JPH0274078A - Photodetecting circuit - Google Patents

Photodetecting circuit

Info

Publication number
JPH0274078A
JPH0274078A JP63225718A JP22571888A JPH0274078A JP H0274078 A JPH0274078 A JP H0274078A JP 63225718 A JP63225718 A JP 63225718A JP 22571888 A JP22571888 A JP 22571888A JP H0274078 A JPH0274078 A JP H0274078A
Authority
JP
Japan
Prior art keywords
band
fermi level
layer
type semiconductor
photodetecting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63225718A
Other languages
Japanese (ja)
Inventor
Takashi Takamura
高村 孝士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63225718A priority Critical patent/JPH0274078A/en
Publication of JPH0274078A publication Critical patent/JPH0274078A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enable a photodetecting element to detect even a long wave band, to operate at a zero bias, and to be excellent in mechanical strength by a method wherein a Fermi level of a P-type semiconductor is within a valence electron band, and a Fermi level of an N-type semiconductor is within a conduction band. CONSTITUTION:An N<+> layer 301, which is much doped to enable its Fermi level 304 to be in a conduction band, and a P<+> layer 303 layer, which is also much doped to make its Fermi level 304 belong in a valence electron band, constitute a P-N junction 302. By such a band structure as mentioned above, electrons of the valence electron band of the P<+> layer 303 are made to ooze out to a forbidden band, and the oozed electrons happen to absorb photons with energy smaller than the band gap of a material substance through a photon absorbing mechanism, and a so-called Franz-Kerdische effect grows prominent and a photovoltaic force is generated. By this setup, a photodetecting element of this design is effective against a long wave band, operable at a zero bias, and excellent in mechanical strength.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は長波長帯に有効なフォトダイオードに関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a photodiode that is effective in long wavelength bands.

[従来の技術] 従来、長波長帯での光検出器としては、工nAsなど狭
いバンドギャップを有する半導体材料を用いたP−N接
合型フォトダイオードや、PbS光導電素子や、熱電対
型カロリーメータが用いられていた。
[Prior art] Conventionally, photodetectors in long wavelength bands include P-N junction photodiodes using semiconductor materials with a narrow bandgap such as nanoAs, PbS photoconductive elements, and thermocouple type photodiodes. meters were used.

[発明が解決しようとする課題] しかしながら、従来用いられていた工nAsなどのP−
N接合型フォトダイオードでは高価な材料を用いる必要
があることや、また波長2μm以上では使えないことな
どの問題点がある。
[Problem to be solved by the invention] However, P-
N-junction photodiodes have problems such as the need to use expensive materials and their inability to be used at wavelengths of 2 μm or more.

また、光導電素子は光信号を得るためにバイアス電圧を
必要とするため、光信号がないときにも光電流が検出さ
れてしまう、いわゆる暗電流が流れるため、微少光の検
出には向かない。
In addition, since photoconductive elements require a bias voltage to obtain an optical signal, a photocurrent is detected even when there is no optical signal, so-called dark current flows, so they are not suitable for detecting minute amounts of light. .

また、カロリーメータは極めて細い熱電対の集合体であ
るため、機械的強度が弱く、また熱蓋測定のため光入力
に対し信号出力が数100rlLS遅れるため、高速測
定は不可能である。
Furthermore, since the calorimeter is an assembly of extremely thin thermocouples, its mechanical strength is weak, and high-speed measurement is impossible because the signal output is delayed by several hundred rlLS with respect to the optical input due to the thermal lid measurement.

そこで、本発明は従来のこのような問題点を解決し、長
波帯でも有効で、零バイアスで動作し、かつ機械的にも
強い光検出素子を得ることを目的どしている。
Therefore, the present invention aims to solve these conventional problems and to obtain a photodetecting element that is effective even in a long wavelength band, operates with zero bias, and is mechanically strong.

[課題を解決するための手段] 上記問題点を解決するため、本発明は、P型半導体とN
型半導体との接合を有する光検出素子において、前記P
型半導体のフェルミ準位が価電子帯の中にあり、かつ前
記N型半導体のフェルミ準位が伝導体の中にあることを
特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a combination of a P-type semiconductor and an N-type semiconductor.
In the photodetecting element having a junction with a type semiconductor, the P
The Fermi level of the N-type semiconductor is in a valence band, and the Fermi level of the N-type semiconductor is in a conductor.

[作用] 第3図を用いて本発明の詳細な説明する。[Effect] The present invention will be explained in detail using FIG.

第3図は、多量のドーピングをし、フェルミ準位【14
が伝導帯に入るようにしたNJ音501と、同じく多量
のドーピングをすることにより、フェルミγい位04が
価電子帯に入るようにしたP+層503♂とにより形成
したPN接合502のバンド図である。
Figure 3 shows the Fermi level [14
Band diagram of a PN junction 502 formed by an NJ sound 501 in which 04 is placed in the conduction band and a P+ layer 503♂ in which the Fermi γ band 04 is placed in the valence band by the same large amount of doping. It is.

このようなバンドfIlt造を用し・ると、P 層30
5のll1Ii電子帯の電子は禁制帯にしみ出し、その
しみ出した電子が光子を吸収するメカニズムにより、材
料物質のバンドギャップよりも小さなエネルギーの光子
に対しても吸収を起こす、いわゆる7ランツーケルデイ
ツシユ効果が顕著になり、光起電力を生じる。
Using such a band fIlt structure, the P layer 30
Electrons in the ll1Ii electron band of 5 leak into the forbidden band, and due to the mechanism in which the leaked electrons absorb photons, they also absorb photons with an energy smaller than the band gap of the material, so-called 7 run two. The Keldeitz effect becomes significant and generates a photovoltaic force.

つまり、長波長に対しても感度を持つ光検出素子となる
わけである。
In other words, it becomes a photodetecting element that is sensitive even to long wavelengths.

[実施例] 以下に本発明の実施例を図面を用いて説明する第1図は
本発明の光検出素子の断面図である。
[Example] An example of the present invention will be described below with reference to the drawings. Fig. 1 is a sectional view of a photodetector element of the present invention.

第1図にお(・て、リンをドーパントとして用いたN+
Si基板104にホウ素をイオン打込み法によりドーピ
ング1−たP+領域106を形成し、表面保護膜として
乾式熱酸化法により5in2保護膜102を形成した後
、引出し電極101105を形成したものである。
Figure 1 shows (・) N+ using phosphorus as a dopant.
A 1-doped P+ region 106 is formed on a Si substrate 104 by ion implantation with boron, a 5in2 protective film 102 is formed as a surface protective film by dry thermal oxidation, and then an extraction electrode 101105 is formed.

第2図に従来の81フオトダイオードの分光感度特性2
01と本発明の光検出素子202の分光感度特性を示す
が、多量の不純物ドーピングにより、不純物準位と伝導
帯や価電子帯が縮退し、実効的なバンドギャップが狭(
なるいわゆるバンドティリング効果も加わって、従来の
81フオトダイオードがせいぜい1.1μmまでの波長
域に対してまでしか使用できないのに対し、2μm以上
の波長域にまで使用することができることが示された。
Figure 2 shows the spectral sensitivity characteristics 2 of the conventional 81 photodiode.
01 and the spectral sensitivity characteristics of the photodetector element 202 of the present invention are shown. Due to the large amount of impurity doping, the impurity level, conduction band, and valence band are degenerated, resulting in a narrow effective band gap (
In addition to the so-called band tilling effect, it has been shown that the conventional 81 photodiode can be used for a wavelength range of 2 μm or more, whereas the conventional 81 photodiode can only be used for a wavelength range of up to 1.1 μm. Ta.

また、絶対感度特性では、通常のカロリーメータ型熱電
対光量計に比べ、波長1.5μmにおいて約1000倍
の感度を持ち、カロリーメータ型熱電対光量計を用いる
際には必要不可欠とされていた超精密級の電子回路は不
要となり、汎用オペアンプ1つで十分使用できる。
In addition, in terms of absolute sensitivity characteristics, it has approximately 1000 times the sensitivity at a wavelength of 1.5 μm compared to a normal calorimeter-type thermocouple photometer, which is considered essential when using a calorimeter-type thermocouple photometer. There is no need for ultra-precision electronic circuits, and a single general-purpose operational amplifier is sufficient.

また、光入力に対する応答時間は20μs以内であり、
長波長域の光検出素子としてはきわめて高速動作を行な
っている。
In addition, the response time to optical input is within 20 μs,
It operates at extremely high speed as a photodetector element in the long wavelength range.

なお、本実施例ではSlにリン及びホウ素をドーピング
して作成した光検出素子について説明したが、もちろん
これはGaAsや工nPやZn5eや0dTeなどの化
合物半導体及び七〇混晶及び超格子及び混晶を交えた超
格子を用いてもよい。
In this example, a photodetecting element made by doping Sl with phosphorus and boron was explained, but of course this can be applied to compound semiconductors such as GaAs, nP, Zn5e, and 0dTe, as well as 70 mixed crystals, superlattices, and mixed crystals. A superlattice containing mixed crystals may also be used.

もちろんGeや5iGeのような■族の物質を化合物半
導体と共に用いてもよい。
Of course, a group 1 substance such as Ge or 5iGe may be used together with a compound semiconductor.

また、第2図に示した分光感度特性はドーピング量によ
り変えることができ、さらに長波長帯で用(・る場合に
はドーピング量を増やすことにより対応できる。
Further, the spectral sensitivity characteristics shown in FIG. 2 can be changed by changing the amount of doping, and if the device is to be used in a longer wavelength band, it can be handled by increasing the amount of doping.

このことは、他の材料系を用いて作成しても同様である
This also applies to fabrication using other material systems.

また、ドーパントもP型、N型を作りうるものであれば
どんなものでもよい。
Moreover, any dopant may be used as long as it can form P-type or N-type.

[発明の効果] 本発明の光検出素子は以下に示すような効果を有する。[Effect of the invention] The photodetecting element of the present invention has the following effects.

(1)高濃度にドーピングした半導体を用いるため、少
々の不純物には影響を受けないため、結晶として低品位
の材質でも使用できるうえ製造プロセス上で少々の歪み
が入っても特性がほとんど変化しないため、安定した特
性を得ることができる。
(1) Since a highly doped semiconductor is used, it is unaffected by small amounts of impurities, so even low-quality crystal materials can be used, and the characteristics will hardly change even if a small amount of distortion occurs during the manufacturing process. Therefore, stable characteristics can be obtained.

(11)  光起電力を発生する素子のため、零バイア
ス動作時には暗電流は0であり、光導電素子のよう、に
暗電流が温度変化により変動することがなく、また素子
の経時変化に対しても暗電流が生じないため、微少光量
の検出が行なえる。
(11) Since the device generates photovoltaic force, the dark current is 0 during zero-bias operation, and unlike photoconductive devices, the dark current does not fluctuate due to temperature changes, and the device does not change over time. Since no dark current is generated even when the light is on, it is possible to detect very small amounts of light.

(Itil  カロリーメータ型熱電対光量計に比べ、
感度が1000倍程度高いため、信号出力の電気的処理
が容易となる。
(Compared to a calorimeter-type thermocouple light meter,
Since the sensitivity is about 1000 times higher, electrical processing of signal output becomes easier.

また、機械的にもきわめて強固であり、振動などにより
破損することがない。
It is also mechanically extremely strong and will not be damaged by vibrations.

しかも、きわめて小型化することができ、微少面積の光
も高精度に検出できる。
Moreover, it can be extremely miniaturized, and light in a minute area can be detected with high precision.

(1v)光入力に対する電気的応答速度が10μs程度
ときわめて速く、高速を必要とする分野(レーザ光の光
出力制御など)にも応用できる。
(1v) The electrical response speed to optical input is extremely fast, about 10 μs, and can be applied to fields that require high speed (such as optical output control of laser light).

M  ドーピング量を変えることにより、分光感度特性
を大きく変えるごとができ、半導体材料の制。
By changing the amount of M doping, the spectral sensitivity characteristics can be greatly changed, making it possible to control semiconductor materials.

約から来る長波長側限界を超えた動作領域が利用でき、
光重Cなどの設計に有効である。
It is possible to utilize an operating region beyond the long wavelength limit that comes from approximately
This is effective for designing light weight C, etc.

また、Slを用いて5μm程度の波長域で使用できる光
デイテクタが容易に作れ、また少々感度が低下してもよ
い場合には数10μmまでの波長域の光検出器が得られ
るため、特殊な材料を用いなくても安価なシリコンで長
波長検出器を構成できる。
In addition, it is easy to make an optical detector that can be used in a wavelength range of about 5 μm using Sl, and if a slight decrease in sensitivity is acceptable, a photodetector that can be used in a wavelength range of several tens of μm can be obtained, so special A long-wavelength detector can be constructed from inexpensive silicon without using other materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための光検出素子の断
面図。 第2図は本発明の詳細な説明するための分光感度特性図
。 第5図は本発明の詳細な説明するためのバ/ド図。 1・・・・・引出し電極 2・・・・・・5102保護膜 6・・:・・・P 領域 4・・・・・・N+Si基板 5・・・・・・引出し電極 1・・・・・・従来の31フオトダイオードの分光感度
特性 2・・・・・・本発明の光検出素子の分光感度特性1・
・・・・・N+層 2・・・・・・PN接合 6・・・・・・P+層 4・・・・・フェルミ準位 以上
FIG. 1 is a sectional view of a photodetecting element for explaining the present invention in detail. FIG. 2 is a spectral sensitivity characteristic diagram for explaining the present invention in detail. FIG. 5 is a bar diagram for explaining the present invention in detail. 1...Extractor electrode 2...5102 Protective film 6...:...P Region 4...N+Si substrate 5...Extractor electrode 1... ... Spectral sensitivity characteristics 2 of conventional 31 photodiode ... Spectral sensitivity characteristics 1 of the photodetecting element of the present invention
...N+ layer 2...PN junction 6...P+ layer 4...Fermi level or higher

Claims (1)

【特許請求の範囲】[Claims] P型半導体とN型半導体との接合を有する光検出素子に
おいて、前記P型半導体のフェルミ準位が価電子帯の中
にあり、かつ前記N型半導体のフェルミ準位が伝導体の
中にあることを特徴とする光検出素子。
In a photodetecting element having a junction of a P-type semiconductor and an N-type semiconductor, the Fermi level of the P-type semiconductor is in a valence band, and the Fermi level of the N-type semiconductor is in a conductor. A photodetecting element characterized by:
JP63225718A 1988-09-09 1988-09-09 Photodetecting circuit Pending JPH0274078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225718A JPH0274078A (en) 1988-09-09 1988-09-09 Photodetecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225718A JPH0274078A (en) 1988-09-09 1988-09-09 Photodetecting circuit

Publications (1)

Publication Number Publication Date
JPH0274078A true JPH0274078A (en) 1990-03-14

Family

ID=16833725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225718A Pending JPH0274078A (en) 1988-09-09 1988-09-09 Photodetecting circuit

Country Status (1)

Country Link
JP (1) JPH0274078A (en)

Similar Documents

Publication Publication Date Title
Tobin et al. 1/f noise in (Hg, Cd) Te photodiodes
JPH04111479A (en) Light-receiving element
Guo et al. High-responsivity Si photodiodes at 1060 nm in standard CMOS technology
Oehme et al. Backside illuminated “Ge-on-Si” NIR camera
Ren et al. High-performance visible to near-infrared photodetectors by using (Cd, Zn) Te single crystal
Masini et al. Monolithic integration of near-infrared Ge photodetectors with Si complementary metal–oxide–semiconductor readout electronics
Nwabunwanne et al. Demonstration of spectral selectivity of efficient and ultrafast GaN/AlGaN-based metal–semiconductor–metal ultraviolet photodiodes
Emmons et al. Infrared detectors: An overview
Zandian et al. Mid-wavelength infrared p-on-n Hg 1− x Cd x Te heterostructure detectors: 30–120 kelvin state-of-the-Art performance
US5663564A (en) Photovoltaic detector with integrated dark current offset correction
Tran et al. Study of High Performance GeSn Photodetectors with Cutoff Wavelength Up to 3.7 μm for Low-Cost Infrared Imaging
JPH0274078A (en) Photodetecting circuit
Masini et al. A germanium photodetector array for the near infrared monolithically integrated with silicon CMOS readout electronics
JP6428091B2 (en) Infrared image sensor
Chen et al. Mechanism of dark current dependence on reverse voltage in mid-wavelength infrared HgCdTe mesa PIN avalanche diode
JP4138853B2 (en) Infrared sensor IC
Delaunay et al. High-performance focal plane array based on type-II InAs/GaSb superlattice heterostructures
Gravrand et al. Status of very long infrared-wave focal plane array development at DEFIR
Reine et al. A review of HgCdTe infrared detector technology
JP2670289B2 (en) Infrared detecting photodiode and method for manufacturing the same
Fiorito et al. Properties of Hg implanted Hg 1− x Cd x Te infrared detectors
JPH0274079A (en) Photodiode
JPS5936437B2 (en) Semiconductor photodetector
Khryapov et al. Optical sensors
JPH06224459A (en) Photodetector