JPS6332374Y2 - - Google Patents

Info

Publication number
JPS6332374Y2
JPS6332374Y2 JP558982U JP558982U JPS6332374Y2 JP S6332374 Y2 JPS6332374 Y2 JP S6332374Y2 JP 558982 U JP558982 U JP 558982U JP 558982 U JP558982 U JP 558982U JP S6332374 Y2 JPS6332374 Y2 JP S6332374Y2
Authority
JP
Japan
Prior art keywords
belt
pulley
shape memory
heat
driven engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP558982U
Other languages
Japanese (ja)
Other versions
JPS58108278U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP558982U priority Critical patent/JPS58108278U/en
Publication of JPS58108278U publication Critical patent/JPS58108278U/en
Application granted granted Critical
Publication of JPS6332374Y2 publication Critical patent/JPS6332374Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Description

【考案の詳細な説明】 本考案は、形状記憶ベルトの加熱冷却により回
転駆動がなされる熱駆動エンジンに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermally driven engine that is rotationally driven by heating and cooling a shape memory belt.

形状記憶合金の一つの性質である形状記憶効果
とは、文字どおり材料が元の形を記憶している性
質のことで、ある温度で変形したものが温度を上
げると元の形状に戻る現象を言う。この現象が熱
弾性型マルテンサイト変態に起因する点について
はよく知られており、この様な形状記憶合金の元
の形に戻る際の回復力を機械的エネルギーとして
取り出す装置として代表的なものが熱駆動エンジ
ンである。
The shape memory effect, which is one of the properties of shape memory alloys, is literally the property of a material remembering its original shape, and refers to the phenomenon in which something deformed at a certain temperature returns to its original shape when the temperature is raised. . It is well known that this phenomenon is caused by thermoelastic martensitic transformation, and there is a typical device that extracts the recovery force when the shape memory alloy returns to its original shape as mechanical energy. It is a thermally driven engine.

上記マルテンサイト変態をする温度は、形状記
憶合金の組成、加工条件、熱処理条件を適当に選
ぶことにより殆んど任意に設定でき、また変態・
逆変態を数10℃の温度範囲で起こさせることもで
きる。この様な形状記憶合金を用いた熱駆動エン
ジンは、地熱、工場排熱、太陽熱等の熱エネルギ
ー、あるいはそれらによる温排水の低質熱エネル
ギーを有効に回収でき、現在の様にエネルギ枯渇
がさけばれている時に非常に有効な手段といえ
る。
The temperature at which the martensitic transformation occurs can be set almost arbitrarily by appropriately selecting the composition, processing conditions, and heat treatment conditions of the shape memory alloy, and the temperature at which the martensitic transformation occurs can be set almost arbitrarily.
Reverse transformation can also occur in a temperature range of several tens of degrees Celsius. A heat-driven engine using such a shape memory alloy can effectively recover thermal energy from geothermal heat, factory exhaust heat, solar heat, etc., or low-quality thermal energy from heated wastewater from these sources, thereby avoiding the current energy depletion. It can be said to be a very effective method when

第1図は本出願人より既に出願した実願昭55−
152500(実開昭57−73381号)に記載される熱駆動
エンジンの側面図である。同一径(又は異なる
径)のプーリ1,2間に形状記憶合金で出来た形
状記憶ベルト3が掛けられ、プーリ1,2と各々
同軸上に固定された異なる径(又は同一径)の駆
動プーリ4,5間に熱による収縮の少ない材質か
らなる駆動ベルト6が掛けられている。アイドラ
プーリ7,8は形状記憶ベルト3が冷水槽9内の
冷却水に充分つかる様に形状記憶ベルト3の一部
を押える為のプーリである。温水槽10には形状
記憶ベルト3を加熱する為の温水が供給される。
プーリ1,2間に掛けられた形状記憶ベルト3は
形状記憶した形より伸びた状態で掛けられており
温水槽10に温水が供給された時温水につかつて
いる形状記憶ベルト3は収縮すると同時に形状回
復力を発生する。この形状回復力は、プーリ1,
2を経て軸から駆動プーリ4,5に伝わり、更に
駆動ベルト6に伝達される。この際駆動プーリ
4,5は互いに径が異なる為、小径側の駆動プー
リ5側の駆動ベルトの張力が、大径側の駆動プー
リ4側の駆動ベルトの張力を上廻り熱駆動エンジ
ンは矢印方向に回転する。加熱部を通過した形状
記憶ベルト3は、エンジンの回転にともなつて冷
却部に到るが、プーリ1,2の回転数は駆動プー
リ4,5の径比により異なつており、プーリ1に
比してプーリ2の方が多く回転する為、形状記憶
ベルト3は冷水槽9を通過時に冷却され、低温相
の状態で引伸ばされる。引伸ばしに要する力は、
形状回復力に比してかなり小さな力である。以上
の如く形状記憶ベルト3は、加熱、冷却を繰返し
受け収縮と伸長を繰返し行ない、加熱源、冷却源
が有る限り連続的に回転する。
Figure 1 shows the Utility Application filed in 1983 by the present applicant.
152500 (Utility Model Application Publication No. 57-73381) is a side view of a thermally driven engine. A shape memory belt 3 made of a shape memory alloy is hung between pulleys 1 and 2 of the same diameter (or different diameters), and drive pulleys of different diameters (or the same diameter) are each fixed coaxially with the pulleys 1 and 2. A drive belt 6 made of a material that is less likely to shrink due to heat is placed between the drive belts 4 and 5. The idler pulleys 7 and 8 are pulleys for pressing a part of the shape memory belt 3 so that the shape memory belt 3 is sufficiently immersed in the cooling water in the cold water tank 9. Hot water for heating the shape memory belt 3 is supplied to the hot water tank 10.
The shape memory belt 3 stretched between the pulleys 1 and 2 is stretched out from the memorized shape, and when hot water is supplied to the hot water tank 10, the shape memory belt 3 that is attached to the hot water contracts at the same time. Generates shape recovery force. This shape recovery force is based on pulley 1,
2, the signal is transmitted from the shaft to the drive pulleys 4 and 5, and further transmitted to the drive belt 6. At this time, since the drive pulleys 4 and 5 have different diameters, the tension of the drive belt on the small diameter drive pulley 5 side exceeds the tension of the drive belt on the large diameter drive pulley 4 side, and the thermal drive engine moves in the direction of the arrow. Rotate to. The shape memory belt 3 that has passed through the heating section reaches the cooling section as the engine rotates, but the rotation speed of the pulleys 1 and 2 differs depending on the diameter ratio of the drive pulleys 4 and 5, Since the pulley 2 rotates more, the shape memory belt 3 is cooled while passing through the cold water tank 9 and is stretched in a low temperature state. The force required for stretching is
This force is quite small compared to the shape recovery force. As described above, the shape memory belt 3 is repeatedly heated and cooled, contracts and expands repeatedly, and rotates continuously as long as a heating source and a cooling source are available.

このような熱駆動エンジンは、極めて低速回転
で運転した場合にはあまり問題にはならないが少
し回転数が上ると形状記憶ベルト3が冷水槽9内
の冷水をかき出し、その冷水を温水槽10内にま
で移送してしまう。その場合温水槽10内の温水
の温度は低下し、熱駆動エンジンの出力を充分取
出すことが出来ないという欠点があつた。
Such a heat-driven engine does not cause much of a problem when operating at extremely low speeds, but when the rotation speed increases a little, the shape memory belt 3 scrapes out the cold water in the cold water tank 9 and transfers the cold water to the hot water tank 10. It will be transferred to. In this case, the temperature of the hot water in the hot water tank 10 decreases, and there is a drawback that the output of the heat-driven engine cannot be sufficiently extracted.

本考案は上記欠点を解消し簡単な構造で実用的
な熱駆動エンジンを提案する事を目的とするもの
である。
The purpose of the present invention is to solve the above-mentioned drawbacks and to propose a practical heat-driven engine with a simple structure.

以下本考案の一実施例を図面に従つて詳細に説
明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第2図は本考案に係わる水切りプーリ付熱駆動
エンジンの一実施例の側面図である。第1図と同
じ番号は、同一のものを示しており、また回転原
理は全く同じである為エンジン構造及び動作の詳
細な説明は省略する。熱駆動エンジン回転中は、
上述の如く形状記憶ベルト3が冷水槽9内の冷水
をかき出す為、それを防止すべく、同図に示され
る水切りプーリ11が付加される。従つて形状記
憶ベルト3はアイドラプーリ8を通過後水切りプ
ーリ11を上から通過し、その後にプーリ2に入
る構造となる。従つて形状記憶ベルト3は、冷水
槽9を通過後水切りプーリ11に移る際に大きく
方向を転換する事になり、さらに水切りプーリ1
1上でも大きく方向転換する。その結果形状記憶
ベルト3に付着していた水は充分に振払う事が出
来、温水槽10へ形状記憶ベルト3により運び込
まれる水の量は、極めて少くする事が出来、温水
槽10内に冷水が混入することを防ぐことができ
るので温水は高温を保つ事が出来熱駆動エンジン
は、有効に温水を利用して高出力が得られる。
FIG. 2 is a side view of an embodiment of a heat-driven engine with a drain pulley according to the present invention. The same numbers as in FIG. 1 indicate the same parts, and since the rotation principle is exactly the same, a detailed explanation of the engine structure and operation will be omitted. While the thermally driven engine is running,
As mentioned above, since the shape memory belt 3 scrapes out the cold water in the cold water tank 9, the drain pulley 11 shown in the figure is added to prevent this. Therefore, the shape memory belt 3 passes through the idler pulley 8, passes through the drain pulley 11 from above, and then enters the pulley 2. Therefore, the shape memory belt 3 changes its direction significantly when moving to the drain pulley 11 after passing through the cold water tank 9.
Even on top of 1, there is a big change in direction. As a result, the water adhering to the shape memory belt 3 can be sufficiently shaken off, and the amount of water carried into the hot water tank 10 by the shape memory belt 3 can be extremely reduced. Since hot water can be prevented from being mixed in, the hot water can be kept at a high temperature, and the heat-driven engine can effectively utilize hot water to obtain high output.

以上本考案に係わる実施例を詳細に説明してき
たが、本考案によれば、冷水槽9からの冷水の流
出が防止出来、高効率の熱駆動エンジンを作るう
えで非常に有効である。
The embodiments of the present invention have been described above in detail.According to the present invention, it is possible to prevent the cold water from flowing out from the cold water tank 9, and it is very effective in producing a highly efficient heat-driven engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱駆動エンジンの側面図、第2
図は本考案に係わる水切りプーリ付熱駆動エンジ
ンの一実施例の側面図である。 図中、1,2:プーリ、3:形状記憶ベルト、
4,5:駆動プーリ、6:駆動ベルト、7,8:
アイドラプーリ、9:冷水槽、10:温水槽、1
1:水切りプーリ。
Figure 1 is a side view of a conventional heat-driven engine;
The figure is a side view of an embodiment of a heat-driven engine with a drain pulley according to the present invention. In the figure, 1, 2: pulley, 3: shape memory belt,
4, 5: Drive pulley, 6: Drive belt, 7, 8:
Idler pulley, 9: Cold water tank, 10: Hot water tank, 1
1: Drainer pulley.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 回転可能な2つのプーリ間に形状記憶合金素子
からなるベルトを掛け、該ベルトの一部を加熱、
他の一部を冷却することで前記プーリを回転させ
る熱駆動エンジンにおいて、前記加熱を行なう高
温液体を貯え前記ベルトの一部が浸される液体槽
と、前記冷却を行なう低温液体を貯え前記ベルト
の他の一部が浸される液体槽と、前記2種の液体
槽のうち上部に位置する液体槽の内部に前記ベル
トを導く2個のアイドラプーリと、該アイドラプ
ーリの近傍で前記ベルトの進行方向に位置し前記
ベルトの進行方向を急激に転換せしめる水切りプ
ーリとを備えたことを特徴とする水切りプーリ付
熱駆動エンジン。
A belt made of a shape memory alloy element is hung between two rotatable pulleys, a part of the belt is heated,
In a thermally driven engine that rotates the pulley by cooling the other part, there is a liquid tank that stores a high temperature liquid for heating and in which a part of the belt is immersed, and a liquid tank that stores a low temperature liquid for cooling and that is for the belt. a liquid tank in which the other part of the belt is immersed; two idler pulleys that guide the belt into the upper liquid tank of the two types of liquid tanks; 1. A heat-driven engine with a drain pulley, comprising: a drain pulley located in the direction of travel of the belt for rapidly changing the direction of travel of the belt.
JP558982U 1982-01-18 1982-01-18 Thermal drive engine with drain pulley Granted JPS58108278U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP558982U JPS58108278U (en) 1982-01-18 1982-01-18 Thermal drive engine with drain pulley

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP558982U JPS58108278U (en) 1982-01-18 1982-01-18 Thermal drive engine with drain pulley

Publications (2)

Publication Number Publication Date
JPS58108278U JPS58108278U (en) 1983-07-23
JPS6332374Y2 true JPS6332374Y2 (en) 1988-08-29

Family

ID=30018389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP558982U Granted JPS58108278U (en) 1982-01-18 1982-01-18 Thermal drive engine with drain pulley

Country Status (1)

Country Link
JP (1) JPS58108278U (en)

Also Published As

Publication number Publication date
JPS58108278U (en) 1983-07-23

Similar Documents

Publication Publication Date Title
EP0016805B1 (en) Energy conversion system
US4055955A (en) Memory alloy heat engine and method of operation
CN102121463B (en) Heat engine system
FR2868519B1 (en) THERMAL GENERATOR WITH MAGNETO-CALORIC MATERIAL AND METHOD OF GENERATING THERMIES
JPS6332374Y2 (en)
IT1123455B (en) THERMOELECTRIC POWER STATION POWERED BY A GEOTHERMAL HEAT SOURCE
DE102012202399B4 (en) METHOD FOR STARTING AND OPERATING A MOLDED MEMBRANE HEATING POWER ENGINE
PT1132192E (en) METHOD FOR HEATING AND REFRIGERATING EXTRUSION CYLINDERS AND A DEVICE FOR THE REALIZATION OF THE SAME
JPS6332375Y2 (en)
FR2457448A1 (en) METHOD AND DEVICE FOR HEATING PREMISES AND WATER USED IN SUCH PREMISES
JPS6332376Y2 (en)
RU97103994A (en) FULLY AUTONOMOUS MULTI-FUNCTIONAL TECHNOLOGICAL INSTALLATION OF THE DAIRY FARM FOR THE PRODUCTION OF DAIRY PRODUCTS
JPH0275773A (en) Tehrmally-driven engine
JPS632033B2 (en)
JPS6236158B2 (en)
JPS6158669B2 (en)
JP2802423B2 (en) Temperature-sensitive magnetic material heat engine
JPS54111026A (en) Cooling fan device for internal combustion engine
JPS56102923A (en) Water making apparatus
RU2431058C1 (en) Martensite turbine machine
SU1134774A1 (en) Magnetic heat engine
JPS5718470A (en) Thermally driven engine
Barbalat Waste heat recovery: Possible use of shape memory alloys
JPS56129773A (en) Thermally driven engine
RU2006675C1 (en) Magnetothermal engine