JPH0274575A - Heat insulating fiber molded body and its production - Google Patents

Heat insulating fiber molded body and its production

Info

Publication number
JPH0274575A
JPH0274575A JP1175775A JP17577589A JPH0274575A JP H0274575 A JPH0274575 A JP H0274575A JP 1175775 A JP1175775 A JP 1175775A JP 17577589 A JP17577589 A JP 17577589A JP H0274575 A JPH0274575 A JP H0274575A
Authority
JP
Japan
Prior art keywords
permiculite
particle size
unexpanded
molded body
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1175775A
Other languages
Japanese (ja)
Inventor
Peter Steinau
ペーテル・シユタイナウ
Ludwig Wirth
ルートヴイヒ・ヴイルト
Ingo Elstner
インゴ・エルストネル
Andreas Naumann
アンドレーアス・ナウマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Didier Werke AG
Original Assignee
Didier Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE3824472A external-priority patent/DE3824472A1/en
Application filed by Didier Werke AG filed Critical Didier Werke AG
Publication of JPH0274575A publication Critical patent/JPH0274575A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • C04B14/202Vermiculite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/36Reinforced clay-wares
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Civil Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Thermal Insulation (AREA)
  • Resistance Heating (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE: To manufacture a heat insulating molded fiber body which has a good expansion characteristic by molding a refractory ceramic fiber mat from an aq. suspension and compounding superfine and unexpanded vermiculite and an organic fibrid in a specific proportion at this time.
CONSTITUTION: The fiber mat molded body is molded from an aq. suspension of ceramic fibers. At this time, the unexpanded vermiculite with a max. grain size of 0.1 mm is dispered into the suspension, and the molded body is allowed to contain the same as unexpanded vermiculite with a max. grain size of 1.0 mm. The fiber mat molded body is dried after compounded with the organic fibrid and a bonding agent, if necessary, and further, is heat-treated, thereby melting the organic fibrid to obtain the fiber mat. Into this, the ceramic fibers and vermiculite are compounded in a ratio of 80:20 to 30:70 and this is allowed to contain 5 to 40 wt.% organic fibrid. Thus, the heat insulating fiber molded body, which has a good expansion characteristic at high temp. modified expansion pressure and erosion resisitivity, is obtd.
COPYRIGHT: (C)1990,JPO

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐火性セラミック繊維と、セラミック′m雄
とパーミキユライトとの比が80 : 20ないし30
 : 70のパーミキユライトと、全組成に関して5な
いし40重遣%の有機ポリマー製フイプリドと、一時及
び/又は永久結合剤とから成る、熱絶縁する繊維成形体
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is characterized in that the ratio of refractory ceramic fibers to ceramic fibers to permiculite is 80:20 to 30.
The invention relates to a thermally insulating fibrous molding consisting of 70% permiculite, 5 to 40% by weight, based on the total composition, of an organic polymer fipulid and a temporary and/or permanent binder.

〔従来の技術〕[Conventional technology]

ドイツ連邦共和国特許出願第P3701511.7号明
細書に、上述の種類の、熱絶縁する成形体が記載されて
いる。そこに記載されている、バミキュライトを使用し
た成形体の製造の際に、2mmまでの粒度のパーミキユ
ライトが使用されている。
German Patent Application No. P 37 01 511.7 describes a thermally insulating shaped body of the above-mentioned type. In the production of the moldings described there using vermiculite, permiculite with a particle size of up to 2 mm is used.

〔発明が解決しようとする8 1ai Jl、0+am
の最大粒度を持つ、膨張せしめられないパーミキユライ
トが使用される場合は、使用の際に、すなわち500’
C以上の温度を与える際に、−層良好な特性、特に−層
良好な膨張特性を持つ、熱絶縁する成形体が得られるこ
とが分かつている。これによって、得られた成形体の膨
張圧力及び成形体の耐侵食性を改善することが可能であ
る。
[What the invention seeks to solve 8 1ai Jl, 0+am
If unexpanded permiculite is used, with a maximum particle size of 500'
It has been found that when temperatures above C are applied, thermally insulating molded bodies with good layer properties, especially good layer expansion properties, are obtained. This makes it possible to improve the expansion pressure of the obtained molded body and the erosion resistance of the molded body.

〔課留を解決するための手段〕[Means for resolving curricular issues]

前述した種類の、熱絶縁する成形体は、本発明によれば
、1.ommの最大粒度を持つ、膨張せしめられないパ
ーミキユライトを含んでいることを特徴としているつ 別の好ましい実施例によれば、本発明による、熱絶縁す
る成形体は、前述の1.0mmの最大粒度を持つ、膨張
せしめられないパーミキユライトを含んでいるが、しか
しこれらの成形体に含まれているパーミキユライトの8
0%は最大0.5mmの粒度を持っている。この実施例
には、耐侵食性が更に改善され得るという利点がある。
According to the invention, a thermally insulating molded body of the above-mentioned type comprises: 1. According to another preferred embodiment, the thermally insulating molded body according to the invention is characterized in that it contains unexpanded permiculite with a maximum particle size of 1.0 mm. Contains unexpanded permiculite with the largest particle size, but the 8% of permiculite contained in these compacts
0% has a particle size of up to 0.5 mm. This embodiment has the advantage that the erosion resistance can be further improved.

別の好ましい実施例によれば、本発明による、熱絶縁す
る成形体は、前述の1.omm=の最大粒度を持つ、粉
砕された、膨張せしめられないパーミキユライトを含ん
でいるが、この場合、パーミキユライトの少なくとも9
5%は最大0.5m+mの粒度を持っている。この実施
例には、成形体の組織が著しく改善されかつガス流の侵
食に対する耐性が更に増大するという利点がある。
According to another preferred embodiment, the thermally insulating molded body according to the invention is provided in the above-mentioned 1. omm=, including crushed, unexpanded permiculite with a maximum particle size of at least 9.
5% has a particle size of up to 0.5m+m. This embodiment has the advantage that the structure of the molded body is significantly improved and its resistance to gas flow attack is further increased.

別の好ましい実施例によれば、本発明による成形体は、
粉砕された、膨張せしめられないパーミキユライトと、
最大1.0++noの粒度になるようにふるい分けるこ
とにより得られた、膨張せしめられないパーミキユライ
トとの比が30 : 70ないし70:30、待に40
 : 60ないし60 : 40、である混合物を含ん
でいる。この実施例には、非常に均一な粒子分布が達成
されるので、膨張圧力及び耐侵食性に関して特に良好な
特性が得られるという利点がある。
According to another preferred embodiment, the molded body according to the invention comprises:
crushed, non-expandable permiculite;
The ratio of unexpanded permiculite obtained by sieving to a particle size of up to 1.0++ no. is 30:70 to 70:30, even 40
:60 to 60:40. This embodiment has the advantage that a very uniform particle distribution is achieved, so that particularly good properties are obtained with respect to expansion pressure and erosion resistance.

本発明は更に、前述した、熱絶縁する成形体を製造する
方法に関しており、この方法では、公知のやり方で初期
材料の水性懸濁液から繊維マット成形体が製造され、こ
の方法は、初分散液中に、O,1mm+の最大粒度を持
つ、膨張せしめられないパーミキユライト、なるべ(1
,0mmの最大粒度を持つ、膨張せしめられないバーミ
キニライトが使用され、そのうちの少なくとも80%が
0.5mm及びそれ以下の粒度を持っており、更になる
べく、粉砕された、膨張せしめられないパーミキユライ
トを含む切分散液が使用され、そのうちの少なくとも9
5%が0.5t+a及びそれ以下の粒度を持っているこ
とを特徴としている。
The invention furthermore relates to a method for producing a thermally insulating molded body as described above, in which a fiber mat molded body is produced in a known manner from an aqueous suspension of initial materials, the method comprising: In the liquid, non-expandable permiculite, Narube (1
Use is made of unexpanded vermikinilite with a maximum grain size of . A cutting dispersion containing permiculite is used, of which at least 9
It is characterized in that 5% has a particle size of 0.5t+a and below.

方法の別の好ましい実施例によれば、初分散液中に、粉
砕された、膨張せしめられないパーミキユライトと、最
大1.0111!lの粒度になるようにふるい分けるこ
とにより得られた、膨張せしめられないパーミキユライ
トとの混合物が使用され、この場合、粉砕により得られ
たパーミキユライトと、ふるい分けることにより得られ
たパーミキユライトとが30 : 70ないし70 :
 30の比で存在している。
According to another preferred embodiment of the method, the initial dispersion contains ground, unexpanded permiculite and up to 1.0111! A mixture of unexpanded permiculite obtained by sieving to a particle size of 1 is used, in this case a mixture of permiculite obtained by grinding and permiculite obtained by sieving. 30:70 to 70:
They exist in a ratio of 30.

本発明を実施するために、通常の耐火性セラミック繊維
が使用される。これらのamはヱないし101mの厚さ
及びlないしIOm閣の長さを持つことができ、通常、
このようなセラミック繊維は、例えば1260℃又は1
600°Cになり得る分級温度により規定される。
To practice the invention, conventional refractory ceramic fibers are used. These ams can have a thickness of 1 to 101 m and a length of 1 to 10 m, and are usually
Such ceramic fibers can be heated, for example, at 1260°C or 1
It is defined by the classification temperature which can be 600°C.

本発明により使用されるパーミキユライトは、市販の製
品である。0.1mmの最大粒度を持つ、膨張せしめら
れないパーミキユライトを得るために、天然パーミキユ
ライトを1.ommのこの粒度°になるようにふるい分
けることができるが、しかし十分な粉砕時間で、最大粒
度が1 、0mmである製品が得られる天然パーミキユ
ライトを粉砕することも可能であり、又はこの粉砕され
たパーミキユライトを安全のためにかつ1.0mmより
大きい粒度を持つ粒子の除去のためにふるい分けること
ができる。
The permiculite used according to the invention is a commercially available product. In order to obtain non-expandable permiculite with a maximum grain size of 0.1 mm, natural permiculite was processed into 1. It is possible to sieve to this particle size of 1.0 mm, but with sufficient grinding time it is also possible to grind natural permiculite which yields a product with a maximum particle size of 1.0 mm; The crushed permiculite can be sieved for safety and to remove particles with a particle size greater than 1.0 mm.

本発明により使用される、有機ポリマー製フイブリドは
、種々のポリマーから製造され得る市販の製品である。
The organic polymeric fibrids used according to the invention are commercially available products that can be made from a variety of polymers.

ポリオレフィン製のフイブリド、例えば125ないし1
35°Cの軟化点を持つポリエチレン又は155ないし
】65°Cの軟化点を持つポリプロピレン製のフイブリ
ドが使用されるのが好ましい。
Fibrids made of polyolefins, e.g. 125 to 1
Preferably, fibrids made of polyethylene with a softening point of 35°C or polypropylene with a softening point of 155 to 65°C are used.

本発明により使用される、−時又は永久結合剤ま、ドイ
ツ連邦共和国特許出願公開第3444397号明細書に
挙げられているような結合剤に相当する。
The temporary or permanent binders used according to the invention correspond to the binders mentioned in German Patent Application No. 3,444,397.

本発明による成形体の製造方法は公知のやり方で行なわ
れ、すなわち出発材料は十分な水面で撹拌機により又は
適切な混合機で分散液になるように分散される。続いて
、繊維マット成形体の変形が公知のやり方で、例えばふ
るい型で又は水性懸濁液を沈澱させることにより行なわ
れる。
The process for producing moldings according to the invention is carried out in a known manner, ie the starting materials are dispersed into a dispersion at a sufficient water level with a stirrer or with a suitable mixer. Subsequently, the fiber mat shaped body is transformed in a known manner, for example in a sieve mold or by settling out an aqueous suspension.

これらの変形方法では、通常、厚さの異なるマットの形
の成形体が得られ、この厚さは、ふるいに突き当たりか
つ吸引される分散液の量に関係しかつこれにより調節さ
れ得る。
In these variants, shaped bodies in the form of mats of varying thickness are usually obtained, the thickness of which is dependent on and can be adjusted by the amount of dispersion that impinges on the sieve and is sucked up.

マットの形のこれらの成形素材は、公知のやり方で、例
えば120°Cまでの温度で乾燥され得る。続いて、最
終的な成形体への変形は、直接又は更なる加工により行
なうことができ、このためにこのようなマットは、フイ
ブリドのポリマーが変形される温度に、例えば約135
°Cの融点を持つポリエチレン製フィブリドを使用する
場合は160ないし180°Cの温度に加熱され、その
際゛5ないし200パールの圧力、特にioないし50
パール、が加えられるのが好ましい。160ないし+8
0’Cの高められた温度への加熱は、−般に数分間だけ
、例えば3ないし20分間、継続し、これは、変形され
るべき成形素材、例えばマット、の厚さに関係する。
These shaped materials in the form of mats can be dried in a known manner, for example at temperatures up to 120°C. Subsequently, the transformation into the final shaped body can take place directly or by further processing, for which purpose such a mat is heated to a temperature at which the polymer of the fibrids is transformed, for example at about 135 °C.
When using polyethylene fibrids with a melting point of
Preferably, pearls are added. 160 or +8
Heating to an elevated temperature of 0'C - generally lasts for only a few minutes, for example from 3 to 20 minutes, depending on the thickness of the molding material, e.g. mat, to be deformed.

成形体内のフイブリドの含有量により、成形体を成形素
材の2つの部分から製造することも可能であり、これら
の成形素材は接触面を、高められた温度、例えばiso
’cにおいて80パールで3分間、加圧により互いに溶
接される。この実施例では、フイプリド含有量が、乾燥
された成形体に関して20ないし40重櫨%に設定され
るのが特に好ましい。
Depending on the content of fibrids in the molding, it is also possible to produce the molding from two parts of the molding stock, the contact surfaces of which are heated to an elevated temperature, e.g.
Welded together by pressure at 'c for 3 minutes at 80 pearls. In this embodiment, it is particularly preferred for the fipulid content to be set between 20 and 40%, based on the dried moldings.

複雑な成形体の場合には、最終的成形体のゆがみが生じ
ないようにするために、成形体への型の接触のもとに冷
即が行なわれるのが好ましい。
In the case of complex shaped bodies, it is preferable to carry out cold quenching with the mold in contact with the shaped body, in order to avoid distortions of the final shaped body.

〔実施例〕〔Example〕

本発明を以下の例について詳細に説明する。 The invention will be explained in detail with reference to the following examples.

例1 最大粒度に’Om朧になるようにふるい分けることによ
り得られた、膨張せしめられないパーミキユライト3k
g及び1260’Cの分級温度を持つ、厚さ1ないし3
μ畑及び長さlないし5mmのセラミック繊14kgが
、容器内の6001の水の中で撹拌装置により均一に分
散された。約135°Cの融改を持つポリエチレン製フ
イブリドの3%分散液4.1kg及び水性ポリアクリレ
イト分散液300gを添加した後に、分散液はポリアク
リルアミド溶液の添加により凝結された。ふるいで、水
の吸引及び続く乾燥により繊維マット成形体が製造され
た。
Example 1 Unexpanded permiculite 3k obtained by sieving to a maximum particle size of 'Om hazy
thickness 1 to 3 with a classification temperature of 1260'C
14 kg of ceramic fibers with a μ field and a length of 1 to 5 mm were uniformly dispersed in 6001 water in a container by means of a stirring device. After adding 4.1 kg of a 3% dispersion of polyethylene fibrids with a melting temperature of about 135° C. and 300 g of an aqueous polyacrylate dispersion, the dispersion was coagulated by addition of a polyacrylamide solution. A fiber mat molding was produced by suctioning the water through a sieve and subsequent drying.

約900kg/m3のかさ密度を持つこの成形体は、熱
工学装置及び管路における絶縁する支持層又は被覆とし
て使用された。この成形体は熱処理後に、同時に強度及
び弾性もある、すばらしい形状安定性を持ちかつ管路内
に挿入されたセラミック触媒及び/又は濾過器の組込み
及び保持に適していた。この成形体は、次のような測定
方法で測定された0、6N/+m2の膨張圧力を示した
This molded body with a bulk density of approximately 900 kg/m3 was used as an insulating support layer or coating in thermal engineering devices and pipelines. After heat treatment, the molded bodies had excellent dimensional stability, being simultaneously strong and elastic, and were suitable for the installation and retention of ceramic catalysts and/or filters inserted into the pipelines. This molded body exhibited an expansion pressure of 0.6 N/+m2, which was measured by the following measuring method.

正方形の試料が均一な厚さの板として存在する。中心に
孔を持つ負荷面は、比膨張圧力の検知のために正確に(
m+n2)測定されかつ圧力測定器の下に配置される。
A square specimen is presented as a plate of uniform thickness. The load surface with a hole in the center can be used to accurately detect the specific expansion pressure (
m+n2) measured and placed under the pressure measuring device.

最初の加熱前に、1ONの前圧力が全面に加えられる。Before the first heating, a prepressure of 1 ON is applied over the entire surface.

加熱及び冷却速度は約10°C/分である。試験のため
に、75°Cから750°Cへかつ75°Cへ戻して7
サイクル運耘される0表に挙げられた値は第2のサイク
ルに関するものである。なぜならばサイクル1はパーミ
キユライト脱ガスにより異常な値を示すことがしばしば
あるからである。
Heating and cooling rates are approximately 10°C/min. For testing, 75°C to 750°C and back to 75°C.
The values listed in the cycle-operated 0 table are for the second cycle. This is because cycle 1 often shows abnormal values due to permiculite degassing.

表の中で例2ないし4に示された侵食値は、下記の測定
方法により測定された。
The erosion values shown in Examples 2 to 4 in the table were determined by the following measurement method.

60 X 15 X 5++++nの寸法の試料は、吹
きつけられる頭部面が約75mm2になるように締めつ
けられる。
A sample with dimensions 60 x 15 x 5+++n is clamped so that the sprayed head area is approximately 75 mm2.

実験前に、締めつけられた試料が750°Cへの熱処理
によ引保持時間なしで)膨張せしめられる。続いて、試
料は直径15mmのノズルからの圧縮空気で25mmの
間隔を置いて頭部側で吹きつけられる。圧縮空気はノズ
ルの前に1mの間隔を14いて圧力側で測定されかつ1
.25パールに達する同じレベルに保たれる。種々の時
間間隔で試料は締めつけ装置によりft量されかつ重墳
損失が検知される。表に挙げられた値は60分間の吹き
つけ時間に関するものである。
Before the experiment, the clamped samples are expanded by heat treatment to 750° C. (without any pull-hold time). The sample is then sprayed head-side with compressed air from a 15 mm diameter nozzle at 25 mm intervals. The compressed air is measured on the pressure side with a spacing of 14 m before the nozzle and
.. It is kept at the same level reaching 25 pearls. At various time intervals, the sample is weighted by a clamping device and any weight loss detected. The values listed in the table relate to a spraying time of 60 minutes.

例2ないし4 例1の作業方法が繰り返され、その際、次の表にまとめ
られた出発材料が使用された。この場合、次の表にまと
められた特性を示す成形体が得られた。
Examples 2 to 4 The procedure of Example 1 was repeated, using the starting materials summarized in the following table. In this case, molded bodies were obtained exhibiting the properties summarized in the following table.

example

Claims (1)

【特許請求の範囲】 1 1.0mmの最大粒度を持つ、膨張せしめられない
パーミキユライトを含んでいることを特徴とする、耐火
性セラミック繊維と、セラミック繊維とパーミキユライ
トとの比が80:20ないし30:70のパーミキユラ
イトと、全組成に関して5ないし40重量%の有機ポリ
マー製フイブリドと、一時及び/又は永久結合剤とから
成る、熱絶縁する繊維成形体。 2 1.0mmの最大粒度を持つ、膨張せしめられない
パーミキユライトを含んでおり、そのうちの少なくとも
80%が0.5mm及びそれ以下の粒度を持つているこ
とを特徴とする、請求項1に記載の熱絶縁する繊維成形
体。 3 粉砕された、膨張せしめられないパーミキユライト
を含んでおり、そのうちの少なくとも95%が0.5m
m及びそれ以下の粒度を持つていることを特徴とする、
請求項1又は2に記載の熱絶縁する繊維成形体。 4 粉砕された、膨張せしめられないパーミキユライト
と、1.0mm及びそれ以下の粒度になるようにふるい
分けることにより得られた、膨張せしめられないパーミ
キユライトとの比が30:70ないし70:30である
混合物を含んでいることを特徴とする、請求項1又は2
に記載の熱絶縁する繊維成形体。 5 パーミキユライトとして、0.1mmの最大粒度を
持つ、膨張せしめられないパーミキユライトが使用され
ることを特徴とする、公知のやり方で初期材料の水性懸
濁液から繊維マット成形体が製造され、これから繊維マ
ットが形成され、この繊維マットが乾燥されかつ場合に
よつては有機フイブリドの溶融のために十分な温度で熱
処理されかつ場合によつては熱変形され、その際にセラ
ミック繊維とパーミキユライトとの比が80:20ない
し30:70であるパーミキユライトが使用される、請
求項1ないし4のうち1つに記載の、熱絶縁する繊維成
形体を製造する方法。 6 パーミキユライトとして、1.0mmの最大粒度を
持つ、膨張せしめられないパーミキユライトが使用され
、そのうちの少なくとも80%が0.5mm及びそれ以
下の粒度を持つていることを特徴とする、請求項5に記
載の方法。 7 パーミキユライトとして、粉砕された、膨張せしめ
られないパーミキユライトが使用され、そのうちの少な
くとも95%が0.5mm及びそれ以下の粒度を持つて
いることを特徴とする、請求項5又は6に記載の方法。 8 パーミキユライトとして、粉砕された、膨張せしめ
られないパーミキユライトと、1.0mm及びそれ以下
の粒度になるようにふるい分けることにより得られた、
膨張せしめられないパーミキユライトとの比が30:7
0ないし70:30である混合物が使用されることを特
徴とする、請求項5又は6に記載の方法。
Claims: 1. A refractory ceramic fiber characterized in that it comprises non-expandable permiculite with a maximum particle size of 1.0 mm and a ceramic fiber to permiculite ratio of 80. 20 to 30:70 permiculite, 5 to 40% by weight of organic polymer fibrids, based on the total composition, and a temporary and/or permanent binder. 2. Comprising unexpanded permiculite with a maximum particle size of 1.0 mm, at least 80% of which has a particle size of 0.5 mm and below. The thermally insulating fiber molded article described above. 3 Contains crushed, non-expandable permiculite, of which at least 95% is 0.5 m
characterized by having a particle size of m and below,
The thermally insulating fiber molded article according to claim 1 or 2. 4. The ratio of crushed unexpanded permiculite to unexpanded permiculite obtained by sieving to a particle size of 1.0 mm or less is 30:70 to 70. :30.
The thermally insulating fiber molded article described in . 5. Fiber mat moldings are produced from an aqueous suspension of the initial material in a known manner, characterized in that non-expandable permiculite with a maximum particle size of 0.1 mm is used as permiculite. from which a fiber mat is formed, which fiber mat is dried and optionally heat treated at a temperature sufficient to melt the organic fibrids and optionally thermally deformed, in which case the ceramic fibers are combined with the ceramic fibers. 5. A method for producing a thermally insulating fibrous molded body according to claim 1, wherein permiculite is used in a ratio of 80:20 to 30:70. 6. As permiculite, non-expandable permiculite is used with a maximum grain size of 1.0 mm, characterized in that at least 80% of it has a grain size of 0.5 mm and below, The method according to claim 5. 7. As permiculite, ground, unexpanded permiculite is used, at least 95% of which has a particle size of 0.5 mm and below. The method described in. 8 Permiculite obtained by sieving crushed, unexpanded permiculite to a particle size of 1.0 mm or less,
Ratio of non-expandable permiculite is 30:7
7. Process according to claim 5, characterized in that a mixture of 0 to 70:30 is used.
JP1175775A 1988-07-19 1989-07-10 Heat insulating fiber molded body and its production Pending JPH0274575A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3824472A DE3824472A1 (en) 1987-01-21 1988-07-19 Thermally insulating fibrous shaped body and process for its production
DE3824472.1 1988-07-19

Publications (1)

Publication Number Publication Date
JPH0274575A true JPH0274575A (en) 1990-03-14

Family

ID=6359031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1175775A Pending JPH0274575A (en) 1988-07-19 1989-07-10 Heat insulating fiber molded body and its production

Country Status (5)

Country Link
JP (1) JPH0274575A (en)
FR (1) FR2634479B1 (en)
GB (1) GB2220936B (en)
IT (1) IT1231623B (en)
SE (1) SE468210B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853675A (en) * 1995-06-30 1998-12-29 Minnesota Mining And Manufacturing Company Composite mounting system
US5686039A (en) * 1995-06-30 1997-11-11 Minnesota Mining And Manufacturing Company Methods of making a catalytic converter or diesel particulate filter
CA2224325C (en) * 1995-06-30 2007-07-31 Minnesota Mining And Manufacturing Company Intumescent sheet material
US5736109A (en) * 1995-06-30 1998-04-07 Minnesota Mining And Manufacturing Company Intumescent sheet material and paste with organic binder
BR0212680B1 (en) * 2001-10-09 2011-07-26 composition of mycaceous binder and biosoluble inorganic fibers, pollution control device, method of preparation of the pollution control device, and method of preparation of a leaf material.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3701511A1 (en) * 1987-01-21 1988-08-04 Didier Werke Ag HEAT-INSULATING FIBER SHAPED BODY, METHOD FOR THEIR PRODUCTION AND THEIR USE

Also Published As

Publication number Publication date
SE8902543D0 (en) 1989-07-17
SE8902543L (en) 1990-01-20
IT1231623B (en) 1991-12-18
GB8916217D0 (en) 1989-08-31
GB2220936B (en) 1992-04-15
IT8948142A0 (en) 1989-06-28
FR2634479B1 (en) 1993-07-30
SE468210B (en) 1992-11-23
GB2220936A (en) 1990-01-24
FR2634479A1 (en) 1990-01-26

Similar Documents

Publication Publication Date Title
JPH07267756A (en) Molding containing silica aerosol particle
DK155186B (en) PRILLS OF A STRONG, INORGANIC SUBSTANCE, PROCEDURE FOR THE PREPARATION OF SUCH PRILLES, AND THEREFORE, MADE OF RIG, INORGANIC FOOD BODIES
JP2000510807A (en) Stabilization of sintered foam and production of open-cell sintered foam
Jia et al. Fabrication of alumina green body through gelcasting process using alginate
EP0585016A1 (en) Phenolic resin and carbon products
JPH0274575A (en) Heat insulating fiber molded body and its production
US4950362A (en) Heat-insulating shaped fibrous articles and a process for producing them
JP4514847B2 (en) Method for producing ceramic porous body
CN107935576A (en) Silicon nitride bonded silicon mullite composite silicon carbide ceramic material and preparation method thereof
US3925323A (en) Poly(meta-phenylene isophthalamide)powder
CN1041322C (en) Dry grouting agent and method of producing same
EP0753493B1 (en) Process for producing a ceramic sintered body using a granulated molding powder
JP2001525310A (en) Crosslinked polyamide binder for ceramics
KR100472425B1 (en) Process for forming the alumina powders
US1338598A (en) Method of making abrasive structures
US3965236A (en) Poly(meta-phenylene isophthalamide) powder and process
JPH0369545A (en) Manufacturing white ware ceramic product
US4036907A (en) Poly(meta-phenylene isophthalamide) composition
SU1680677A1 (en) Method for manufacturing articles of heat-resistant concrete
JPS6033244A (en) Manufacture of inorganic fiber formed body
JPH01286975A (en) Production of porous sintered form
JPH068201B2 (en) Manufacturing method of raw material for ceramics molded body
JP2952069B2 (en) Method for producing Si3N4 coated aluminum borate whisker and preform
JPH0377831B2 (en)
JP2614800B2 (en) Inorganic fiber refractory brick