JPH0274079A - Photodiode - Google Patents

Photodiode

Info

Publication number
JPH0274079A
JPH0274079A JP63225719A JP22571988A JPH0274079A JP H0274079 A JPH0274079 A JP H0274079A JP 63225719 A JP63225719 A JP 63225719A JP 22571988 A JP22571988 A JP 22571988A JP H0274079 A JPH0274079 A JP H0274079A
Authority
JP
Japan
Prior art keywords
photodiode
impurity level
junction
doped
zero bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63225719A
Other languages
Japanese (ja)
Inventor
Takashi Takamura
高村 孝士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63225719A priority Critical patent/JPH0274079A/en
Publication of JPH0274079A publication Critical patent/JPH0274079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enable a photodiode of this design to be effective against a long wave band, operable at a zero bias, and excellent in mechanical strength by a method wherein an impurity level is formed inside a depletion layer forbidden band of a junction. CONSTITUTION:A P region 103 doped with boron through an ion implantation method is formed in an N-Si substrate 104 doped with phosphorus as a dopant, a Au diffused region is formed through a thermodiffusion method, and lead-out electrodes 101 and 105 are formed after a SiO2 protective film 102 has been formed through a wet type thermal oxidation method. As Au forms a deep impurity level inside a Si forbidden band, a light absorption concerned with an impurity level occurs, so that a photodiode grows sensitive to light rays whose wavelength is corresponding to this level. By this setup, the photodiode is made to be effective even against a long wave band, operable at a zero bias, and excellent in mechanical strength.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は長波長帯に有効なフォトダイオードに関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a photodiode that is effective in long wavelength bands.

[従来の技術] 従来、長波長帯での光検出器としては、工nAsなど狭
いバンドギャップを有する半導体材料を用いたP−N接
合型フォトダイオードや、PbS光ていた。
[Prior Art] Conventionally, as a photodetector in a long wavelength band, a P-N junction photodiode using a semiconductor material having a narrow bandgap such as nAs, or a PbS photodiode has been used.

[発明が解決しようとする課題] しかしながら、従来用いられていた工nAθなどのP−
N接合型フォトダイオードでは高価な材料を用いる必要
があることや、また波長2μm以上では使えないことな
どの問題点がある。
[Problem to be solved by the invention] However, the conventionally used
N-junction photodiodes have problems such as the need to use expensive materials and their inability to be used at wavelengths of 2 μm or more.

また、光導電素子は光信号を得るためにバイアス電圧を
必要とするため、光信号がないときにも光電流が検出さ
れてしまう、いわゆる暗電流が流れるため、微少光の検
出には向かない。
In addition, since photoconductive elements require a bias voltage to obtain an optical signal, a photocurrent is detected even when there is no optical signal, so-called dark current flows, so they are not suitable for detecting minute amounts of light. .

また、カロリーメータは極めて細い熱電対の集合体であ
るため、機械的強度が弱(、また熱量測定のため光入力
に対し信号出力が数1o、oms遅れるため、高速測定
は不可能である。
In addition, since a calorimeter is an assembly of extremely thin thermocouples, its mechanical strength is weak (and high-speed measurement is impossible because the signal output is delayed by several 100 ms with respect to the optical input to measure calorific value).

そこで、本発明は従来のこのような問題点を解決し、長
波帯でも有効で1.零バイアスで動作し、かつ機械的に
も強い光検出素子を得ることを目的としている。
Therefore, the present invention solves these conventional problems and is effective even in the long wave band. The aim is to obtain a photodetector element that operates with zero bias and is mechanically strong.

[課題を解決するための手段] 上記問題点を解決するため、本発明のフォトダイオード
はPM接合もしくはPIN接合を有するフォトダイオー
ドにおいて、前記接合部の空乏層領域に禁制奇生に不純
物準位を形成したことを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the photodiode of the present invention is a photodiode having a PM junction or a PIN junction, in which a forbidden impurity level is created in the depletion layer region of the junction. It is characterized by the fact that it has been formed.

〔実施例] 以下に本発明の実施例を図面を用いて説明する第1図は
本発明のフォトダイオードの断面図である。     
                〆第1図において、
リンをドーパントとして用いたN −S i基板104
にホウ素をイオン打込法によりドーピングしたP領域1
03を形成した後、Au拡散領域106を熱拡散法で形
成した後、湿式熱酸化法により5102保護@102を
形成した後、引出し′直接101,105を形成したも
のである。
[Example] An example of the present invention will be described below with reference to the drawings. Fig. 1 is a sectional view of a photodiode of the present invention.
〆In Figure 1,
N-S i substrate 104 using phosphorus as a dopant
P region 1 doped with boron by ion implantation method
03, an Au diffusion region 106 was formed by a thermal diffusion method, a 5102 protection@102 was formed by a wet thermal oxidation method, and then the drawers 101 and 105 were directly formed.

AuはS1禁制帯中に深い不純物準位(0,55evと
(L54eV)を形成するため、不純物準位に関与した
光吸収が起き、この2つの準位に対応した波長に対して
感度を有するようになる。
Since Au forms deep impurity levels (0,55ev and (L54eV) in the S1 forbidden band, light absorption related to the impurity levels occurs, and it is sensitive to wavelengths corresponding to these two levels. It becomes like this.

そのため、分光感度特性は第2図に示すように双峰性の
広い波長感度域を持ち、長波長域においても有効な検出
装置となった。
Therefore, the spectral sensitivity characteristic has a bimodal wide wavelength sensitivity range as shown in FIG. 2, making it an effective detection device even in the long wavelength range.

また、絶対感度特性では、通常のカロリーメータ型熱電
対光蓋計に比べ、波長2.1μ77!において約100
0倍の感度を持ち、カロリーメータ型熱電対光量計を用
いるIiKは必要不可欠とされていた超精密級の電子回
路は不要となり、汎用オペアンプ1つで十分使用できる
In addition, in terms of absolute sensitivity characteristics, the wavelength is 2.1μ77 compared to a normal calorimeter-type thermocouple photometer! about 100 in
IiK, which has 0 times the sensitivity and uses a calorimeter-type thermocouple light meter, does not require the ultra-precision electronic circuit that was considered essential, and can be used with a single general-purpose operational amplifier.

また、光入力に対する応答時間は零バイアス時において
20μs以内であり、長波長域の光検出禦子としてはき
わめて高速動作を行なっている。
Furthermore, the response time to optical input is within 20 μs at zero bias, making it an extremely high-speed operation for a photodetector in the long wavelength range.

また、特に高速動作(く5μs)を必ヅとする際には逆
バイアス電圧をかけて用いることが有効な手段となるの
で第1図に示したフォトダイオードを第3図に示すよう
な測定系により測定した。
In addition, especially when high-speed operation (5 μs) is required, applying a reverse bias voltage is an effective means, so the photodiode shown in Figure 1 can be used in a measurement system as shown in Figure 3. It was measured by

第3図でオペアンプ505の反転入力端子は仮想接地と
なるため、フォトダイオード305にはICIVの逆バ
イアスが印加されている。また、帰1イ抵抗304はI
KΩを用いた。
In FIG. 3, since the inverting input terminal of the operational amplifier 505 is virtually grounded, a reverse bias of ICIV is applied to the photodiode 305. Also, the return resistor 304 is I
KΩ was used.

また、光源としては半導体レーザ502を用い、駆動回
路501によりパルス駆動をした。この駆動回路301
のパルス立上り時間は10%−90%において5n3以
下である。
Further, a semiconductor laser 502 was used as a light source, and pulsed driving was performed by a drive circuit 501. This drive circuit 301
The pulse rise time of is less than 5n3 in 10%-90%.

このような回路系によりフォトダイオード303の立上
り時間を調べると10%−90%の立上り時間で4.5
μsであった。
When examining the rise time of the photodiode 303 using such a circuit system, the rise time of 10%-90% is 4.5.
It was μs.

このように1逆バイアスをかけて用いる場合にはPN接
合からの生成−再結合電流が流れるため、低温で動作さ
せるほうが望ましいが、レーザ光のように強い光を取シ
扱う場合には特に必要なわけではない。
When used with a reverse bias of 1, a generation-recombination current flows from the PN junction, so it is preferable to operate at a low temperature, but this is especially necessary when dealing with strong light such as laser light. Not that.

以上、本実施例ではSlを用いたPM接合型のフォトダ
イオードについて説明したがもちろんこれはGaAsや
工nPやZn5eや0dTaなどの化合物半導体及びそ
の混晶及び超格子及び混晶を交えた超格子を用いてもよ
(・。もちろんGeや5iGeのような■族の物質を化
合物半導体と共に用いてもよい。
In this example, a PM junction photodiode using Sl was explained, but of course this also applies to compound semiconductors such as GaAs, nP, Zn5e, and 0dTa, their mixed crystals, superlattices, and superlattices containing mixed crystals. It is also possible to use group Ⅰ materials such as Ge and 5iGe together with the compound semiconductor.

また、ドーパントも金に限らず、OrやFeやsbやP
やA日やMlやAgやLlやOuなどの金属及び半金属
を用いてももちろんよく、所望の分光感度に応じたもの
を選べばよい。
In addition, dopants are not limited to gold, but also Or, Fe, sb, and P.
Of course, metals and metalloids such as A, Ml, Ag, Ll, and O may be used, and one may be selected according to the desired spectral sensitivity.

また、構造もプレーナ型のPN接合に限らず、PIN接
合やヘテロ接合を用いてももちろんよいまた、ドーパン
トを単一種類に限定することはなく、数種類のものを同
時に用いてもよい。
Further, the structure is not limited to a planar PN junction, and a PIN junction or a heterojunction may of course be used, and the dopant is not limited to a single type, but several types may be used at the same time.

また、フォトダイオード使用時は通常の場合室温で十分
動作するが、波長5μm以上の長波長帯で超低入力光強
度のときには、冷却することにより低雑音化して用いる
ほうがよい。
Furthermore, when a photodiode is used, it normally operates satisfactorily at room temperature, but when the input light intensity is extremely low in a long wavelength band of 5 μm or more, it is better to use it by cooling it to reduce noise.

[発明の効果] 本発明のフォトダイオードは以下に示すような効果を有
する。
[Effects of the Invention] The photodiode of the present invention has the following effects.

(IJ  深い準位をドーピングした半導体を用いるた
め、少々の不純物には影響を麦げないため、結晶として
低品位の材質でも使用できるうえ製造プロセス上で少々
゛の歪みが入っても特性がほとんど変化しないため、安
定した特性を得ることができる(11)光起電力を発生
する素子のため、零バイアス動作時には暗電流は0であ
り、光導電素子のように暗電流が温度変化により変動す
ることがな(、また素子の経時変化に対しても暗電流が
生じないため、微少光量の検出が行なえる。
(IJ) Since a semiconductor doped with deep levels is used, it will not be affected by small amounts of impurities, so it can be used even with low-quality crystal materials, and even if there is a slight distortion in the manufacturing process, the characteristics will be almost constant. (11) Since the device generates photovoltaic force, the dark current is 0 during zero bias operation, and unlike photoconductive devices, the dark current fluctuates due to temperature changes. Furthermore, since dark current does not occur even when the element changes over time, it is possible to detect very small amounts of light.

(1u)  カロリーメータ型熱電対光量計に比べ、感
度が1000倍程度高いため、信号出力の電気的処理が
容易となる。
(1u) Since the sensitivity is about 1000 times higher than that of a calorimeter-type thermocouple photometer, electrical processing of signal output is facilitated.

また、機械的にもきわめて強固であり、振動などにより
破損することがない。
It is also mechanically extremely strong and will not be damaged by vibrations.

しかも、きわめて小型化することができ、微少面積の光
も高精度に検出できる。
Moreover, it can be extremely miniaturized, and light in a minute area can be detected with high precision.

(1■)光入力に対する電気的応答速度が零バイアスで
10μs程度ときわめて速く、高速を必要とする分野(
レーザ光の光出力制御など)にも応用できる。
(1■) The electrical response speed to optical input is extremely fast, about 10 μs at zero bias, and fields that require high speed (
It can also be applied to optical output control of laser beams, etc.).

M  ドーピング材料を変えることにより、分光感度特
性を大きく変えることができ、半導体材料の制約から来
る長波長側限界を超えた動作領域が利用でき、光ICな
どの設計に有効である。
By changing the M doping material, the spectral sensitivity characteristics can be greatly changed, and an operating region beyond the long wavelength limit resulting from the limitations of semiconductor materials can be utilized, which is effective in designing optical ICs and the like.

また、Slを用いて5μm程度の波長域で使用できる光
デイテクタが容易に作れ、また少々感度が低下してもよ
い場合には@10μmまでの波長域の光検出器が得られ
るため、特殊な材料を用いなくても安価なシリコンで長
波長検出器を構成できる。
In addition, it is possible to easily make an optical detector that can be used in a wavelength range of about 5 μm using Sl, and if a slight decrease in sensitivity is acceptable, a photodetector that can be used in a wavelength range of up to @10 μm can be obtained. A long-wavelength detector can be constructed from inexpensive silicon without using other materials.

(vll  P工1J構造とし、逆バイアスを印加する
ことにより光入力に対する電気的応答速度は2fLS程
度にまで向上し、超高速応答を要する情報分野にも応用
できる。
(It has a P-1J structure, and by applying a reverse bias, the electrical response speed to optical input can be improved to about 2fLS, and it can be applied to information fields that require ultra-high-speed response.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための光検出素子の断
面図。 第2図は本発明の詳細な説明するための分光感度特性図
。 第3図は本発明の詳細な説明するための測定系の回路図
。 101・・・・・・・・・引出し電極 102・・・・・・・・・SiO□保護膜103・・・
・・・・・・P領域 104・・・、・・・・・・N−Si基板105・・・
・・・・・・引出し電極 106・・・・・・・・・Au拡散領域601・・・・
・・・・・駆動回路 302・・・・・・・・・半導体レーザ303・・・・
・・・・・フォトダイオード304・・・・・・・・・
帰還抵抗 305・・・・・・・・・オペアンプ 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 上柳雅誉(他1名) トダ 】、O ユ、ケ 3.0 3、#F
FIG. 1 is a sectional view of a photodetecting element for explaining the present invention in detail. FIG. 2 is a spectral sensitivity characteristic diagram for explaining the present invention in detail. FIG. 3 is a circuit diagram of a measurement system for explaining the present invention in detail. 101...Extractor electrode 102...SiO□protective film 103...
...P region 104..., ...N-Si substrate 105...
...Extraction electrode 106...Au diffusion region 601...
...Drive circuit 302...Semiconductor laser 303...
...Photodiode 304...
Feedback resistor 305・・・・・・Operational amplifier or higher Applicant Seiko Epson Co., Ltd. Agent Patent attorney Masayoshi Ueyanagi (1 other person) Toda], O Yu, Ke 3.0 3, #F

Claims (1)

【特許請求の範囲】[Claims] PN接合もしくはPIN接合を有するフォトダイオード
において、前記接合部の空乏層領域禁制帯中に不純物準
位を形成したことを特徴とするフォトダイオード。
1. A photodiode having a PN junction or a PIN junction, characterized in that an impurity level is formed in a forbidden band of a depletion layer region of the junction.
JP63225719A 1988-09-09 1988-09-09 Photodiode Pending JPH0274079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225719A JPH0274079A (en) 1988-09-09 1988-09-09 Photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225719A JPH0274079A (en) 1988-09-09 1988-09-09 Photodiode

Publications (1)

Publication Number Publication Date
JPH0274079A true JPH0274079A (en) 1990-03-14

Family

ID=16833742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225719A Pending JPH0274079A (en) 1988-09-09 1988-09-09 Photodiode

Country Status (1)

Country Link
JP (1) JPH0274079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480974A (en) * 1990-07-24 1992-03-13 Hamamatsu Photonics Kk Semiconductor photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480974A (en) * 1990-07-24 1992-03-13 Hamamatsu Photonics Kk Semiconductor photodetector

Similar Documents

Publication Publication Date Title
US4011016A (en) Semiconductor radiation wavelength detector
US3987298A (en) Photodetector system for determination of the wavelength of incident radiation
JP2004179651A (en) Photodetector and detection method of incident light
Emmons et al. Infrared detectors: An overview
JPH0274079A (en) Photodiode
JPS6116580A (en) Optical detection semiconductor device
US3506830A (en) Narrow spectral responsive p-n junction photodiode
JPH09229763A (en) Flame sensor
JP2933870B2 (en) Photodetector and method of manufacturing the same
JPH0257740B2 (en)
US4420684A (en) Large-surface fast photodetector sensitive in the 0.8-1.1 μm range
JPH01292220A (en) Semiconductor light detector
JP4045170B2 (en) Avalanche photodiode characteristics definition method
JPH0274078A (en) Photodetecting circuit
JPH0394127A (en) Infrared ray sensor
JPH02232531A (en) Photodetector device
US3597614A (en) Cadmium phosphide photoconductive infrared detector
JPS63136680A (en) Semiconductor laser device
JPS5936437B2 (en) Semiconductor photodetector
JPH02177379A (en) Infrared photodetector
JPH02240531A (en) Photodetector
JPS63102380A (en) Photosensor
Refaat et al. InGaAsSb/AlGaAsSb heterojunction phototransistors for infrared applications
US4720627A (en) Ion sensitive photodetector
Hogue et al. Far-infrared blocked impurity band detector development