JP2010086738A - Nonaqueous electrolyte solution battery - Google Patents

Nonaqueous electrolyte solution battery Download PDF

Info

Publication number
JP2010086738A
JP2010086738A JP2008253128A JP2008253128A JP2010086738A JP 2010086738 A JP2010086738 A JP 2010086738A JP 2008253128 A JP2008253128 A JP 2008253128A JP 2008253128 A JP2008253128 A JP 2008253128A JP 2010086738 A JP2010086738 A JP 2010086738A
Authority
JP
Japan
Prior art keywords
negative electrode
powder
mixed powder
battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008253128A
Other languages
Japanese (ja)
Inventor
Susumu Yamanaka
晋 山中
Daisuke Sumimoto
大輔 住本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008253128A priority Critical patent/JP2010086738A/en
Publication of JP2010086738A publication Critical patent/JP2010086738A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte solution battery equipped with an anode containing an anode active material made of lithium metal or lithium alloy, in which current load characteristics are improved and stable mass-productivity is enhanced. <P>SOLUTION: In the nonaqueous electrolyte solution battery with a cathode 3 and an anode 4 made of lithium metal or lithium alloy arranged opposed to each other with a separator 5 in-between, mixed powder in which carbon black and an organic binding agent are mixed is deposited on a surface of the anode 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はリチウム金属あるいはリチウム合金を負極活物質に用いた非水電解液電池に関するものである。   The present invention relates to a non-aqueous electrolyte battery using lithium metal or a lithium alloy as a negative electrode active material.

非水電解液電池、特にリチウム一次電池は、エネルギー密度が高く、保存性、耐漏液特性などの信頼性に優れ、また、小形化、軽量化が可能なことから、各種電子機器の主電源やメモリバックアップ用電源として、その需要は年々増加している。   Non-aqueous electrolyte batteries, especially lithium primary batteries, have high energy density, excellent reliability such as storage stability and leakage resistance, and can be reduced in size and weight. The demand for a memory backup power source is increasing year by year.

近年、リチウム一次電池の増加している用途としては車載用途があげられる。特に最近では、ETCやタイヤ空気圧監視システムの電源としての用途も注目されている。このような用途では電波送信用の電源として使用されるため、低温から高温までの広い使用温度範囲で電流負荷特性が求められる。   In recent years, an increasing use of lithium primary batteries is in-vehicle use. In particular, the use as a power source for ETC and tire pressure monitoring systems has recently attracted attention. In such applications, since it is used as a power source for radio wave transmission, current load characteristics are required in a wide operating temperature range from low temperature to high temperature.

電池の電流負荷特性においては、低温時が最も性能が低下するため、前記のような用途では低温時での電流負荷特性が重要となる。放電時の電圧低下は、電池の内部インピーダンスに依存する。電池の内部インピーダンスは、正負極の反応性、電解液のイオン導電性、極板表面に生じる被膜の抵抗性、及び各部品の接触抵抗等に影響される。低温になると正負極の反応性や電解液のイオン導電性等が低下するが、負極極板すなわちリチウムあるいはリチウム合金等の表面に存在する表面被膜のインピーダンスが上昇することも、低温で放電電圧が低下する大きな要因の一つとなる。そのため、これまでこの負極の表面被膜のインピーダンスを低下するため様々な検討がされてきた。その中に、炭素粉末を負極の表面に付着させることが有効であることが知られている(特許文献1参照)。この処理を行うことで炭素粉末の表面にある官能基により、負極の表面に抵抗の低い炭酸被膜を生成させることが有効であると考えられている。
特開昭50−145817号公報
In the current load characteristic of the battery, the performance is most deteriorated at a low temperature. Therefore, the current load characteristic at a low temperature is important for the use as described above. The voltage drop during discharge depends on the internal impedance of the battery. The internal impedance of the battery is influenced by the reactivity of the positive and negative electrodes, the ionic conductivity of the electrolyte, the resistance of the coating film formed on the electrode plate surface, the contact resistance of each component, and the like. When the temperature is low, the reactivity of the positive and negative electrodes and the ionic conductivity of the electrolytic solution decrease, but the impedance of the surface coating on the surface of the negative electrode plate, that is, lithium or lithium alloy, also increases. This is one of the major factors for the decline. Therefore, various studies have been made so far to reduce the impedance of the surface coating of the negative electrode. Among them, it is known that it is effective to attach carbon powder to the surface of the negative electrode (see Patent Document 1). It is considered that it is effective to generate a carbonic acid coating having a low resistance on the surface of the negative electrode by the functional group on the surface of the carbon powder by performing this treatment.
JP 50-145817 A

上記のように炭素粉末を負極の表面に付着させることで、負極の表面被膜のインピーダンスを下げることできる。しかしながら、炭素粉末は非常に微粉末かつ軽量であるため、付着処理時に力が伝わりにくく負極の表面を均一に処理することが非常に困難である。そのため、電池の特性におけるバラツキも大きくなってしまうという課題があった。   By attaching the carbon powder to the surface of the negative electrode as described above, the impedance of the surface coating of the negative electrode can be lowered. However, since the carbon powder is very fine and lightweight, the force is not easily transmitted during the adhesion treatment, and it is very difficult to uniformly treat the surface of the negative electrode. For this reason, there has been a problem that variations in battery characteristics are increased.

そこで、本発明は、バラツキが少なく高い電流負荷特性を有する非水電解液電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a non-aqueous electrolyte battery that has little variation and high current load characteristics.

上記従来の課題を解決するために本発明は、正極と、リチウム金属またはリチウム合金からなる負極とを、非水電解液を保持するセパレータを介して対向配置した非水電解液電池において、負極の表面にカーボンブラックと有機結着剤を混合した混合粉末を付着させたことを特徴とする。   In order to solve the above-described conventional problems, the present invention provides a nonaqueous electrolyte battery in which a positive electrode and a negative electrode made of lithium metal or a lithium alloy are arranged to face each other via a separator that holds the nonaqueous electrolyte. A mixed powder in which carbon black and an organic binder are mixed is adhered to the surface.

この構成によれば、カーボンブラックを有機結着剤との混合粉末とすることにより、粉末の粒度が大きくなり取扱いやすく、また強度も高くなり摩擦・加圧処理における力の伝達効率が向上するため、生産効率および処理の均一性が大幅に改善し、バラツキが少なく高い電流負荷特性を有する非水電解液電池を作製することが可能となる。   According to this configuration, by using carbon black as a mixed powder with an organic binder, the particle size of the powder becomes large and easy to handle, and the strength is increased, improving the force transmission efficiency in the friction and pressure treatment. In addition, the production efficiency and the uniformity of processing are greatly improved, and a non-aqueous electrolyte battery having a high current load characteristic with little variation can be produced.

本発明によれば、微粉末かつ軽量な炭素粉末に、有機結着剤を混合することにより、粉末の粒度が大きくなり、取扱いやすく、また強度も高くなり、力の伝達効率が向上するため、負極の表面に均一に付着処理がなされることにより電流負荷特性が高水準で安定した非水電解液電池を得ることができる。   According to the present invention, by mixing an organic binder with fine powder and lightweight carbon powder, the particle size of the powder becomes large, easy to handle, and the strength is increased, and the power transmission efficiency is improved. By uniformly performing the adhesion treatment on the surface of the negative electrode, a non-aqueous electrolyte battery having a stable current load characteristic at a high level can be obtained.

本発明による第1の発明は、正極と、リチウム金属またはリチウム合金からなる負極とを、非水電解液を保持するセパレータを介して対向配置した非水電解液電池において、負極の表面にカーボンブラックと有機結着剤を混合した混合粉末を付着させたことを特徴とする非水電解液電池である。この構成により、電流負荷特性が高水準で安定した非水電解液電池を効率よく作製することが可能となる。   According to a first aspect of the present invention, there is provided a nonaqueous electrolyte battery in which a positive electrode and a negative electrode made of lithium metal or a lithium alloy are arranged to face each other with a separator holding a nonaqueous electrolyte solution. A non-aqueous electrolyte battery characterized in that a mixed powder in which an organic binder is mixed is attached. With this configuration, it is possible to efficiently produce a non-aqueous electrolyte battery having a stable current load characteristic at a high level.

本発明による第2の発明は、第1の発明において、混合粉末から作製した成形体を、負極の表面に摩擦することにより前記混合粉末を付着させたことを特徴とする非水電解液電池である。この構成により、処理工程での粉末の飛散が抑制され、また粉体をスパチュラ等で擦り付けるよりも容易に付着処理が行えるため、作製効率の向上や性能の均一性の向上が得られる。   According to a second aspect of the present invention, there is provided a non-aqueous electrolyte battery according to the first aspect, wherein the mixed powder is adhered by rubbing a molded body produced from the mixed powder against the surface of the negative electrode. is there. With this configuration, scattering of the powder in the treatment process is suppressed, and since the adhesion treatment can be performed more easily than when the powder is rubbed with a spatula or the like, improvement in production efficiency and improvement in performance uniformity can be obtained.

本発明による第3の発明は、第1の発明において、混合粉末を静電気で付着させた治具を、負極の表面に押し付けて前記混合粉末を転写することにより付着させたことを特徴とする非水電解液電池である。この構成により、治具に付着する粉体量は均一にできるため、作製効率の向上や性能の均一性の向上が得られる。   According to a third aspect of the present invention, in the first aspect of the present invention, the jig, to which the mixed powder is electrostatically attached, is attached by pressing the surface of the negative electrode and transferring the mixed powder. It is a water electrolyte battery. With this configuration, since the amount of powder adhering to the jig can be made uniform, improvement in production efficiency and improvement in performance uniformity can be obtained.

本発明による第4の発明は、第1から第3の発明において、混合粉末が、カーボンブラック100重量部に対して有機結着剤を10重量部以上30重量部以下で混合したものであることを特徴とする非水電解液電池である。この構成により、粉末の取扱い易さと電流負荷特性の改善を高い水準で両立することが可能となる。   According to a fourth aspect of the present invention, in the first to third aspects, the mixed powder is obtained by mixing 10 parts by weight or more and 30 parts by weight or less of an organic binder with respect to 100 parts by weight of carbon black. Is a non-aqueous electrolyte battery characterized by With this configuration, it is possible to achieve both high ease of handling of powder and improvement of current load characteristics at a high level.

以下、本発明の実施の形態について説明する。なお、以下に示す実施の形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。   Embodiments of the present invention will be described below. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.

図1は本発明の非水電解液電池であって、扁平形のリチウム一次電池の封口後の断面図である。図1において、正極ケース1は正極端子を兼ねる金属製カップ、正極3はフッ化黒鉛、導電剤、そして結着剤等の混合粉末を加圧成形したペレット、セパレータ5はポリブチレンテレフタレートの不織布、負極4はリチウム金属、封口板2は負極端子を兼ねた金属製の略皿状となっており、ガスケット6は断面が略L字形状となっている。負極4の正極3との対向面にはカーボンブラックと有機結着剤を混合した混合粉末を付着させることにより混合粉末付着面7が形成される。これらに図示しない非水電解液を含み、ガスケット6を封口板2と正極ケース1とで圧縮するようにかしめて作製されている。   FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery according to the present invention after sealing a flat lithium primary battery. In FIG. 1, a positive electrode case 1 is a metal cup that also serves as a positive electrode terminal, a positive electrode 3 is a pellet obtained by pressure-molding a mixed powder of fluorinated graphite, a conductive agent, and a binder, a separator 5 is a non-woven fabric of polybutylene terephthalate, The negative electrode 4 is made of lithium metal, the sealing plate 2 is made of a metal substantially serving as a negative electrode terminal, and the gasket 6 has a substantially L-shaped cross section. A mixed powder adhering surface 7 is formed on the surface of the negative electrode 4 facing the positive electrode 3 by adhering a mixed powder in which carbon black and an organic binder are mixed. These include a non-aqueous electrolyte (not shown), and are produced by caulking the gasket 6 so as to be compressed by the sealing plate 2 and the positive electrode case 1.

本発明に関する非水電解液電池は、リチウム及びリチウム合金からなる負極の改良に関するものである。   The nonaqueous electrolyte battery according to the present invention relates to an improvement in a negative electrode made of lithium and a lithium alloy.

本発明に用いる炭素粉末と有機結着剤からなる粉末は、湿式にて混合され、その後、乾燥・粉砕した混合粉末である。炭素粉末は、粉状のカーボンブラックであり、アセチレンブラック、ケッチェンブラック、コンタクトブラック、ファーネスブラック、ランプブラックなどから選択できる。有機結着剤はSBR系、変性ポリエチレン等を挙げることができるが本発明はこれを限定するものではない。   The powder composed of the carbon powder and the organic binder used in the present invention is a mixed powder that is mixed by a wet process, and then dried and pulverized. The carbon powder is powdery carbon black and can be selected from acetylene black, ketjen black, contact black, furnace black, lamp black and the like. Examples of the organic binder include SBR type and modified polyethylene, but the present invention is not limited thereto.

なお、炭素粉末を有機結着剤との混合粉末とすることにより、この混合粉末を加圧して成形体とすることが可能となる。この成形体を負極の表面に摩擦させることにより、混合粉末を負極の表面に付着させることが出来、より容易に効率よく均一に表面処理を行うことが出来る。   In addition, by using carbon powder as a mixed powder with an organic binder, the mixed powder can be pressed into a molded body. By rubbing the molded body against the surface of the negative electrode, the mixed powder can be adhered to the surface of the negative electrode, and surface treatment can be performed more easily and efficiently and uniformly.

また、炭素粉末は導電性があるため帯電させることが困難であるが、絶縁性である有機結着剤との混合粉末とすることで帯電性が付与されるため、それを治具表面に静電気で付着させることが可能となる。その面を負極の表面に加圧することで、混合粉末を負極の表面に転写することができるため、より容易に効率よく均一に表面処理を行うことが出来る。   Carbon powder is difficult to be charged because it is conductive, but it can be charged with mixed powder with an insulating organic binder. Can be attached. By pressing the surface to the surface of the negative electrode, the mixed powder can be transferred to the surface of the negative electrode, so that the surface treatment can be performed more easily and efficiently and uniformly.

有機結着剤の配合比率は10重量部以上であると、粉末の結着性が高いため容易に成形体を作製することが出来、また得られる帯電性も高いため治具に静電気で付着させることも容易であり好ましい。また、30重量部より高配合にすると、炭素粉末の表面の多くが有機結着剤に覆われるため、負極の表面を改質する有効な部分が低下するので好ましくない。   When the blending ratio of the organic binder is 10 parts by weight or more, the compact can be easily produced because the powder has a high binding property, and the resulting chargeability is high, so that it is attached to the jig by static electricity. It is also easy and preferable. On the other hand, when the blending amount is higher than 30 parts by weight, since most of the surface of the carbon powder is covered with the organic binder, the effective part for modifying the surface of the negative electrode is lowered, which is not preferable.

本発明に用いる混合粉末からなる成形体は、圧縮成形体である。成形体に成形できるものであれば、成形工法を限定するものではない。付着方法は、圧縮成形体の摩擦面を負極の表面に押し付け、成形体あるいは負極が圧着された封口板を回転等させることにより混合粉末を負極の表面に付着させることが出来る。   The molded body made of the mixed powder used in the present invention is a compression molded body. The molding method is not limited as long as it can be molded into a molded body. The adhesion method can adhere the mixed powder to the surface of the negative electrode by pressing the friction surface of the compression molded body against the surface of the negative electrode and rotating the sealing plate to which the molded body or the negative electrode is pressure-bonded.

本発明に用いる混合粉末を帯電により付着させる治具は、押し付ける面積が負極極板面積の半分以上であり、圧縮強さが150kgf/cm2以上、体積抵抗が1010Ω・cm以上の樹脂やセラミックから構成されている。また、均一に帯電させるため、混合粉末は平均粒径が15μm以下で粒度分布に関しても分布幅が狭いことが望ましい。転写方法は、混合粉末を帯電させ、治具の押し付け面にその混合粉末を付着させ、その後に負極の表面に均一に治具で加圧することによりなされる。 The jig for adhering the mixed powder used in the present invention by charging is a resin or ceramic whose pressing area is more than half of the negative electrode plate area, compressive strength is 150 kgf / cm 2 or more, and volume resistance is 10 10 Ω · cm or more. It is composed of In order to charge uniformly, it is desirable that the mixed powder has an average particle size of 15 μm or less and a narrow particle size distribution. The transfer method is performed by charging the mixed powder, adhering the mixed powder to the pressing surface of the jig, and then uniformly pressing the negative electrode surface with the jig.

本発明に用いる非水電解液については、有機溶媒に電解質であるリチウム塩を溶解させたもので、有機溶媒は高誘電率でありかつ低粘度であることが望ましく、例えばγ−ブチロラクトン、プロピレンカーボネート、ジメチルカーボネート、1,2−ジメトキシエタン等の1種類またはこれらの2種類以上の混合溶媒を用いることができる。また、電解質としては、LiBF4、LiClO4、LiPF6、LiN(CF3SO2)等を用いることができる。 The non-aqueous electrolyte used in the present invention is obtained by dissolving a lithium salt as an electrolyte in an organic solvent, and the organic solvent preferably has a high dielectric constant and low viscosity. For example, γ-butyrolactone, propylene carbonate , Dimethyl carbonate, 1,2-dimethoxyethane or the like, or a mixed solvent of two or more thereof can be used. As the electrolyte, LiBF 4 , LiClO 4 , LiPF 6 , LiN (CF 3 SO 2 ), or the like can be used.

以下、具体的な実施例および比較例を示し、本発明の効果を説明する。   Hereinafter, specific examples and comparative examples will be shown to explain the effects of the present invention.

本発明の実施の形態を、負極にはリチウムを、正極にはフッ化カーボンを使用した扁平形のBR系リチウム一次電池を例として、上記した図1を参照しながら説明する。   An embodiment of the present invention will be described with reference to FIG. 1 as an example of a flat BR-type lithium primary battery using lithium as a negative electrode and carbon fluoride as a positive electrode.

ここで、本発明について実施例及び比較例に基づいて詳細に説明するが、本発明は下記の実施例に限定されるものではない。   Here, although this invention is demonstrated in detail based on an Example and a comparative example, this invention is not limited to the following Example.

(実施例1)
負極4の表面処理用の粉末は、カーボンブラックとしてアセチレンブラックを選び、有機結着剤としてラテックスのカルボン酸変性SBR(固形分が、アセチレンブラックを100重量部とした場合20重量部)、水・メタノールとを配合する。その後、品川式万能
混合機(品川工業製)にて練合を行なった。これを100℃にて乾燥を行い、約1000μmの目開きのメッシュで整粒を実施した。
Example 1
As the powder for surface treatment of the negative electrode 4, acetylene black is selected as carbon black, and carboxylic acid-modified SBR of latex as an organic binder (solid content is 20 parts by weight when acetylene black is 100 parts by weight), water, Blend with methanol. Thereafter, kneading was performed with a Shinagawa universal mixer (manufactured by Shinagawa Kogyo). This was dried at 100 ° C. and sized with a mesh having an opening of about 1000 μm.

負極4は、1.3mmのリチウム箔を直径18mmの円板状に打ち抜き、封口板内面に相互が同芯になるように加圧して、圧着することにより作製した。そして、そのリチウム表面に作製した混合粉末を全面に金属製スパチュラで擦り付けて表面処理を実施した。   The negative electrode 4 was produced by punching a 1.3 mm lithium foil into a disk shape having a diameter of 18 mm, pressurizing the inner surface of the sealing plate so as to be concentric with each other, and pressing the same. Then, the mixed powder produced on the lithium surface was rubbed with a metal spatula over the entire surface to perform surface treatment.

正極3はフッ化カーボン、アセチレンブラック、およびカルボン酸変性SBRからなる粉末を加圧成形したものを用い、セパレータ5はPPの不織布、電解液は溶媒のγ−ブチロラクトンに溶質であるLiBF4を1モル溶解したものを使用して非水電解液電池を作製した。これを電池Aとした。電池寸法は直径が24.5mm、厚みが5.0mmである。 The positive electrode 3 uses a pressure-molded powder made of carbon fluoride, acetylene black, and carboxylic acid-modified SBR, the separator 5 is a PP nonwoven fabric, and the electrolyte is LiBF 4 that is a solute in the solvent γ-butyrolactone. A non-aqueous electrolyte battery was prepared using the one dissolved in mol. This was designated as Battery A. The battery dimensions are 24.5 mm in diameter and 5.0 mm in thickness.

(比較例1)
比較例1は、実施例1の負極4の表面処理を実施しない以外は、実施例1と同様に非水電解液電池を作製し、これを電池Bとした。
(Comparative Example 1)
In Comparative Example 1, a nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the surface treatment of the negative electrode 4 of Example 1 was not performed, and this was designated as Battery B.

(比較例2)
比較例2は、実施例1における負極4の表面処理用の粉末をアセチレンブラックの粉末のみとした以外は、実施例1と同様に非水電解液電池を作製し、これを電池Cとした。
(Comparative Example 2)
In Comparative Example 2, a non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the powder for surface treatment of the negative electrode 4 in Example 1 was only acetylene black powder, and this was designated as Battery C.

(実施例2)
実施例2は、実施例1における負極4の表面処理用の粉末におけるカルボン酸変性SBR(固形分)の配合比率を30とした以外は、実施例1と同様に非水電解液電池を作製し、これを電池Dとした。
(Example 2)
In Example 2, a non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the mixing ratio of the carboxylic acid-modified SBR (solid content) in the powder for surface treatment of the negative electrode 4 in Example 1 was set to 30. This was designated as Battery D.

(比較例3)
比較例3は、実施例1における負極4の表面処理用の粉末におけるカルボン酸変性SBR(固形分)の配合比率を50とした以外は、実施例1と同様に非水電解液電池を作製し、これを電池Eとした。
(Comparative Example 3)
In Comparative Example 3, a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 except that the blending ratio of the carboxylic acid-modified SBR (solid content) in the powder for surface treatment of the negative electrode 4 in Example 1 was set to 50. This was designated as Battery E.

(実施例3)
実施例3は、実施例1における負極4の表面処理用の粉末におけるカルボン酸変性SBR(固形分)の配合比率を10とした以外は、実施例1と同様に非水電解液電池を作製し、これを電池Fとした。
(Example 3)
In Example 3, a nonaqueous electrolyte battery was prepared in the same manner as in Example 1 except that the blending ratio of the carboxylic acid-modified SBR (solid content) in the powder for surface treatment of the negative electrode 4 in Example 1 was set to 10. This was designated as Battery F.

(比較例4)
比較例4は、実施例1における負極4の表面処理用の粉末におけるカルボン酸変性SBR(固形分)の配合比率を5とした以外は、実施例1と同様に非水電解液電池を作製し、これを電池Gとした。
(Comparative Example 4)
In Comparative Example 4, a nonaqueous electrolyte battery was prepared in the same manner as in Example 1 except that the blending ratio of the carboxylic acid-modified SBR (solid content) in the powder for surface treatment of the negative electrode 4 in Example 1 was changed to 5. This was designated as battery G.

(実施例4)
実施例4は、実施例1における負極4の表面処理用の粉末を直径7mm、高さ15mmの円柱状に加圧成形して、その成形体を負極の表面に摩擦することで付着処理した以外は、実施例1と同様に非水電解液電池を作製し、これを電池Hとした。
Example 4
In Example 4, the powder for surface treatment of the negative electrode 4 in Example 1 was pressure-molded into a cylindrical shape having a diameter of 7 mm and a height of 15 mm, and the molded body was subjected to adhesion treatment by rubbing against the surface of the negative electrode. Produced a nonaqueous electrolyte battery in the same manner as in Example 1, and designated as battery H.

(実施例5)
実施例5は、実施例1における負極4の表面処理用の粉末を帯電させた直径19mmの
円柱治具の円形表面に付着させ、そしてその面を負極の表面に加圧することで、粉末を転写して表面処理した以外は、実施例1と同様に非水電解液電池を作製し、これを電池Iとした。
(Example 5)
In Example 5, the powder for surface treatment of the negative electrode 4 in Example 1 was attached to a circular surface of a 19 mm diameter cylindrical jig charged, and the surface was pressed against the surface of the negative electrode to transfer the powder. A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the surface treatment was performed.

上記のように作製した電池の低温での負荷特性を調べた。その具体的な放電条件は、−40℃において12mAで20ms間の放電が1分に1回行われ、それ以外は0.2μAの電流が流れるパターンを300時間繰り返し、その間の最低電圧をその電池の放電電圧とした。各5個ずつ放電を行った。その結果を(表1)に示す。   The battery produced as described above was examined for load characteristics at low temperatures. The specific discharge conditions are as follows: a discharge at 20 mA at -40 ° C. for 20 ms is performed once a minute, otherwise a pattern in which a current of 0.2 μA flows is repeated for 300 hours, and the minimum voltage between them is Discharge voltage. Five discharges were performed each. The results are shown in (Table 1).

Figure 2010086738
Figure 2010086738

負極4の表面を処理していない電池Bと比較すると、電池Eを除いて全て放電電圧の平均は上昇している。電池Eは、負極の表面処理に使用した粉末が結着剤の比率が多いためアセチレンブラックの表面の多くを覆っているため、アセチレンブラックによる表面改質効果が得られなかったためと考えられる。従来例となる電池Cは、放電電圧の最大値は非常に大きなものが得られるが、処理のバラツキが大きく、効果が見られないものも生じてしまう。これは、アセチレンブラックが非常に微粉末かつ軽量であるため、摩擦する力が伝わりにくく負極4の表面に均一に処理することが非常に困難であるためと考えられる。一方、アセチレンブラックと結着剤との混合粉末を使用した電池A、電池D、電池Fは、放電電圧が解され、かつバラツキが小さい結果が得られた。これは、結着剤によって粉末の強度が高くなるため摩擦による力の伝達効率が向上し、均一に表面処理することができたためと考えられる。ただし、結着剤の比率が低い電池Gは、粉末の強度の改善が小さかったため、電池Cと同様の理由により、処理の均一性が低くなったため、放電電圧に大きなバラツキが見られる。   Compared with the battery B that does not treat the surface of the negative electrode 4, the average of the discharge voltage is increased except for the battery E. In Battery E, the powder used for the surface treatment of the negative electrode has a large proportion of the binder, and thus covers most of the surface of acetylene black, so that the surface modification effect by acetylene black was not obtained. The battery C as the conventional example can be obtained with a very large maximum discharge voltage, but there is a large variation in processing, and some of the effects are not seen. This is presumably because acetylene black is very fine powder and lightweight, so that the frictional force is not easily transmitted and it is very difficult to uniformly treat the surface of the negative electrode 4. On the other hand, the battery A, the battery D, and the battery F using the mixed powder of acetylene black and the binder obtained a result that the discharge voltage was solved and the variation was small. This is presumably because the strength of the powder was increased by the binder, so that the efficiency of force transmission by friction was improved and the surface treatment could be performed uniformly. However, in the battery G having a low binder ratio, since the improvement in powder strength was small, the processing uniformity was reduced for the same reason as the battery C, and thus there was a large variation in the discharge voltage.

アセチレンブラックと結着剤の混合粉末の成形体で負極処理した電池H、および混合粉末を帯電させた直径19mmの円柱治具の円形表面に付着させ、その面を負極の表面に加圧することで、粉末を転写して表面処理した電池Iも擦りつけたものと同様に放電電圧の改善が見られた。これらは、粉末の擦り付けでの処理よりも、さらに良好な作製効率で処理することが可能であった。   By attaching the negative electrode-treated battery H with a molded body of a mixed powder of acetylene black and a binder, and a circular powder of a 19 mm diameter cylindrical jig charged with the mixed powder, and pressing the surface against the negative electrode surface The battery I which was surface-treated by transferring powder was also improved in the discharge voltage in the same manner as the battery I was rubbed. These could be processed with better production efficiency than the processing by rubbing the powder.

本発明の非水電解液電池は電流負荷特性が優れるので、たとえば電波送信が求められる車載用途としての活用が好適である。   Since the non-aqueous electrolyte battery of the present invention has excellent current load characteristics, it can be suitably used for in-vehicle applications where radio wave transmission is required.

本発明の実施例における扁平形非水電解液電池の断面図Sectional drawing of the flat type nonaqueous electrolyte battery in the Example of this invention

符号の説明Explanation of symbols

1 正極ケース
2 封口板
3 正極
4 負極
5 セパレータ
6 ガスケット
7 混合粉末付着面
DESCRIPTION OF SYMBOLS 1 Positive electrode case 2 Sealing plate 3 Positive electrode 4 Negative electrode 5 Separator 6 Gasket 7 Mixed powder adhesion surface

Claims (4)

正極と、リチウム金属またはリチウム合金からなる負極とを、非水電解液を保持するセパレータを介して対向配置した非水電解液電池において、前記負極の表面にカーボンブラックと有機結着剤を混合した混合粉末を付着させたことを特徴とする非水電解液電池。 In a non-aqueous electrolyte battery in which a positive electrode and a negative electrode made of lithium metal or a lithium alloy are arranged to face each other with a separator holding a non-aqueous electrolyte, carbon black and an organic binder are mixed on the surface of the negative electrode A non-aqueous electrolyte battery characterized in that a mixed powder is adhered. 前記混合粉末から作製した成形体を、負極の表面に摩擦することにより前記混合粉末を付着させたことを特徴とする請求項1記載の非水電解液電池。 The non-aqueous electrolyte battery according to claim 1, wherein the mixed powder is adhered by rubbing a molded body produced from the mixed powder against the surface of the negative electrode. 前記混合粉末を静電気で付着させた治具を、負極の表面に押し付けて前記混合粉末を転写することにより付着させたことを特徴とする請求項1記載の非水電解液電池。 The non-aqueous electrolyte battery according to claim 1, wherein a jig on which the mixed powder is electrostatically attached is pressed against the surface of the negative electrode to transfer the mixed powder. 前記混合粉末が、カーボンブラック100重量部に対して有機結着剤を10重量部以上30重量部以下で混合したものであることを特徴とする請求項1から3のいずれか一項に記載の非水電解液電池。 4. The mixed powder according to claim 1, wherein an organic binder is mixed in an amount of 10 parts by weight to 30 parts by weight with respect to 100 parts by weight of carbon black. 5. Non-aqueous electrolyte battery.
JP2008253128A 2008-09-30 2008-09-30 Nonaqueous electrolyte solution battery Pending JP2010086738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008253128A JP2010086738A (en) 2008-09-30 2008-09-30 Nonaqueous electrolyte solution battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008253128A JP2010086738A (en) 2008-09-30 2008-09-30 Nonaqueous electrolyte solution battery

Publications (1)

Publication Number Publication Date
JP2010086738A true JP2010086738A (en) 2010-04-15

Family

ID=42250507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008253128A Pending JP2010086738A (en) 2008-09-30 2008-09-30 Nonaqueous electrolyte solution battery

Country Status (1)

Country Link
JP (1) JP2010086738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160013867A (en) 2013-05-29 2016-02-05 제온 코포레이션 Binder for use in electrochemical device electrodes, particle composite for use in electrochemical device electrodes, electrochemical device electrode, electrochemical device, and electrochemical device electrode manufacturing method
WO2016031180A1 (en) * 2014-08-29 2016-03-03 パナソニックIpマネジメント株式会社 Lithium primary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145714A (en) * 1997-05-26 1999-02-16 Mitsubishi Chem Corp Secondary battery
JP2004095391A (en) * 2002-08-30 2004-03-25 Sony Corp Battery and its manufacturing method
JP2008103129A (en) * 2006-10-18 2008-05-01 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145714A (en) * 1997-05-26 1999-02-16 Mitsubishi Chem Corp Secondary battery
JP2004095391A (en) * 2002-08-30 2004-03-25 Sony Corp Battery and its manufacturing method
JP2008103129A (en) * 2006-10-18 2008-05-01 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160013867A (en) 2013-05-29 2016-02-05 제온 코포레이션 Binder for use in electrochemical device electrodes, particle composite for use in electrochemical device electrodes, electrochemical device electrode, electrochemical device, and electrochemical device electrode manufacturing method
WO2016031180A1 (en) * 2014-08-29 2016-03-03 パナソニックIpマネジメント株式会社 Lithium primary battery

Similar Documents

Publication Publication Date Title
Ding et al. Electrochemical performance of hard carbon negative electrodes for ionic liquid-based sodium ion batteries over a wide temperature range
JP5682970B2 (en) Positive electrode active material, positive electrode including the same, and lithium secondary battery
KR101876690B1 (en) Nonaqueous electrolyte secondary battery
EP3576192A1 (en) Manufacturing method for electrode for all-solid-state battery and manufacturing method for all solid-state-battery
JP2003012311A (en) Production method of polymer coated carbon material, negative-electrode material and lithium ion secondary battery
JPWO2016181890A1 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP2009238636A (en) Cathode layer forming material
JP2007173064A (en) Nonaqueous electrolyte solution secondary battery and its manufacturing method
JP2011014262A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery
CN111384400A (en) Electrode active material, method for producing same, and all-solid-state battery using electrode active material
JP2013045515A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and production method therefor, positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2018041619A (en) Method for manufacturing electrode
JP4723830B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2010086738A (en) Nonaqueous electrolyte solution battery
WO2016047326A1 (en) Cathode for lithium ion secondary battery and lithium ion secondary battery using same
WO2014156068A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
JP2004039538A (en) Positive electrode active material for secondary battery
JP2002117834A (en) Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP6511759B2 (en) Composite particle for electrode and method for producing the same
JP7130540B2 (en) Negative electrode for lithium ion battery and lithium ion battery
JP6197725B2 (en) Method for producing slurry composition for secondary battery
JP2003331823A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the battery
JP2021182484A (en) Negative electrode agent for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2004039539A (en) Positive electrode active material for secondary battery
JP2009224188A (en) Method of manufacturing lithium-ion secondary battery and its positive electrode plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111013

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015