JPH0377831B2 - - Google Patents

Info

Publication number
JPH0377831B2
JPH0377831B2 JP58196541A JP19654183A JPH0377831B2 JP H0377831 B2 JPH0377831 B2 JP H0377831B2 JP 58196541 A JP58196541 A JP 58196541A JP 19654183 A JP19654183 A JP 19654183A JP H0377831 B2 JPH0377831 B2 JP H0377831B2
Authority
JP
Japan
Prior art keywords
diene polymer
maleic anhydride
binder
water
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58196541A
Other languages
Japanese (ja)
Other versions
JPS6086184A (en
Inventor
Hideo Takamatsu
Koichi Wada
Hiroshi Harima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP58196541A priority Critical patent/JPS6086184A/en
Publication of JPS6086184A publication Critical patent/JPS6086184A/en
Publication of JPH0377831B2 publication Critical patent/JPH0377831B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Mold Materials And Core Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、セラミツクス粒子粉体からなる成形
物のための粉体用結合剤に関する。 セラミツクス焼結体は耐熱性、硬度、絶縁性等
の点ですぐれており、耐熱材料、超硬物質、絶縁
材料、遮へい材、構造材として各種分野において
重要性が大きい。 セラミツクス焼結体は通常、セラミツクス粒子
の粉体を、重合体を結合剤として用いて結合し、
得られた結合体を焼結することにより得られる。
この粉体の結合剤としては、ポリビニルブチラー
ルで代表される疎水性結合剤、デンプン、糖蜜、
カゼイン、メチルセルロース、カルボキシメチル
セルロース、ポリビニルアルコール等の水溶性結
合剤が使用されている。しかしながら、これらの
結合剤は、いずれも満足を性能を有しているとは
いい難い。 すなわち、例えば、ポリビニルブチラールで代
表される疎水性の結合剤を使用する場合には、有
機溶剤に溶解して使用する必要があるため、その
工程は煩雑となり、しかも爆発や火災等に対する
安全面での対策、溶剤の蒸気の吸収に対する処理
に対する衛生面での対策、溶剤の回収装置等の設
備上の対策等で、大きな制約を受けるという問題
がある。 また、前述の水溶性結合剤を使用する場合に
は、水に溶解して使用するので、有機溶剤を使用
する際の問題はなくなるが、結合剤としての性能
に問題が生じてくる。例えば、デンプや糖蜜を使
用する場合には、得られる成形物の強度が十分で
なく、成形物にくずれ、割れ等を生じやすい。ま
たメチルセルロース、カルボキシメチルセルロー
ス、ポリビニルアルコール等を使用する場合に
は、成形するのに必要な粘着性が得られないし、
またそれ自身の乾燥皮膜が硬いため、得られる成
形物が脆くなり、欠けやひび割れを生じ易いとい
う欠点を示す。このため成形物に柔軟性を付与す
るために可塑剤の使用が必要となるが、可塑剤の
使用は、結合剤としての粘着性の低下を伴なうと
共に種々の弊害をもたらす。なお、前述した結合
剤のうち、天然または半合成のものは、生物分解
性があるため、水溶液の形で保存している時、ま
たは含水状態の成形物中に存在している時に、分
子切断による劣化、腐敗が起こり、結合剤として
の性能低下が起り、実用に支障をきたす。 このような状況から、水溶性で、しかも粉体間
の結合力にすぐれ、柔軟性にすぐれた成形物を与
える結合剤が強く求められている。 本発明者等は、かかる状況を考慮し、セラミツ
クス粒子粉体からなる成形物の製造に適した水溶
性結合剤を種々検討した結果、水溶性の変性ジエ
ン系重合体を結合剤として用いることにより、該
セラミツクス粒子粉体に対してすぐれた結合力を
示し、十分なる柔軟性を有する成形物が得られる
ことを見出し、本発明を完成するに到つた。 すなわち、本発明によれば、分子量が5000〜
100000のジエン系重合体に無水マレイン酸または
その誘導体を前記ジエン系重合体の単量体単位
100あたり5〜50モル付加し、次いで塩基性化合
物を反応させることによつて得られた変性ジエン
系重合体が、セラミツク粒子粉体に対してすぐれ
た結合力を与え、欠けや割れ等を生じない柔軟性
を有する成形物を与える。 本発明において使用される水溶性の変性ジエン
系重合体は、ジエン系重合体に無水マレイン酸ま
たはその誘導体を付加反応させ、次いで塩基性化
合物を反応させることにより得られる。 水溶性の変性ジエン系重合体のベースとなるジ
エン系重合体としては、ポリブタジエン、ポリイ
ソプレン、ポリペンタジエン、ブタジエン−イソ
プレン共重合体、ブタジエン−スチレン共重合
体、イソプレン−スチレン共重合体、ブタジエン
−アクリロニトリル共重合体、イソプレン−アク
リロニトリル共重合体等が挙げられる。これらの
重合体のうち、結合剤として使用した場合の結合
力が十分であり、柔軟な成形物を与えるという点
からポリブタジエン、ポリイソプレン、ブタジエ
ン−イソプレン共重合体が好ましく用いられる。
なかでも無水マレイン酸またはその誘導体を付加
する際の反応の容易さから、ポリイソプレン、ブ
タジエン−イソプレン共重合体等のイソプレン系
重合体が好ましい。これらのジエン系重合体は単
独で用いても2種以上組合せて用いてもよい。 ジエン系重合体の分子量は、小さ過ぎると結合
剤として使用したときに結合力が十分でなく、ま
た十分な強度を有する成形物が得られないし、一
方、大き過ぎる場合には、無水マレイン酸または
その誘導体を付加するときにその反応系の粘度が
高くなり過ぎ、また水への溶解が容易でなくなる
等の問題を生じるので、5000〜100000の範囲にあ
ることを要し、とりわけ10000〜50000の低分子量
の範囲にあるのが望ましい。なお、ここで分子量
とは、粘度平均分子量(Mv)を意味し、本発明
において最も好ましく用いられるイソプレン系重
合体の場合にはトルエン溶液中30℃で測定して得
られた極限粘度(〔η〕)を求め、〔η〕=1.21×
10-4Mv0.77によつて算出されるものである。 前記ジエン系重合体において、ビニル結合量が
高いと得られる成形物に柔軟性を与えることがで
きなくなるのでビニル結合量は40%以下、とりわ
け25%以下であるのが好ましい。なお、前記のジ
エン系重合体が共重合体である場合、その形態は
上記の条件が満される限り、ブロツク共重合体、
ランダム共重合体、グラフト共重合体のいずれで
あつても何ら差し支えない。ここでビニル結合量
は、赤外線吸収スペクトルによつて測定されるも
のである。 かかるジエン系重合体は、例えば、リチウム金
属、リチウム化合物等のアルカリ金属を触媒とす
るアニオン重合、チーグラー重合等によつて製造
される。また、天然ゴム、合成ゴムを解重合する
ことによつても製造される。 前記ジエン系重合体には無水マレイン酸または
その誘導体が付加されるが、無水マレイン酸の誘
導体としてはマレイン酸、マレイン酸モノアルキ
ル(メチル、エチル、プロピル)やマレイン酸ジ
アルキル等のマレイン酸エステル、マレイン酸モ
ノアルキル(メチル、エチル、プロピル)アミ
ド、マレイン酸ジアルキルアミド、マレイミド等
が挙げられる。このなかでも、無水マレイン酸
が、反応の容易さや、付加後アルコールやアミン
類と反応させ、エステル化やアミド化することに
より実質的に最初からマレイン酸誘導体を付加し
たのと同じにできることから、最も好ましく用い
られる。 ジエン系重合体への無水マレイン酸またはその
誘導体の付加は、例えばジエン系重合体または、
炭化水素溶媒に溶解したジエン系重合体溶液に無
水マレイン酸またはその誘導体を添加し、過酸化
物等のラジカル発生剤の存在下または不存在下に
加熱するという方法をはじめとする種々の公知の
方法で行なわれる。 ジエン系重合体に対する無水マレイン酸または
その誘導体の付加量は、ジエン系重合体を水溶性
にするために本発明においては重要なもののひと
つであり、付加量が小さ過ぎる場合には塩基性化
合物で処理し水に溶解したときに水への溶解が極
めて困難となるし、一方、付加量が大き過ぎる場
合には、付加反応の際に反応系の粘度上昇が著し
く、また塩基性化合物で処理した後水に溶解させ
たときの水溶液粘度が高くなり過ぎるし、柔軟性
に富んだ成形物が得られなくなる。したがつて付
加量はジエン系重合体の単量体単位100あたり5
〜50モルであることを要し、好ましくは10〜30モ
ルの範囲が望ましい。 前記ジエン系重合体は、無水マレイン酸または
その誘導体を付加した後、付加した無水マレイン
酸またはその誘導体にもとづく基に塩基性化合物
を反応させることにより、水溶性の変性ジエン系
重合体とし、水溶液の状態で用いられる。 前記塩基性化合物としては、アンモニア、なら
びにトリメチルアミン、トリエチルアミン等の有
機アミン類が単独で、または2種以上組合せて用
いられる。 無水マレイン酸またはその誘導体を付加したジ
エン系重合体と塩基性化合物の反応には、塩基性
化合物を水に溶解しておき、これに無水マレイン
酸またはその誘導体を付加したジエン系重合体を
加える方法、あるいは無水マレイン酸またはその
誘導体を付加したジエン系重合体を塊状、溶融状
態または有機溶剤に溶解した状態で塩基性化合物
と反応させる方法が採られる。なお、あらかじめ
塩基性化合物と反応させた無水マレイン酸または
その誘導体付加ジエン系重合体は水を加えること
により容易に水溶液とすることが可能である。こ
の反応に用いられる塩基性化合物の量は、無水マ
レイン酸またはその誘導体に因るカルボキシル基
に対し0.5〜1当量の範囲が好ましい。 本発明の変成ジエン系重合体からなる粉体用結
合剤は、通常、粉体が水分散の形で用いられる場
合にはそのまままたは水溶液にして用いられる。 セラミツクスの成形物は、ケイ砂、ケイ石、パ
イロライト、モンモリロナイト、セリナイト、カ
オリナイト、コラムダム、陶石、長石、マグネサ
イト等の天然セラミツクス、アルミナ、マグネシ
ア、ジルコニア、スピネル、炭化ケイ素、炭化ホ
ウ素、窒化ケイ素、窒化ホウ素、黒鉛等の人工セ
ラミツクス等のセラミツクスの粒子、または水に
分散された状態のセラミツクス粒子と、本発明の
変性ジエン系重合体からなる結合剤またはその水
溶液とを、ボールミル等の混合機による常法によ
り混合し、得られる成形用組成物を常法により成
形することによつて得られる。成形する方法とし
ては、泥漿鋳込み成形、ドクターブレード法、押
出法、射出成形法、加圧成形法が挙げられる。こ
のような成形方法において、前記組成物はそのま
ま使用してもよいが、前記組成物を造粒し、これ
を成形に供することもできる。また、シートまた
はフイルム状に成形しておき、所望の形状に打ち
抜く方法も採用される。なお、セラミツクス焼結
体の製造において、高品質の製品を得るために
は、粉体の成形の段階の良否で重要な比重を占
め、目標とする特性を高収率で製造するために
は、均一な組織を有し、かつ収縮の成形物を作る
必要があることはいうまでもない。 かかる成形において、使用される変性ジエン系
重合体の水溶液における濃度は、任意に決め得る
が、該変性ジエン系重合体の溶解時の作業性、ま
たは成形物をつくる時の作業性を考慮すると、5
〜50重量%の範囲にあるのが好ましい。また、変
性ジエン系重合体のセラミツクス粒子に対する使
用量は、セラミツクス粒子の種類、成形方法、成
形物の形状、成形物の可塑性により決められる
が、一般には、セラミツクス粉体100重量部あた
り0.05〜25重量部、好ましくは0.2〜20重量部の
範囲が望ましい。 なお、本発明の粉体用結合剤を用いて、セラミ
ツクス粒子粉体からなる成形物を製造するにあた
つては、必要に応じて分散剤、潤滑剤、界面活性
剤、離型剤等を添加してもよい。また、本発明の
趣旨を損なわない程度にジオクチルフタレートや
ポリエチレングリコール等の可塑剤を配合しても
何ら差し支えない。また、カルボキシメチルセル
ロースやポリビニルアルコール等の従来から用い
られている結合剤を併用することも可能である。 以下、実施例により本発明を具体的に説明する
が、本発明はこれらの実施例により何ら限定され
るものではない。 実施例1および比較例1 イソプレン単量体をn−ブチルリチウムを触媒
として重合することにより得られた分子量29000
の低分子量ポリイソプレン100重量部に無水マレ
イン酸25重量部を加え、180℃で加熱することに
より、無水マレイン酸がイソプレン単量体単位
100あたり16モル付加した、変性低分子量ポリイ
ソプレンを作製した。該変性低分子量ポリイソプ
レンを8重量部のアンモニアを含む水300重量部
に添加し、水溶性ポリイソプレンの水溶液を作製
した。 粉末としてケイ酸ジルコニウム(含有量88%以
上、3〜100メツシユ)を用い、結合剤として上
記水溶性ポリイソプレンを前記粉末100重量部に
対し10重量部添加し、配合物を作製した。また、
結合剤としてポリビニルアルコールを用いる他は
同様にして、配合物を作製した。次いでこれらの
配合物を用い、50mm×25mm×17mmの直方体をプレ
ス成形して成形物を作製した。 得られた成形物について、スパン巾18mmにて折
れ曲げ強度を測定した。また該成形物を200℃で
2時間乾燥したものについて圧縮強度を測定し
た。また、前記配合物より100mm×20mm×2mmの
直方体状試験片をプレス成形し、曲げ試験により
柔軟性の評価を行なつた。なお、柔軟性は、成形
物にひび割れが生じた時の曲率半径によつて評価
した。これらの結果を第1表に示すが、水溶性ポ
リイソプレンを用いると、十分な結合力を示し、
得られる成形物は十分な強度を有すると同時に十
分な柔軟性を示すことが判る。
The present invention relates to a powder binder for molded articles made of ceramic particle powder. Ceramic sintered bodies are excellent in terms of heat resistance, hardness, insulation, etc., and are of great importance in various fields as heat-resistant materials, superhard materials, insulating materials, shielding materials, and structural materials. Ceramic sintered bodies are usually made by bonding powdered ceramic particles using a polymer as a binder.
It is obtained by sintering the obtained composite body.
Binders for this powder include hydrophobic binders typified by polyvinyl butyral, starch, molasses,
Water-soluble binders such as casein, methylcellulose, carboxymethylcellulose, and polyvinyl alcohol have been used. However, none of these binders can be said to have satisfactory performance. For example, when using a hydrophobic binder such as polyvinyl butyral, it is necessary to dissolve it in an organic solvent, which makes the process complicated, and there are safety concerns against explosions and fires. There is a problem in that there are significant restrictions in terms of measures to be taken, sanitary measures for treatment against absorption of solvent vapor, and measures for facilities such as solvent recovery equipment. Further, when using the above-mentioned water-soluble binder, since it is dissolved in water and used, there is no problem when using an organic solvent, but a problem arises in its performance as a binder. For example, when starch or molasses is used, the resulting molded product does not have sufficient strength and is likely to collapse or crack. Furthermore, when using methylcellulose, carboxymethylcellulose, polyvinyl alcohol, etc., the adhesiveness required for molding cannot be obtained;
In addition, since the dry film itself is hard, the obtained molded product becomes brittle and is prone to chipping and cracking. For this reason, it is necessary to use a plasticizer to impart flexibility to the molded product, but the use of a plasticizer is accompanied by a decrease in tackiness as a binder and brings about various disadvantages. Of the above-mentioned binders, natural or semi-synthetic ones are biodegradable, so when they are stored in the form of an aqueous solution or present in a molded product containing water, molecular cleavage occurs. This causes deterioration and rot, resulting in a decline in its performance as a binder, which impedes its practical use. Under these circumstances, there is a strong demand for a binder that is water-soluble, has excellent bonding strength between powders, and provides molded products with excellent flexibility. Taking this situation into consideration, the present inventors investigated various water-soluble binders suitable for manufacturing molded products made of ceramic particle powder, and found that by using a water-soluble modified diene polymer as a binder, It was discovered that a molded article exhibiting excellent bonding strength to the ceramic particle powder and having sufficient flexibility could be obtained, and the present invention was completed. That is, according to the present invention, the molecular weight is from 5000 to
Add maleic anhydride or its derivative to the monomer unit of the diene polymer of 100,000
The modified diene polymer obtained by adding 5 to 50 mol per 100 mol per 100 ml and then reacting with a basic compound provides excellent bonding strength to the ceramic particle powder and prevents chipping, cracking, etc. It gives a molded product with no flexibility. The water-soluble modified diene polymer used in the present invention can be obtained by subjecting the diene polymer to an addition reaction with maleic anhydride or a derivative thereof, and then reacting it with a basic compound. Examples of diene polymers that can be used as a base for water-soluble modified diene polymers include polybutadiene, polyisoprene, polypentadiene, butadiene-isoprene copolymer, butadiene-styrene copolymer, isoprene-styrene copolymer, and butadiene-styrene copolymer. Examples include acrylonitrile copolymer, isoprene-acrylonitrile copolymer, and the like. Among these polymers, polybutadiene, polyisoprene, and butadiene-isoprene copolymers are preferably used because they have sufficient binding strength when used as a binder and provide flexible molded products.
Among these, isoprene-based polymers such as polyisoprene and butadiene-isoprene copolymers are preferred from the viewpoint of ease of reaction when adding maleic anhydride or its derivatives. These diene polymers may be used alone or in combination of two or more. If the molecular weight of the diene polymer is too small, the binding force will not be sufficient when used as a binder, and a molded product with sufficient strength will not be obtained.On the other hand, if the molecular weight is too large, maleic anhydride or When adding the derivative, problems such as the viscosity of the reaction system becoming too high and the difficulty in dissolving in water occur, so it is necessary that the molecular weight be in the range of 5,000 to 100,000, and especially in the range of 10,000 to 50,000. It is desirable that the molecular weight be in the low molecular weight range. In addition, the molecular weight here means the viscosity average molecular weight (Mv), and in the case of the isoprene-based polymer most preferably used in the present invention, the intrinsic viscosity ([η ]), find [η]=1.21×
10 -4 Mv 0.77 . In the diene polymer, if the amount of vinyl bonds is high, flexibility cannot be imparted to the obtained molded product, so the amount of vinyl bonds is preferably 40% or less, particularly 25% or less. In addition, when the above-mentioned diene-based polymer is a copolymer, its form can be a block copolymer, as long as the above conditions are satisfied.
There is no problem whether it is a random copolymer or a graft copolymer. Here, the amount of vinyl bonds is measured by infrared absorption spectrum. Such diene polymers are produced, for example, by anionic polymerization, Ziegler polymerization, etc. using an alkali metal such as lithium metal or a lithium compound as a catalyst. It can also be produced by depolymerizing natural rubber or synthetic rubber. Maleic anhydride or a derivative thereof is added to the diene polymer, and the derivatives of maleic anhydride include maleic acid, maleic esters such as monoalkyl maleate (methyl, ethyl, propyl) and dialkyl maleate, Examples include monoalkyl maleate (methyl, ethyl, propyl)amide, dialkyl maleate, maleimide, and the like. Among these, maleic anhydride is used because of its ease of reaction and the fact that it can be reacted with alcohols or amines after addition, resulting in esterification or amidation, which is essentially the same as adding a maleic acid derivative from the beginning. Most preferably used. The addition of maleic anhydride or a derivative thereof to a diene polymer can be carried out, for example, by adding maleic anhydride or a derivative thereof to a diene polymer or
Various known methods including a method in which maleic anhydride or its derivative is added to a diene polymer solution dissolved in a hydrocarbon solvent and heated in the presence or absence of a radical generator such as a peroxide, etc. It is done in a method. The amount of maleic anhydride or its derivative added to the diene polymer is one of the important factors in the present invention in order to make the diene polymer water-soluble, and if the amount added is too small, it may be a basic compound. When treated and dissolved in water, it becomes extremely difficult to dissolve in water.On the other hand, if the amount added is too large, the viscosity of the reaction system increases significantly during the addition reaction. When dissolved in water, the viscosity of the aqueous solution becomes too high, and a molded product with high flexibility cannot be obtained. Therefore, the addition amount is 5 per 100 monomer units of the diene polymer.
It is required that the amount is from 10 to 30 mol, preferably from 10 to 30 mol. The diene polymer is made into a water-soluble modified diene polymer by adding maleic anhydride or a derivative thereof, and then reacting a basic compound with a group based on the added maleic anhydride or a derivative thereof. It is used in the following situations. As the basic compound, ammonia and organic amines such as trimethylamine and triethylamine are used alone or in combination of two or more. For the reaction between a diene polymer to which maleic anhydride or its derivative has been added and a basic compound, the basic compound is dissolved in water, and the diene polymer to which maleic anhydride or its derivative has been added is added to this. Alternatively, a method may be adopted in which a diene polymer to which maleic anhydride or a derivative thereof is added is reacted with a basic compound in bulk, in a molten state, or in a state dissolved in an organic solvent. Incidentally, maleic anhydride or a derivative-added diene polymer thereof which has been reacted with a basic compound in advance can be easily made into an aqueous solution by adding water. The amount of the basic compound used in this reaction is preferably in the range of 0.5 to 1 equivalent relative to the carboxyl group derived from maleic anhydride or its derivative. The binder for powder made of the modified diene polymer of the present invention is usually used as it is or in the form of an aqueous solution when the powder is used in the form of an aqueous dispersion. Ceramic molded products include natural ceramics such as silica sand, silica stone, pyrolite, montmorillonite, selinite, kaolinite, column dam, pottery stone, feldspar, and magnesite, alumina, magnesia, zirconia, spinel, silicon carbide, and boron carbide. , particles of ceramics such as artificial ceramics such as silicon nitride, boron nitride, and graphite, or ceramic particles dispersed in water, and a binder made of the modified diene polymer of the present invention or an aqueous solution thereof, in a ball mill, etc. The composition is mixed in a conventional manner using a mixer, and the resulting molding composition is molded in a conventional manner. Examples of the molding method include slurry casting, doctor blade method, extrusion method, injection molding method, and pressure molding method. In such a molding method, the composition may be used as it is, but the composition may also be granulated and then subjected to molding. Alternatively, a method may be adopted in which the material is formed into a sheet or film and then punched into a desired shape. In the production of ceramic sintered bodies, in order to obtain a high-quality product, the quality of the powder molding stage plays an important role, and in order to produce the desired characteristics at a high yield, It goes without saying that it is necessary to make a shrinkable molded product that has a uniform structure. In such molding, the concentration of the modified diene polymer used in the aqueous solution can be determined arbitrarily, but considering the workability when dissolving the modified diene polymer or the workability when making a molded article, 5
Preferably, it is in the range of ~50% by weight. The amount of modified diene polymer used in ceramic particles is determined by the type of ceramic particles, molding method, shape of the molded product, and plasticity of the molded product, but is generally 0.05 to 25 parts by weight per 100 parts by weight of ceramic powder. Parts by weight, preferably in the range of 0.2 to 20 parts by weight. In addition, when manufacturing a molded product made of ceramic particle powder using the powder binder of the present invention, a dispersant, lubricant, surfactant, mold release agent, etc. may be added as necessary. May be added. Further, there is no problem in adding a plasticizer such as dioctyl phthalate or polyethylene glycol to the extent that the purpose of the present invention is not impaired. It is also possible to use conventionally used binders such as carboxymethyl cellulose and polyvinyl alcohol. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples in any way. Example 1 and Comparative Example 1 Molecular weight 29000 obtained by polymerizing isoprene monomer using n-butyllithium as a catalyst
By adding 25 parts by weight of maleic anhydride to 100 parts by weight of low molecular weight polyisoprene and heating at 180°C, maleic anhydride converts into isoprene monomer units.
A modified low molecular weight polyisoprene with 16 moles added per 100 was produced. The modified low molecular weight polyisoprene was added to 300 parts by weight of water containing 8 parts by weight of ammonia to prepare an aqueous solution of water-soluble polyisoprene. Zirconium silicate (content: 88% or more, 3 to 100 meshes) was used as a powder, and 10 parts by weight of the water-soluble polyisoprene described above was added as a binder to 100 parts by weight of the powder to prepare a blend. Also,
A formulation was made in the same manner except that polyvinyl alcohol was used as the binder. Next, using these blends, a rectangular parallelepiped of 50 mm x 25 mm x 17 mm was press-molded to produce a molded product. The bending strength of the obtained molded product was measured at a span width of 18 mm. Furthermore, the compressive strength of the molded product was measured after drying it at 200°C for 2 hours. In addition, a rectangular parallelepiped test piece measuring 100 mm x 20 mm x 2 mm was press-molded from the above-mentioned mixture, and its flexibility was evaluated by a bending test. The flexibility was evaluated based on the radius of curvature when cracks appeared in the molded product. These results are shown in Table 1, and when water-soluble polyisoprene is used, it shows sufficient bonding strength,
It can be seen that the molded product obtained has sufficient strength and at the same time exhibits sufficient flexibility.

【表】 イソプレン
比較例 ポリビニル 4.18 35.8 21.0
アルコール
[Table] Comparative example of isoprene Polyvinyl 4.18 35.8 21.0
alcohol

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツクス粒子粉体から製造される成形物
のための粉体用結合剤であつて、分子量が5000〜
100000のジエン系重合体に無水マレイン酸または
その誘導体を前記ジエン系重合体の単量体単位
100あたり5〜50モル付加し、次いで塩基性化合
物を反応させることによつて得られた変性ジエン
系重合体からなる粉体用結合剤。
1 Powder binder for molded articles manufactured from ceramic particle powder, with a molecular weight of 5000 to 5000
Add maleic anhydride or its derivative to the monomer unit of the diene polymer of 100,000
A binder for powder consisting of a modified diene polymer obtained by adding 5 to 50 moles per 100 mol and then reacting with a basic compound.
JP58196541A 1983-10-19 1983-10-19 Binder for powder Granted JPS6086184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58196541A JPS6086184A (en) 1983-10-19 1983-10-19 Binder for powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58196541A JPS6086184A (en) 1983-10-19 1983-10-19 Binder for powder

Publications (2)

Publication Number Publication Date
JPS6086184A JPS6086184A (en) 1985-05-15
JPH0377831B2 true JPH0377831B2 (en) 1991-12-11

Family

ID=16359449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58196541A Granted JPS6086184A (en) 1983-10-19 1983-10-19 Binder for powder

Country Status (1)

Country Link
JP (1) JPS6086184A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107129763A (en) * 2017-05-15 2017-09-05 河南达亨电力实业有限公司 A kind of composite ceramic particle glue and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935442A (en) * 1972-08-09 1974-04-02
JPS49108140A (en) * 1973-02-19 1974-10-15
JPS5041720A (en) * 1973-08-20 1975-04-16

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935442A (en) * 1972-08-09 1974-04-02
JPS49108140A (en) * 1973-02-19 1974-10-15
JPS5041720A (en) * 1973-08-20 1975-04-16

Also Published As

Publication number Publication date
JPS6086184A (en) 1985-05-15

Similar Documents

Publication Publication Date Title
US5487855A (en) Polymeric binders for enhancing green strength of pressed ceramics
JPH0218308B2 (en)
JPS60180957A (en) Manufacture of ceramic product
JPH0153233B2 (en)
US5358911A (en) Polymeric binders for ceramic processing
CN1296051A (en) Ceramic moulding products adhesion agent
JP6118001B2 (en) Thermoformable ceramic composition comprising hydroxypropylmethylcellulose
JPH0377831B2 (en)
JP4361659B2 (en) Ceramic molding binder
JPH09118569A (en) Water-based mixture and production of body comprising the same
JPH0223492B2 (en)
JPS591743B2 (en) Composition for injection molding or extrusion molding
JPH0369545A (en) Manufacturing white ware ceramic product
JP4381538B2 (en) Ceramic molding binder
CN107382337A (en) A kind of preparation method of high tenacity refractory material
JPH0274575A (en) Heat insulating fiber molded body and its production
JPS6212658A (en) Ceramic binder
JPH08301941A (en) Binder for production of inorganic sinter and inorganic sinter
JPH0222165A (en) Ceramic binder
JP2001146484A (en) Binder for molding ceramic
JP2000086992A (en) Binder for ceramic
JPH0571536B2 (en)
JP2587399B2 (en) Ceramic binder
JPH0421626B2 (en)
JPS6270256A (en) Heat-meltable binder for producing ceramics