JPH0275159A - Non-aqueous electrolyte battery and manufacture of its positive electrode its manufacture - Google Patents

Non-aqueous electrolyte battery and manufacture of its positive electrode its manufacture

Info

Publication number
JPH0275159A
JPH0275159A JP63225333A JP22533388A JPH0275159A JP H0275159 A JPH0275159 A JP H0275159A JP 63225333 A JP63225333 A JP 63225333A JP 22533388 A JP22533388 A JP 22533388A JP H0275159 A JPH0275159 A JP H0275159A
Authority
JP
Japan
Prior art keywords
positive electrode
carbon black
surface area
slurry
polytetrafluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63225333A
Other languages
Japanese (ja)
Inventor
Koji Hirai
浩二 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63225333A priority Critical patent/JPH0275159A/en
Publication of JPH0275159A publication Critical patent/JPH0275159A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance the discharge characteristic under a heavy load by using a positive electrode electroconductive agent formed by adsorption of polytetrafluoroethylene previously in specific carbon black having a large surface area and oil suction amount. CONSTITUTION:Polytetrafluoroethylene is previously adsorbed in carbon black, whose surface area due to nitrogen adsorbing method ranges 950 thru 1300m<2>/g and oil suction amount due to DBP adsorption is between 350 and 500ml/100g, and the resultant is mixed with a positive electrode active substance and a solvent to form a slurry, which is coated on an electrode plate core and dried to accomplish a positive electrode. In this slurry the surface area and oil suction amount of carbon black are lessened with adsorption of the polytetrafluoroethylene, which suppresses is fibrillation to lead to enhancement of the slurry coating performance. A produced positive electrode is provided with enhanced discharging performance under a heavy load without dropping its strength and discharge capacity.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は正極活物質として二酸化マンガン、フッ化黒鉛
、硫化鉄、硫化銅等を用い、負極活物質としてリチウム
、ナトリウム等のアルカリ金属を用いる非水電解液電池
に係り、特に正極の改良に関するものである。
Detailed Description of the Invention (a) Industrial Application Field The present invention uses manganese dioxide, fluorinated graphite, iron sulfide, copper sulfide, etc. as the positive electrode active material, and alkali metals such as lithium, sodium, etc. as the negative electrode active material. The present invention relates to non-aqueous electrolyte batteries, and particularly to improvements in positive electrodes.

(ロ)従来の技術 一般に、この種の電池に用いられる正極活物質はそれ自
体導電性や保液性が乏しい。そこで人造黒鉛、天然黒鉛
或いは各種カーボンブラ・ツクなどの導電剤を添加して
いる。
(b) Prior Art Generally, the positive electrode active material used in this type of battery has poor conductivity and liquid retention properties. Therefore, conductive agents such as artificial graphite, natural graphite, and various carbon blacks are added.

しかし、重負荷条件下での放電特性の向上等を目的とし
て、導電剤の添加量を増加させると正極自身の強度低下
や活物質量の減少を要因として放電容量の低下等の問題
が生じる。
However, if the amount of conductive agent added is increased for the purpose of improving discharge characteristics under heavy load conditions, problems such as a decrease in discharge capacity arise due to a decrease in the strength of the positive electrode itself and a decrease in the amount of active material.

この問題の解決手段として、最近ではケッチエンブラッ
クなどで知られる高導電剤のカーボンブラックの使用が
検討されている。又、特開昭62211863号公報で
は窒素吸着法による表面積が95 (1−1300m’
/gt″DBP吸着による給油量が350〜500ml
/100gである特定のカーボンブラックを導電剤とし
て用いることが開示されており、更に、特開昭59−2
30257号公報では正極活物質、グラファイト及びカ
ーボンブランクからなる合剤のスラリー化が開示されて
いる。このスラリー化に関し、従来のように窒素吸着法
による表面積が約60m’/gでDBP吸着による給油
量が100ml/100g程度のカーボンブランクを用
いる場合にはスラリー化が可能であるが、前記のように
窒素吸着法による表面積が950−1300m’/gと
大きく、且DBP吸着による給油量が350−500m
l/100gと大きな特定のカーボンブラックを含有す
る正極合剤を用い、これに−収約に使用されているポリ
テトラフルオロエチレンを結着剤として用いるとカーボ
ンブラックの表面積、給油量が大きいことから混練によ
るせん断力でポリテトラフルオロエチレンが容易にフィ
ブリル化して混線物の粘度上昇をもたらすことになり、
極板芯体に塗着可能な粘度と流動性のあるスラリーを調
整することは困難であった。
As a means of solving this problem, the use of carbon black, a highly conductive agent known as Ketschen black, has recently been considered. Furthermore, in JP-A-62211863, the surface area measured by the nitrogen adsorption method was 95 (1-1300 m'
/gt'' Oil supply amount by DBP adsorption is 350-500ml
/100g of specific carbon black is disclosed as a conductive agent.
No. 30257 discloses slurrying a mixture of a positive electrode active material, graphite, and carbon blank. Regarding this slurry formation, it is possible to form a slurry when using a conventional carbon blank with a surface area of about 60 m'/g by the nitrogen adsorption method and an oil supply amount of about 100 ml/100 g by DBP adsorption, but as described above. The surface area by nitrogen adsorption method is as large as 950-1300 m'/g, and the amount of oil supplied by DBP adsorption is 350-500 m'/g.
If a positive electrode mixture containing a specific carbon black as large as l/100g is used and polytetrafluoroethylene, which is used for absorption, is used as a binder, the surface area of the carbon black and the amount of oil supplied will be large. The shear force caused by kneading easily fibrillates polytetrafluoroethylene, resulting in an increase in the viscosity of the mixed material.
It has been difficult to prepare a slurry with a viscosity and fluidity that can be applied to the electrode plate core.

(ハ)発明が解決しようとする課題 本発明は前記の表面積及び給油11Lが大きい特定のカ
ーボンブラlりに予じめポリテトラフルオロエチレンを
I及着させることによって、カーボンブラックの表面積
及び給油量を小さくしてポリテトラフルオロエチレンの
フィブリル化を抑制し、混線物の粘度1−昇を抑え、塗
着可能な粘度と流動性を有するスラリーの調整を可能な
らしめるものであり、正極の強度低下及び放電容量の低
下を招くことなく重負荷条件下での放電性能を向上させ
ることを目的とする。
(c) Problems to be Solved by the Invention The present invention provides a method for improving the surface area of carbon black and the amount of oil supplied by applying polytetrafluoroethylene in advance to the above-mentioned specific carbon black having a large surface area and a large amount of oil supply. This reduces the fibrillation of polytetrafluoroethylene, suppresses the increase in the viscosity of the mixed material, and makes it possible to prepare a slurry with a viscosity and fluidity that can be applied, and reduces the strength of the positive electrode. and to improve discharge performance under heavy load conditions without causing a decrease in discharge capacity.

(ニ)課題を解決するための手段 本発明は一酸化マンガン、フッ化黒鉛、硫化鉄或いは酸
化銅などを活物質とする正極と、リチウム或いはナトリ
ウムなどのアルカリ金属を活物質とする負極とを備える
ものであって、正極の導電剤として窒素吸着法による表
面積が950〜】300m’/gでI) B P吸着に
よる給油量が350〜500ml/100gのカーボン
ブラックに予じめポリテトラフルオロエチレンを吸着さ
せたものを用いることを特徴とする非水電解液電池にあ
る。
(d) Means for Solving the Problems The present invention uses a positive electrode using manganese monoxide, graphite fluoride, iron sulfide, copper oxide, or the like as an active material, and a negative electrode using an alkali metal such as lithium or sodium as an active material. As a conductive agent for the positive electrode, carbon black with a surface area of 950 to 300 m'/g by nitrogen adsorption and an oil supply amount of 350 to 500 ml/100 g by P adsorption is preliminarily coated with polytetrafluoroethylene. A non-aqueous electrolyte battery is characterized in that it uses a non-aqueous electrolyte that has been adsorbed.

又、窒素吸着法による表面積が950〜1300m’/
gでDBP吸着による給油量が350−500ml/1
00gのカーボンブラックに予じめポリテトラフルオロ
エチレンを吸着させた導電剤と、正極活物質と、溶媒と
を混合してスラリーを形成し、該スラリーを極板芯体に
塗着、乾燥することを特徴とする非水電解液電池用正極
の製造法にある。
In addition, the surface area measured by nitrogen adsorption method is 950 to 1300 m'/
The amount of oil supplied by DBP adsorption is 350-500ml/1
A conductive agent in which polytetrafluoroethylene has been adsorbed on 00g of carbon black in advance, a positive electrode active material, and a solvent are mixed to form a slurry, and the slurry is applied to the electrode plate core and dried. A method for producing a positive electrode for a non-aqueous electrolyte battery is provided.

(ホ)作 用 ポリテトラフルオロエチレン(以下TFEと云う)をカ
ーボンブランクに吸着させると、カーボンブラックの見
掛けの表面積が小さくなる。それに伴ってカーボンブラ
ックの給油量が減少し、正極合剤をスラリー化する際に
TFEのフィブリル化が抑制される。又、TFEはカー
ボンブランク−・1  − に吸着されているためスラリー化する時の混練によるせ
ん断力によってもフィブリル化されにくくフィブリル化
を抑えることができスラリー化が可能となる。このよう
に前記せる特定のカーボンブランクの添加が可能になっ
たことで正極自体の電導度を向上させることができ、重
負荷条件下での放電特性を改善しうる。
(E) Function When polytetrafluoroethylene (hereinafter referred to as TFE) is adsorbed onto a carbon blank, the apparent surface area of the carbon black becomes smaller. Accordingly, the amount of carbon black supplied is reduced, and fibrillation of TFE is suppressed when slurrying the positive electrode mixture. In addition, since TFE is adsorbed on the carbon blank -.1-, it is difficult to be fibrillated even by the shear force caused by kneading when forming a slurry, and fibrillation can be suppressed, making it possible to form a slurry. By making it possible to add the above-described specific carbon blank, the conductivity of the positive electrode itself can be improved, and the discharge characteristics under heavy load conditions can be improved.

(へ)実施例 正極活物質としての二酸化マンガン100重量部に対し
て、導電剤としてのグラファイト10重量部及びTFE
を吸着させたカーボンブラック4重量部を加えて混合し
正極合剤を調整した。尚、TFEを吸着させたカーボン
ブラックは窒素吸着法による表面積が1200m’/g
でD B P吸着による吸油量が400ml/100g
であるカーボンブラyりにTFEのディスバージョンを
固形分量で同重量加えて混合し、TFEのフィブリル化
を確認した後、100℃で2時間乾燥したのち粉砕した
ものである。
(f) Example 100 parts by weight of manganese dioxide as a positive electrode active material, 10 parts by weight of graphite and TFE as a conductive agent
4 parts by weight of carbon black adsorbed was added and mixed to prepare a positive electrode mixture. In addition, the surface area of carbon black adsorbed with TFE is 1200 m'/g by nitrogen adsorption method.
The oil absorption amount by DBP adsorption is 400ml/100g.
The same weight of solid content of TFE dispersion was added to the carbon briquette, and the mixture was mixed. After confirming the fibrillation of TFE, it was dried at 100° C. for 2 hours, and then pulverized.

このように調整された正極合剤100重量部に対し純水
30重量:部を加え混練してスラリーを形成する。この
ときTFEは混練によるせん断によってフィブリル化す
ることはなく粘度20000cpsで流動性に富むスラ
リーが得られる。
To 100 parts by weight of the positive electrode mixture thus prepared, 30 parts by weight of pure water is added and kneaded to form a slurry. At this time, the TFE is not fibrillated by shearing during kneading, and a slurry with a viscosity of 20,000 cps and high fluidity is obtained.

因みに比較のために、二酸化マンガン100重量部に対
してグラファイト10重量部及び窒素吸着法による表面
積が1200 m’/g″cDBP吸着による吸油量が
100ml/100gであるカーボンブラック2重量部
を混合して正極合剤とし、この合剤100重量部に対し
て純水30重量部を加えて混練し、低粘度になってから
、二酸化マンガン100重量部に対して固形分量で2重
量部のTFEディスバージョンを添加し混線を継続した
ところ、TFEがフィブリル化し混線物は粘度上昇を起
こし最終的には水が表面に浮き出し、合剤は固い繊維状
のかたまりとなりスラリーを得ることはできなかった。
Incidentally, for comparison, 10 parts by weight of graphite and 2 parts by weight of carbon black, which has a surface area of 1200 m'/g by the nitrogen adsorption method and an oil absorption of 100 ml/100 g by cDBP adsorption, were mixed with 100 parts by weight of manganese dioxide. 100 parts by weight of this mixture was mixed with 30 parts by weight of pure water to obtain a low viscosity, and then a solid content of 2 parts by weight of TFE dispersion was added to 100 parts by weight of manganese dioxide. When the mixture was added and the mixture was continued, the TFE fibrillated, the viscosity of the mixture increased, water eventually floated to the surface, and the mixture became a hard fibrous mass, making it impossible to obtain a slurry.

さて、本発明においては前述の方法で得られたスラリー
を金属網よりなる極板芯体に厚み0.6mmに塗着し乾
燥したのち圧延して厚み0.411IInのシート状電
極とする。ついでこのシート状電極を所定寸法に加工し
て正極とし、この正極とリチウム負極を包みこんだポリ
プロピレン不織布よりなるセパレータとともに巻回した
渦巻電極体を用いて直径15mm、高さ4Qmmの円筒
型非水電解′at池を作成した。この本発明電池を(A
)とする。
Now, in the present invention, the slurry obtained by the above-mentioned method is applied to a thickness of 0.6 mm on an electrode plate core made of a metal mesh, dried, and then rolled to form a sheet-like electrode having a thickness of 0.411IIn. This sheet-shaped electrode was then processed to a predetermined size to form a positive electrode, and a cylindrical non-aqueous electrode with a diameter of 15 mm and a height of 4 Q mm was prepared using a spiral electrode body wound together with a separator made of polypropylene nonwoven fabric that wrapped the positive electrode and the lithium negative electrode. An electrolytic 'at' pond was created. This invention battery (A
).

一方、カーボンブラックとして窒素吸着法による表面積
が60m″7gでDBP吸着による吸油量が100m’
/100gであるカーボンブラックを用い、特開昭59
−230257号公報に開示さi−したスラリ一方式に
よって作成したiE極を用いることを除いて他は本発明
電池と同様の比較電池を作成した。この電池を(B)と
する。
On the other hand, as carbon black, the surface area by nitrogen adsorption method is 60 m''7g, and the oil absorption amount by DBP adsorption is 100 m'
/100g of carbon black, JP-A-59
A comparison battery was prepared in the same manner as the battery of the present invention except that an iE electrode prepared using the slurry method disclosed in Japanese Patent No. 230257 was used. This battery is referred to as (B).

第1図及び第2図は本発明電池と比較電池との放電特性
比較図であり、第1図の放電条件は温度23℃、放電電
流1.2Aで3秒間0N77秒間OFFの放電サイクル
、又第2図の放電条件は温度−20℃、放電電流1.2
Aで3秒間0N77秒間OFFの放電サイクルである。
Figures 1 and 2 are diagrams comparing the discharge characteristics of the battery of the present invention and a comparison battery. The discharge conditions in Figure 1 are a discharge cycle of 3 seconds on and 77 seconds off at a temperature of 23°C and a discharge current of 1.2A; The discharge conditions in Figure 2 are temperature -20℃ and discharge current 1.2.
A is a discharge cycle of 3 seconds ON and 77 seconds OFF.

第1図から明らかなように、23℃で放電させた時は約
400サイクル目以降より作動電圧に差異が生じ、本発
明による表面積、吸油量ともに大きなカーボンブラック
を添加した正極を用いた本発明電池(A)は従来の正極
を用いた比較電池(B)に比して重負荷放電特性が向上
していることがわかる。又、第2図より一20℃で放電
させた時は最初の数サイクルで作動電圧に差異が生じ、
本発明電池(A)は比較電池(B)に比して放電条件が
厳しいほど優位性を示すことがわかる。
As is clear from FIG. 1, when discharging at 23°C, a difference in operating voltage occurs after approximately 400 cycles. It can be seen that the heavy load discharge characteristics of the battery (A) are improved compared to the comparative battery (B) using a conventional positive electrode. Also, from Figure 2, when discharging at -20°C, a difference occurs in the operating voltage during the first few cycles.
It can be seen that the battery of the present invention (A) exhibits superiority over the comparative battery (B) as the discharge conditions become more severe.

尚、本発明におけるカーボンブラックは窒素吸着法によ
る表面積が950〜1300m’/gの範囲、DBP吸
着による吸油量が350〜500ml/100gの範囲
が好ましい。
The carbon black in the present invention preferably has a surface area of 950 to 1300 m'/g by nitrogen adsorption, and an oil absorption of 350 to 500 ml/100 g by DBP adsorption.

又、ト記特定のカーボンブラックの添加量は正極活物質
100重量部に対して0.5〜5.0重量部が好ましい
Further, the amount of the specific carbon black added is preferably 0.5 to 5.0 parts by weight based on 100 parts by weight of the positive electrode active material.

(ト)発明の効果 本発明によれば、導電剤として窒素吸着法による表面積
が950−1300m’/gでDBP吸着による吸油量
が350〜500ml/gである高電導性カーボンブラ
ンクを用いた場合、従来不可能であったスラリ一方式に
よる正極の製造法が可能となると共に、本発明法により
得た正極を用いることにより重負荷条件下での放電特性
に優れた非水電解液電池を得ることができるものであり
、その工業的価値は極めて大である。
(G) Effects of the Invention According to the present invention, when a highly conductive carbon blank having a surface area of 950-1300 m'/g by nitrogen adsorption method and an oil absorption amount of 350-500 ml/g by DBP adsorption is used as a conductive agent. It becomes possible to manufacture a positive electrode using a slurry method, which was previously impossible, and by using the positive electrode obtained by the method of the present invention, a non-aqueous electrolyte battery with excellent discharge characteristics under heavy load conditions can be obtained. Therefore, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はいずれも本発明電池(A)と比較電
池(B)との放電特性比較図である。
Both FIGS. 1 and 2 are diagrams comparing the discharge characteristics of the battery of the present invention (A) and the comparative battery (B).

Claims (2)

【特許請求の範囲】[Claims] (1)二酸化マンガン、フッ化黒鉛、硫化鉄或いは酸化
銅などを活物質とする正極と、リチウム或いはナトリウ
ムなどのアルカリ金属を活物質とする負極とを備えるも
のであって、正極の導電剤として窒素吸着法による表面
積が950〜1300m^2/gでDBP吸着による給
油量が350〜500ml/100gのカーボンブラッ
クに予じめポリテトラフルオロエチレンを吸着させたも
のを用いることを特徴とする非水電解液電池。
(1) It is equipped with a positive electrode whose active material is manganese dioxide, graphite fluoride, iron sulfide, or copper oxide, and a negative electrode whose active material is an alkali metal such as lithium or sodium. A non-aqueous carbon black having a surface area of 950 to 1300 m^2/g by nitrogen adsorption method and an oil supply amount of 350 to 500 ml/100 g by DBP adsorption, on which polytetrafluoroethylene has been adsorbed in advance. electrolyte battery.
(2)窒素吸着法による表面積が950〜1300m^
2/gでDBP吸着による給油量が350〜500ml
/100gのカーボンブラックに予じめポリテトラフル
オロエチレンを吸着させた導電剤と、正極活物質と、溶
媒とを混合してスラリーを形成し、該スラリーを極板芯
体に塗着、乾燥することを特徴とする非水電解液電池用
正極の製造法。
(2) Surface area measured by nitrogen adsorption method is 950 to 1300 m^
At 2/g, the amount of oil supplied by DBP adsorption is 350 to 500 ml.
/ 100 g of carbon black with a conductive agent on which polytetrafluoroethylene has been adsorbed in advance, a positive electrode active material, and a solvent are mixed to form a slurry, and the slurry is applied to the electrode plate core and dried. A method for producing a positive electrode for a non-aqueous electrolyte battery, characterized by:
JP63225333A 1988-09-08 1988-09-08 Non-aqueous electrolyte battery and manufacture of its positive electrode its manufacture Pending JPH0275159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225333A JPH0275159A (en) 1988-09-08 1988-09-08 Non-aqueous electrolyte battery and manufacture of its positive electrode its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225333A JPH0275159A (en) 1988-09-08 1988-09-08 Non-aqueous electrolyte battery and manufacture of its positive electrode its manufacture

Publications (1)

Publication Number Publication Date
JPH0275159A true JPH0275159A (en) 1990-03-14

Family

ID=16827708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225333A Pending JPH0275159A (en) 1988-09-08 1988-09-08 Non-aqueous electrolyte battery and manufacture of its positive electrode its manufacture

Country Status (1)

Country Link
JP (1) JPH0275159A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115730A (en) * 1978-03-01 1979-09-08 Hitachi Ltd Method of producing positive pole for nonnwater electrolyte cell
JPS62211863A (en) * 1986-03-10 1987-09-17 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115730A (en) * 1978-03-01 1979-09-08 Hitachi Ltd Method of producing positive pole for nonnwater electrolyte cell
JPS62211863A (en) * 1986-03-10 1987-09-17 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
JP3450894B2 (en) Alkaline manganese battery
US4197366A (en) Non-aqueous electrolyte cells
US5660953A (en) Rechargeable manganese dioxide cathode
WO2017190363A1 (en) Negative electrode active material, preparation method therefor, negative electrode and secondary battery comprising negative electrode active material
JPH05275077A (en) Negative electrode for lithium secondary battery
JPH02148665A (en) Electrolyte for lithium secondary battery
JPH01204409A (en) Electric double-layer capacitor
JPH0275159A (en) Non-aqueous electrolyte battery and manufacture of its positive electrode its manufacture
JPH0660880A (en) Lithium secondary battery
JPS62136011A (en) Polarizing electrode
JPS585967A (en) Battery
JPS63138646A (en) Cylindrical nonaqueous electrolyte cell
JPH0355770A (en) Lithium secondary battery
JPH02239572A (en) Polyaniline battery
JP2001110404A (en) Battery and method for manufacturing the same
JP2010086738A (en) Nonaqueous electrolyte solution battery
JPH0294363A (en) Positive electrode for nonaqueous electrolyte secondary battery
JPS58140972A (en) Production method of positive electrode active material for organic electrolyte cell
JPS62226576A (en) Cylindrical liquid oxyhalogen compound-lithium battery
JPH10334887A (en) Negative electrode for lithium ion secondary battery
JPH03190060A (en) Polyaniline battery
JPS60186490A (en) Manufacture of gas diffusion electrode
JPH0760677B2 (en) Carbon electrode manufacturing method
JPS60160566A (en) Nonaqueous electrolyte battery
JPS58206059A (en) Organic electrolyte battery