt 1 enters the hot water tank 6 again from point A and continues to move continuously. To explain the movement of the memory belt 1 and the pulleys, in Fig. 1, the memory belt 1 recovers its shape memory between points HO and 100, and the memory belt 1 contracts, and the tension between points 2 and 1000 increases, and the pulley 4 attempts to rotate clockwise, and tries to rotate pulley 2 counterclockwise. Now, let the pulley 4 side of the tension of the memory belt 1 be Fl, and the pulley 2 side be F2, and the pulley 4.
If the radius of 2 is R, the reduction ratio of pulley 4 to pulley 3 is i, and 1 clockwise rotation is 10 and counterclockwise rotation is -, then pulley 2 and pulley 3 are sprockets 11 and 12.
, the chain 13 rotates in the opposite direction and at the same rotational speed, so the moment M1 that tries to rotate the shaft 8 at Fl is M, = FIRi X (-1) = -FIRi
The moment M, which tries to rotate the shaft 8 at F, is Mx = (FIR) ,R
So M, <M! Therefore, the shaft 8 rotates clockwise and the storage belt 1 is fed in the direction of the arrow. Also, to explain the relationship between the shape memory recovery amount and speed of the memory belt 1, V is the moving speed of the memory belt 1 in the low temperature phase, and 2 is the moving speed of the memory belt 1 in the high temperature phase.
If the moving speed and reduction ratio are i, and the amount of shape memory recovery per unit time is S, then V = iV, ......■ S = V, -V, ......■ Substituting equation 0 into equation 0 and sorting it out, V+=S/(1-i) Vx=S/l(1/i) 11 If expressed graphically, it will be shown in Figure 2, and the larger the number of subscripts of i, the slower the speed will be. If the reduction ratio i, which indicates that the ratio is small, is constant, then v
l, ■2 indicates that it increases as S increases, and S
Assuming that is the same, the smaller the reduction ratio, the larger ■1 and ■ become.

第3図はマルテンサイト逆変態した記憶ベルト1の温度
と形状記憶回復応力との関係を示し、記憶ベルト1の温
度の上昇と共に形状記憶回復応力が増す、又λは低温相
時に与えられた歪量を示し添字の大きい程低温時に与え
られた歪量が大きい事を示し、低温時に与えられた歪量
の大きさに応じて形状記憶回復応力の最高値が大きくな
る事を示す、第4図は記憶ベルト1の応力と歪の関係を
示しα曲線は低温相(マルテンサイト相)の歪と応力の
関gAと示し、β曲線は高温相(オーステナイト相)の
歪と応力の関係を示すσ2は低温相の記憶ベルトlを引
き伸ばす応力σ1と軸8より外部へ取り出す動力分の応
力の合計である0図に示すカタカナは第1図のカタカナ
で示す記憶ベルト1の位置と対応しており冷水槽7にて
冷却され引き伸ばされた記憶ベルト1は温水槽6に点イ
より入り昇温しある温度に達すると虎口にてマルテンサ
イト逆変態し、さらに昇温に伴い応力を増し点ホにてσ
、に達すると形状記憶回復し歪がε、になるまで減少し
点へに至る、その回復力によりプーリー4.2を回転さ
せ記憶ベルト1が送られ点ヌより冷水槽7に入り徐々に
降温し点ルにてマルテンサイト変態し、弾性係数、応力
が減少し応力がσ1になると、歪みがε2になるまでま
で引き伸ばされ点ヨに至る。そして順次送られ点イより
温水槽6に入る。形状記憶合金の寿命を決定する大きな
要因として低温相での過大応力があり、それを防止する
ために第1図の虎口の位置を定位置に保つ必要がある。
Figure 3 shows the relationship between the temperature and shape memory recovery stress of the memory belt 1 that has undergone reverse martensitic transformation. Figure 4 shows that the larger the subscript, the greater the amount of strain applied at low temperature, and the maximum value of shape memory recovery stress increases depending on the amount of strain applied at low temperature. indicates the relationship between stress and strain in the memory belt 1, the α curve indicates the relationship gA between strain and stress in the low temperature phase (martensite phase), and the β curve indicates the relationship between strain and stress in the high temperature phase (austenite phase) σ2 is the sum of the stress σ1 that stretches the memory belt l in the low temperature phase and the stress for the power taken out from the shaft 8. The katakana shown in Figure 0 corresponds to the position of the memory belt 1 shown in katakana in Figure 1. The memory belt 1, which has been cooled and stretched in the water tank 7, enters the hot water tank 6 from point A and is heated.When it reaches a certain temperature, it reversely transforms into martensite at the mouth, and further increases stress as the temperature rises, and reaches point E. σ
When reaching , the shape memory recovers and the strain decreases to ε, reaching the point.The recovery force causes the pulley 4.2 to rotate and the memory belt 1 is sent from point N to the cold water tank 7 where the temperature is gradually lowered. At point L, martensitic transformation occurs, the elastic modulus and stress decrease, and when the stress becomes σ1, it is stretched until the strain becomes ε2, reaching point Y. The water is then sent sequentially and enters the hot water tank 6 from point A. A major factor that determines the lifespan of shape memory alloys is excessive stress in the low-temperature phase, and in order to prevent this, it is necessary to maintain the position of the tip in Figure 1 in a fixed position.

なぜなら虎口〜点ハの距離が長くなると虎口の温度は一
定なので点への温度が高くなり虎口〜点ハの平均応力も
大きくなり、結局点夕〜点ハの応力も大きくなるので低
温相の応力が過大となる。又虎口が点へを通り越し点二
に近付くと点タル点ハ間と点二〜点チ間の記憶ベルト張
力差をプーリー2にて受けられなくなり結局低温相に過
大応力がかかる事になる6点口の位置のずれる原因とし
−て冷水槽7、温水槽6の温度変化や外部へ取り出すト
ルクの変動があり、冷水槽7、温水槽6の温度変化があ
ると記憶ベルトの低温相から高温相へ加熱時間が変わり
マルテンサイト逆変態の位1がずれる。又外部へ取り出
すトルクの変動があると第3図の形状記憶回復応力と温
度が比例して居る故外部へ取り出すトルクが小さいと形
状記憶回復が早くなり外部へ取り出すトルクが大きいと
形状記憶回復が遅くなるので形状回復後の長さが変動し
記憶ベルト1の全長は一定なので低温相の歪量が変動し
形状記憶回復量が変動するので、記憶ベルト1の速度が
変わり、虎口の位置が変わる。そこで虎口の位置を一定
にする方法として減速機10の減速比lを変更し記憶ベ
ルト1の速度を変更する。第2図により形状記憶回復量
が一定の場合減速機10の変速比iを変更する事により
V、、V、が変更され虎口の8位置を一定に保つ事が出
来、低温相に於ける過大応力を避ける事が出来る。記憶
ベルト1の高温相の応力の小さい時等の低温相に過大応
力がかからない時や、低温相にかがる過大応力を緩和す
る方法がある時、等のマルテンサイト逆変態の起こる位
置(第1図の虎口)がずれても低温相に過大応力がかか
らない場合には減速機10を効率向上用に用いる事が出
来る。形状記憶回復力が一定の時、記憶ベルト1の速度
を速くする程M11!′憶ベルト1の出す動力が大きく
なり効率も上がる。第1図の形状記憶回復量1の点ホ〜
点へは記憶ベルト1の速度が大きくなる程、記憶ベルト
1が温水槽6より出る点トに近付き、近付くほど効率が
上がる故減速機10の減速比iを変えることにより熱エ
ネルギーを機械エネルギーに変換する効率を向上させる
事が出来る。
This is because as the distance from the mouth of the tiger to point Ha increases, the temperature of the mouth of the tiger remains constant, so the temperature at the point increases and the average stress from the mouth of the tiger to point Ha also increases, and eventually the stress from the mouth of the tiger to point Ha also increases, so the stress in the low temperature phase becomes excessive. Also, when the tiger mouth passes the point and approaches point 2, the difference in tension of the memory belt between point C and between point 2 and point C cannot be received by pulley 2, resulting in excessive stress being applied to the low temperature phase at point 6. The causes of misalignment of the openings include temperature changes in the cold water tank 7 and hot water tank 6 and fluctuations in the torque taken out to the outside. As the heating time changes, the degree of martensite reverse transformation shifts. Also, if there is a change in the torque taken out to the outside, the shape memory recovery stress shown in Figure 3 is proportional to the temperature, so if the torque taken out to the outside is small, the shape memory recovery will be faster, and if the torque taken out to the outside is large, the shape memory recovery will be. Since it slows down, the length after shape recovery changes, and since the total length of memory belt 1 is constant, the amount of strain in the low temperature phase changes, and the amount of shape memory recovery changes, so the speed of memory belt 1 changes, and the position of the tiger mouth changes. . Therefore, as a method of keeping the position of the tiger mouth constant, the speed reduction ratio l of the reducer 10 is changed to change the speed of the memory belt 1. As shown in Fig. 2, when the amount of shape memory recovery is constant, by changing the gear ratio i of the reducer 10, V,, V, can be changed and the 8 positions of the tiger mouth can be kept constant, and the excessive You can avoid stress. The position where martensitic reverse transformation occurs (the first stage) is determined when there is no excessive stress applied to the low temperature phase, such as when the stress in the high temperature phase of the memory belt 1 is small, or when there is a method to alleviate the excessive stress applied to the low temperature phase. If excessive stress is not applied to the low-temperature phase even if the position (see Figure 1) is shifted, the reducer 10 can be used to improve efficiency. When the shape memory recovery force is constant, the faster the speed of the memory belt 1 is, the more M11! 'The power output by the storage belt 1 increases and the efficiency also increases. Point H of shape memory recovery amount 1 in Figure 1
As the speed of the memory belt 1 increases, the memory belt 1 approaches the point where it exits the hot water tank 6, and the closer it gets, the more efficient it becomes.By changing the reduction ratio i of the reducer 10, thermal energy is converted into mechanical energy. Conversion efficiency can be improved.

第5図は低温相の過大応力を緩和するための実施例であ
る。プーリー2.3の間に数個のプーリー15を設ヱし
、プーリー15にそれぞれスプロケット16を固定しチ
ェーン13によりプーリー15はプーリー2と同回転方
向、同周速度となるよう駆動される横這となっておりプ
ーリー15により高温相の応力を受はマルテンサイト逆
変態位置の虎口と1−リー2との接触の点ハの距離が長
くなってもプーリー15にて高温相の張力を受は低温相
に過大応力が掛からないようにした実施例である。
FIG. 5 shows an embodiment for alleviating excessive stress in the low temperature phase. Several pulleys 15 are installed between the pulleys 2 and 3, and a sprocket 16 is fixed to each pulley 15, and the pulley 15 is driven by a chain 13 so that it has the same rotational direction and the same circumferential speed as the pulley 2. Therefore, the tension of the high temperature phase is not received by the pulley 15 even if the distance between the point of contact between the tiger mouth at the martensitic reverse transformation position and the point of contact between 1 and 2 becomes longer. This is an example in which excessive stress is not applied to the low temperature phase.

(発明の効果) 冷水槽と温水槽の中にプーリーを設置する事により水槽
の中の記憶ベルトの長さを長くでき熱容量の大きな水槽
にて充分に記憶ベルトの加熱冷却が行え、水槽温度が安
定するため安定した動力を取り出す事が出来る。又減速
機にて記憶ベルトの速度制御を行う事により記憶ベルト
の過大応力が働くのを防止するためや効率の向上が図れ
る。
(Effect of the invention) By installing pulleys in the cold water tank and the hot water tank, the length of the memory belt in the water tank can be increased, and the storage belt can be sufficiently heated and cooled in a water tank with a large heat capacity, so that the temperature of the water tank can be lowered. Because it is stable, stable power can be extracted. Furthermore, by controlling the speed of the memory belt using a speed reducer, excessive stress on the memory belt can be prevented and efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の熱駆動エンジンの実施例の側面図であ
り構造説明図、第2図は記憶ベルト1の温水槽6に入る
(低温相)速度■1又は温水槽6を出る(高温相)速度
v2と形状記憶回復量Sと減速機10の減速比iとの関
係を示した図、第3図は記憶ベルト1の温度と形状記憶
回復応力の関係を示す図、第4図は記憶ベルト1の歪と
応力の関係を示す図、第5図は本発明の低温相の過大応
力を緩和する実施例、第6図は従来の熱駆動エンジン 1 記憶ベルト  2 プーリー 3 プーリー   4 プーリー 5 プーリー   6 温水槽 7 冷水Wj    S 軸
Fig. 1 is a side view and structural explanatory diagram of an embodiment of the thermally driven engine of the present invention, and Fig. 2 is a speed diagram of the storage belt 1 entering the hot water tank 6 (low temperature phase) or exiting the hot water tank 6 (high temperature phase). Phase) A diagram showing the relationship between the speed v2, the shape memory recovery amount S, and the reduction ratio i of the reducer 10, FIG. 3 is a diagram showing the relationship between the temperature of the memory belt 1 and the shape memory recovery stress, and FIG. A diagram showing the relationship between strain and stress in the memory belt 1, FIG. 5 is an embodiment of the present invention for alleviating excessive stress in the low temperature phase, and FIG. 6 is a diagram showing the conventional thermally driven engine 1 memory belt 2 pulley 3 pulley 4 pulley 5 Pulley 6 Hot water tank 7 Cold water Wj S shaft

Claims (1)

【特許請求の範囲】[Claims] 4個のプーリー2、3、4、5、に形状記憶合金にて製
作された記憶ベルト1が掛けられ、プーリー5はアイド
ラーで冷水槽7の冷水中に、プーリー2は温水槽6の温
水中にあり、プーリー3、4は軸8、9にそれぞれ楔着
され、軸8は外部に取り出す出力の伝導軸であり、軸9
は軸8に対して減速機10により減速され、逆方向回転
する様になっており、出力トルク変動や、冷水槽7温水
槽6の温度変化、等に応じて自動又は手動にて減速機1
0の減速比を変更することが出来、スプロケット11、
12はプーリー2、3にそれぞれ固定され、チェーン1
3によりプーリー2に対しプーリー3は同回転速度にて
逆方向回転する様連結されており、スプロケット14は
チェーン13のテンション用であり、プーリー2、3の
間にはプーリー2と同方向回転、同周速度の数個のプー
リー15とプーリー15に固定された数個のスプロケッ
ト16をも取り付け可能とする熱駆動エンジン。
A memory belt 1 made of shape memory alloy is hung on four pulleys 2, 3, 4, and 5, and pulley 5 is an idler and is placed in cold water in a cold water tank 7, and pulley 2 is placed in hot water in a hot water tank 6. The pulleys 3 and 4 are wedged on shafts 8 and 9, respectively, shaft 8 is a transmission shaft for the output taken out to the outside, and shaft 9
is decelerated by a reducer 10 relative to the shaft 8 and rotates in the opposite direction, and the reducer 1 is automatically or manually rotated in response to output torque fluctuations, temperature changes in the cold water tank 7 and the hot water tank 6, etc.
0 reduction ratio can be changed, sprocket 11,
12 is fixed to pulleys 2 and 3, respectively, and chain 1
3, the pulley 3 is connected to the pulley 2 so that it rotates in the opposite direction at the same rotational speed, and the sprocket 14 is for tensioning the chain 13. This heat-driven engine allows installation of several pulleys 15 having the same circumferential speed and several sprockets 16 fixed to the pulleys 15.
JP22804588A 1988-09-12 1988-09-12 Tehrmally-driven engine Pending JPH0275773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22804588A JPH0275773A (en) 1988-09-12 1988-09-12 Tehrmally-driven engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22804588A JPH0275773A (en) 1988-09-12 1988-09-12 Tehrmally-driven engine

Publications (1)

Publication Number Publication Date
JPH0275773A true JPH0275773A (en) 1990-03-15

Family

ID=16870337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22804588A Pending JPH0275773A (en) 1988-09-12 1988-09-12 Tehrmally-driven engine

Country Status (1)

Country Link
JP (1) JPH0275773A (en)

Similar Documents

Publication Publication Date Title
US4275561A (en) Energy conversion system
US4055955A (en) Memory alloy heat engine and method of operation
CN102121463B (en) Heat engine system
US4246754A (en) Solid state thermal engine
BR9909706A (en) Human generation and transmission energy system
US8800283B2 (en) Method of starting and operating a shape memory alloy heat engine
JPH0275773A (en) Tehrmally-driven engine
EP0129342A2 (en) Energy conversion system utilizing a memory effect material
CN102654114A (en) Energy harvesting system
Kaneko et al. Development of reciprocating heat engine using shape memory alloy-ratchet type drive system with self-drive rotational valve
US4393654A (en) Shape memory element engine
JPS6332374Y2 (en)
Yukawa et al. Continuously variable transmission using quadric crank chains
CN111963641A (en) SMA spring temperature difference driving heat dissipation device
RU2431058C1 (en) Martensite turbine machine
CN102072121B (en) Method for starting heat engine
Cho et al. Fabrication and output power characteristics of heat-engines using tape-shaped SMA element
US4503676A (en) Apparatus for directly converting thermal to rotational energy
US20150000264A1 (en) 100% conversion of thermal energy to mechanical energy using sma heat engines
CN2301682Y (en) convex lens solar boiler
CN113517826B (en) High-efficiency thermoelectric power generation device capable of sensing flow change
EP0678671B1 (en) Heat harness for converting heat energy into mechanical energy
Morita et al. Fabrication and output characteristics of a belt-driven type heat-engine using shape memory alloy spiral spring actuators
SU1430586A1 (en) Thermal engine
Johnson CONTINUOUS-BAND NITINOL HEAT ENGINES: SOME THERMODYNAMIC AND MECHANICAL CONSIDERATIONS