JPS5936437B2 - Semiconductor photodetector - Google Patents
Semiconductor photodetectorInfo
- Publication number
- JPS5936437B2 JPS5936437B2 JP49060439A JP6043974A JPS5936437B2 JP S5936437 B2 JPS5936437 B2 JP S5936437B2 JP 49060439 A JP49060439 A JP 49060439A JP 6043974 A JP6043974 A JP 6043974A JP S5936437 B2 JPS5936437 B2 JP S5936437B2
- Authority
- JP
- Japan
- Prior art keywords
- type
- impurity concentration
- semiconductor
- layer
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Light Receiving Elements (AREA)
Description
【発明の詳細な説明】
本発明は、例えば光通信における光検知素子として好適
な半導体受光装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light receiving device suitable as a photodetecting element in, for example, optical communication.
従来、従えは、電子計算機における光学読取器、各種の
自動制御系、警報装置の光検知素子として光ダイオード
が使用されている。Conventionally, photodiodes have been used as optical readers in electronic computers, various automatic control systems, and light detection elements in alarm devices.
光ダイオードは、良く知られているように、光信号によ
つて半導体中に励起されたキャリアを各種の障壁によつ
て捕え、光電流、光電圧の信号として取り出す素子であ
り、例えば障壁として逆バイ「ス電圧を印加したPN接
合を用いる場合、半導体内で光励起された少数キャリア
は拡散により移動し、空乏層内に吸収されて光電流とな
るものである。As is well known, a photodiode is a device that captures carriers excited in a semiconductor by an optical signal using various barriers and extracts them as a photocurrent or photovoltage signal. When using a PN junction to which a bias voltage is applied, minority carriers that are photoexcited in the semiconductor move by diffusion, are absorbed in the depletion layer, and become a photocurrent.
ところで、通常の光ダイオードは素子内部に増幅作用を
持たない。By the way, a normal photodiode does not have an amplification function inside the element.
そこで、半導体中のアバランシエ増倍効果を利用して光
電流を増幅するアバランシエ光ダイオード(以下APD
とする)が開発された。このAPDは、通常の光ダイオ
ードと比較すると極めて高感度且つ高速性に富んでいる
ので、光通信における光検知素子として有望視されてい
る。さて、一般に、光ダイオードに光を照射した場合、
光の波長が例えば6323入では、半導体表面から4I
A程度入り込み、また、例えば波長が8500入程度の
長いものになると半導体表面から150程度入り込むこ
とになる。Therefore, avalanche photodiodes (hereinafter referred to as APDs), which amplify photocurrent by utilizing the avalanche multiplication effect in semiconductors,
) was developed. Since this APD has extremely high sensitivity and high speed compared to ordinary photodiodes, it is considered to be promising as a photodetecting element in optical communication. Now, generally speaking, when a photodiode is irradiated with light,
For example, when the wavelength of light is 6323, 4I from the semiconductor surface
For example, if the wavelength is as long as about 8,500 wavelengths, it will penetrate about 150 wavelengths from the semiconductor surface.
前記したように、光ダイオードは、半導体内で光励起さ
れたキャリアを空乏層で光電流に変換するものであるか
ら、その空乏層は光の波長に応じて適当に拡がつている
必要がある。即ち、波長が短かい、例えば前記6328
の程度であれば通常の光ダイオードの如く空乏層が浅い
位置にしか存在しノIい素子であつても良好な動作を期
待できるが、例えば前記J8500入の如く長波長の光
の場合には最早や通常の光ダイオードは使用することが
できない。これはAPDであつても全く同様である。即
ち、通常のAPDは第1図に見られる如く、P形半導体
基板1の感光領域とする部分にN゛形層2を拡丁散によ
り形成してある。そして基板1とN゛形層2との間のP
N接合に逆バイアス電圧を印加して、そのPN接合から
P形半導体基板1の方向に拡がる空乏層を利用するもの
である。この空乏層は逆バイアスの電圧の値を大きくす
ればする程拡げることができる。しかしながら、第1図
に見られる如きAPDにおいては、P形半導体基板1の
不純物濃度が高いため、逆バイアス電圧の値を大きくし
た割には空乏層の拡がりは小さい。しかも、逆バイアス
電圧の値を大きくすることは暗電流の増加を招来し、ま
た、電流の飽和効果により増倍率が制限されてしまうの
で、空乏層を拡大した効果は減殺される。従つて、通常
のAPDにおける量子効率は余り大きく採ることができ
なかつた。そこで、前記APDの欠点を解消する素子と
し第2図に見られる構造のリーチ・スルー形APDが開
発されたれ図において、21はP−形即ちπ形半導体基
板、22はPf形コンタクト層、23はP形領域、24
はN゛形領域をそれぞれ示す。As described above, since a photodiode converts carriers photoexcited within a semiconductor into photocurrent in a depletion layer, the depletion layer must expand appropriately according to the wavelength of light. That is, the wavelength is short, for example, the 6328
If the depletion layer exists only in a shallow position, such as a normal photodiode, good operation can be expected even in a device with a shallow depletion layer. Ordinary photodiodes can no longer be used. This is exactly the same for APD. That is, in a typical APD, as shown in FIG. 1, an N-type layer 2 is formed by spreading on a portion of a P-type semiconductor substrate 1 that is to be a photosensitive region. And P between the substrate 1 and the N-type layer 2
A reverse bias voltage is applied to the N junction, and a depletion layer extending from the PN junction toward the P-type semiconductor substrate 1 is utilized. This depletion layer can be expanded as the value of the reverse bias voltage is increased. However, in the APD shown in FIG. 1, since the impurity concentration of the P-type semiconductor substrate 1 is high, the expansion of the depletion layer is small even though the value of the reverse bias voltage is increased. Moreover, increasing the value of the reverse bias voltage causes an increase in dark current, and the multiplication factor is limited by the current saturation effect, so the effect of enlarging the depletion layer is diminished. Therefore, the quantum efficiency in a normal APD cannot be increased very much. Therefore, a reach-through type APD with the structure shown in FIG. 2 was developed as an element to eliminate the drawbacks of the APD. In the figure, 21 is a P-type or π-type semiconductor substrate, 22 is a Pf-type contact layer, and 23 is a P-type region, 24
indicate N-shaped areas, respectively.
この構造のAPDにおける深さ方向の不純物濃度分布は
第3図に見られる通りであり、基板21における不純物
濃度は極めて低いので、コンタクト層22とN゛形領域
24との間に逆バイアス電圧を印加した場合、P形領域
23とN゛形領域24とで形成されるPN接合で発生す
る空乏層は容易に基板21中に拡がり、コンタクト層2
2に迄到達する。The impurity concentration distribution in the depth direction in the APD with this structure is as shown in FIG. When the voltage is applied, a depletion layer generated at the PN junction formed by the P-type region 23 and the N-type region 24 easily spreads into the substrate 21, and the contact layer 2
Reach up to 2.
従つて、空乏層はP形領域23と基板21との広い範囲
にわたり拡大されて感光領域となるため、量子効率は大
きく向上する。このようなAPDにおける深さ方向の電
界分布は第4図に見られる通りであつて、図のY軸はP
N接合面を表わしている。Therefore, the depletion layer is expanded over a wide range of the P-type region 23 and the substrate 21 and becomes a photosensitive region, so that the quantum efficiency is greatly improved. The electric field distribution in the depth direction in such an APD is as seen in Figure 4, and the Y axis in the figure is P.
It represents the N junction surface.
図で判る通り、P形領域23における電界は高く、また
π形半導体基板21における電界は低い。尚、P形領域
23、即ち高電界領域が光増倍に関連を持ち、π形半導
体基板21,即ち低電界領域が光吸収、従つて量子効率
に関連する。このリーチ・スルー形APDは通常(:1
5APDに比較して優れた特性を有しているが、尚欠点
が存在する。As can be seen, the electric field in the P-type region 23 is high, and the electric field in the π-type semiconductor substrate 21 is low. It should be noted that the P-type region 23, ie, the high electric field region, is related to light multiplication, and the π-type semiconductor substrate 21, ie, the low electric field region, is related to light absorption, and therefore quantum efficiency. This reach-through type APD is usually (:1
Although it has superior properties compared to 5APD, it still has drawbacks.
即ち、第2図に見られるAPDのPN接合を形成するに
は、基板1にP形領域23の拡散を行ない、次いでN゛
形層24の拡散を行なうが、N”形層24の底面は例え
ば異常拡散現象、その他により均一にならず、従つて、
PN接合面は不均一な凹凸をもつて形成される。このよ
うに不均一なPN接合面に直圧が加わつた場合、そのP
N接合面における電界分布もまた不均一になる。即ち、
PN接合面における光増倍率が部分的に変化し、従つて
、半導体受光装置として感光度に部分的変化が生ずるこ
とになる。現在、リーチ・スルー形APDにおける感光
領域面となるN゛形層24の頁面は例えば300。That is, in order to form the PN junction of the APD shown in FIG. For example, it is not uniform due to abnormal diffusion phenomenon, etc., and therefore,
The PN junction surface is formed with unevenness. When direct pressure is applied to such an uneven PN junction surface, the P
The electric field distribution at the N-junction also becomes non-uniform. That is,
The light multiplication factor at the PN junction surface partially changes, and therefore, the photosensitivity of the semiconductor light receiving device partially changes. Currently, the number of pages of the N-shaped layer 24, which is the photosensitive area surface in a reach-through type APD, is, for example, 300.
φであり、一方、光通信に使用するガラス・フアイバは
20CIi)φであるから、従来のリーチ・スルー形A
PDではN″′形層24にガラス・フアイバを当接した
場合、その場所によつて感度が相違することになる。ま
た、一般に、半導体基板に不純物拡散を行なつた場合、
その拡散深さはロッド毎に若干のバラツキが発生するこ
とは常識である。φ, and on the other hand, the glass fiber used for optical communication is 20CIi)φ, so the conventional reach-through type A
In a PD, when a glass fiber is brought into contact with the N''' type layer 24, the sensitivity will differ depending on the location.In addition, in general, when impurities are diffused into a semiconductor substrate,
It is common knowledge that the diffusion depth varies slightly from rod to rod.
従つて、前記の如きAPDではPN接合における電界分
布ロッド毎に不同となり、降伏電圧が相違することにな
る。本発明は、半導体受光装置において、不純物拡散の
深さが不均一であつても、PN接合面の電界が直ちに影
響を受けないようにして、感度或いは降伏電圧等の不同
が生じないようにすることを目的とし、一導電形の低不
純物濃度半導体基板(或いは半導体層)と、該一導電形
の低不純物濃度半導体層中に埋没形成された一導電形中
不純物濃度領域と、前記一導電形の低不純物濃度半導体
層表面から深さ方向に形成され前記埋没形成されている
一導電形の中不純物濃度半導体領域と深さ方向に所定距
離をおいて対向し感光領域を構成する反対導電形の高濃
度不純物半導体層とを備えてなることを特徴とする半導
体受光装置、を提供するもので、以下これを詳細に説明
する。Therefore, in the above-mentioned APD, the electric field distribution in the PN junction is different for each rod, resulting in different breakdown voltages. The present invention, in a semiconductor photodetector, prevents the electric field at the PN junction surface from being immediately affected even if the depth of impurity diffusion is uneven, thereby preventing variations in sensitivity or breakdown voltage from occurring. A low impurity concentration semiconductor substrate (or semiconductor layer) of one conductivity type, a medium impurity concentration region of one conductivity type buried in the low impurity concentration semiconductor layer of the one conductivity type, and A medium impurity concentration semiconductor region of the opposite conductivity type formed in the depth direction from the surface of the low impurity concentration semiconductor layer and facing the buried medium impurity concentration semiconductor region of the one conductivity type at a predetermined distance in the depth direction and forming a photosensitive region. The present invention provides a semiconductor light receiving device characterized by comprising a high concentration impurity semiconductor layer, which will be described in detail below.
本発明においては、従来のリーチ・スルー形APD(:
I)PN接合面における電界分布が敏感に変動するのは
P形領域23における不純物濃度の高さが原因である旨
の知見ば基礎になつている。In the present invention, the conventional reach-through type APD (:
I) The knowledge that the sensitive fluctuation of the electric field distribution at the PN junction surface is caused by the high impurity concentration in the P-type region 23 is the basis.
即ち、PN接合面における電界Eは、Q:空乏層の単位
面積当りのイオン化された電荷量εs:シリコンの比誘
電率
εo:真空中の誘電率
である。That is, the electric field E at the PN junction surface is: Q: ionized charge amount per unit area of the depletion layer εs: relative dielectric constant of silicon εo: dielectric constant in vacuum.
この式(1)におけるQはP形領域23の不純物濃度の
影響を受けることは明らかであり、従つて、PN接合面
における電界EはP形領域23の不純物濃度が高ければ
高い程大きな影響を受け、感光領域を形成するN+体層
24の拡散深さが僅か不均一になるだけで、大きく変動
することになる。It is clear that Q in this equation (1) is influenced by the impurity concentration of the P-type region 23, and therefore, the higher the impurity concentration of the P-type region 23, the greater the influence on the electric field E at the PN junction surface. Therefore, even a slight non-uniformity in the diffusion depth of the N+ body layer 24 forming the photosensitive area will cause a large variation.
従つて、前記従来のリーチ・スルー形APDの欠点を除
去するには、N+形層と高不純物濃度のP形領域とが当
接しないようにすれば良い。第5図は本発明一実施例の
要部説明図である。図に於いて、51はπ形即ちP一形
半導体基板(一導電形の低不純物濃度半導体基板或いは
半導体層)、52はP+形コンタクト層、53はP形領
域(一導電形中不純物濃度半導体領域)、54は基板5
1の一部であるP一形半導体層、55は感光面を形成す
るN+形層(反対導電形の高濃度不純物半導体層)をそ
れぞれ示す。この構成におけるP形領域53を形成する
には、イオン打込み法を使用し、その打込みエネルギを
適当に調整すれば極めて容易に行なうことができる。Therefore, in order to eliminate the drawbacks of the conventional reach-through type APD, it is sufficient to prevent the N+ type layer and the highly doped P type region from coming into contact with each other. FIG. 5 is an explanatory diagram of main parts of an embodiment of the present invention. In the figure, 51 is a π-type, that is, a P-type semiconductor substrate (one conductivity type low impurity concentration semiconductor substrate or semiconductor layer), 52 is a P+ type contact layer, and 53 is a P type region (one conductivity type medium impurity concentration semiconductor area), 54 is the substrate 5
1 is a part of the P-type semiconductor layer, and 55 is an N+ type layer (high concentration impurity semiconductor layer of the opposite conductivity type) forming the photosensitive surface. The P-type region 53 in this configuration can be formed extremely easily by using an ion implantation method and appropriately adjusting the implantation energy.
勿論、他の技法、例えば工程を適当に変えてエピタキシ
ャル法を採用することもできる。第6図は第5図に示し
た実施例の不純物濃度分布を表わすものである。第5図
及び第6図から判るように、N+形層55はイオン化さ
れた電荷が殆んど存在することのないP一形半導体層5
4を介してP形領域53と対向しているので、その拡散
深さに変動があつても前記式(1)のQが変らないから
電界分布は全く影響を受けず、殆んど均一である。拡散
深さの変動による悪影響を除去するためには、P一形半
導体層54の厚さは約1000八以上とするのがよい。
このような厚さの制闘はP形領域53の形成をイオン打
込み法で行なつても、十分の精度で行ない得る。以上の
説明で判るように、本発明によれば、感光領域を形成す
る反対導電形の高不純物濃度半導体層の拡散深さが不均
一であつても電界分布の不均一は発生しないので、感光
度の部分的変化がなく、細い光通信用ガラス・フアイバ
から光信号を入射させる場合に好適であり、また、ロッ
ド毎に降伏電圧が相違することもない。Of course, other techniques, such as the epitaxial method by appropriately changing the steps, may also be employed. FIG. 6 shows the impurity concentration distribution of the embodiment shown in FIG. As can be seen from FIGS. 5 and 6, the N+ type layer 55 is a P type semiconductor layer 5 in which almost no ionized charges exist.
4, it faces the P-type region 53 through the P-type region 53, so even if the diffusion depth changes, Q in the above equation (1) does not change, so the electric field distribution is not affected at all and is almost uniform. be. In order to eliminate the adverse effects of variations in diffusion depth, the thickness of the P-type semiconductor layer 54 is preferably about 1,000 mm or more.
Such thickness control can be achieved with sufficient accuracy even if the P-type region 53 is formed by ion implantation. As can be seen from the above explanation, according to the present invention, even if the diffusion depth of the high impurity concentration semiconductor layer of the opposite conductivity type forming the photosensitive area is uneven, unevenness in electric field distribution does not occur. There is no local change in power, making it suitable for injecting optical signals from thin glass fibers for optical communications, and there is no difference in breakdown voltage from rod to rod.
第1図は従来例の説明図、第2図も従来例の説明図、第
3図は第2図従来例の不純物濃度分布を示す線図、第4
図は第2図従来例における電界分布を示す線図、第5図
は本発明一実施例の要部説明図、第6図は第5図実施例
の不純物濃度分布を示す線図をそれぞれ表わす。
図において、51はP一形半導体基板、52はP+形コ
ンタクト層、53はP形領域、54はP−形半導体層、
55はN+形層をそれぞれ示す。Figure 1 is an explanatory diagram of the conventional example, Figure 2 is also an explanatory diagram of the conventional example, Figure 3 is a diagram showing the impurity concentration distribution of the conventional example in Figure 2, and Figure 4 is a diagram showing the impurity concentration distribution of the conventional example.
Figure 2 shows a diagram showing the electric field distribution in the conventional example, Figure 5 shows an explanatory diagram of the main part of an embodiment of the present invention, and Figure 6 shows a diagram showing the impurity concentration distribution in the embodiment of Figure 5. . In the figure, 51 is a P type semiconductor substrate, 52 is a P+ type contact layer, 53 is a P type region, 54 is a P− type semiconductor layer,
55 each indicate an N+ type layer.
Claims (1)
層)と、該一導電形の低不純物濃度半導体層中に埋没形
成された一導電形中不純物濃度半導体領域と、前記一導
電形の低不純物濃度半導体層表面から深さ方向に形成さ
れ前記埋没形成されている一導電形の中不純物濃度半導
体領域と深さ方向に所定距離をおいて対向し感光領域を
構成する反対導電形の高濃度不純物半導体層とを備えて
なることを特徴とする半導体受光装置。1. A low impurity concentration semiconductor substrate (or semiconductor layer) of one conductivity type, a medium impurity concentration semiconductor region of one conductivity type buried in the low impurity concentration semiconductor layer of the one conductivity type, and the low impurity concentration semiconductor region of the one conductivity type. A high concentration impurity of an opposite conductivity type formed in the depth direction from the surface of the concentrated semiconductor layer and facing the medium impurity concentration semiconductor region of one conductivity type buried at a predetermined distance in the depth direction and forming a photosensitive region. A semiconductor light receiving device comprising: a semiconductor layer;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49060439A JPS5936437B2 (en) | 1974-05-29 | 1974-05-29 | Semiconductor photodetector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49060439A JPS5936437B2 (en) | 1974-05-29 | 1974-05-29 | Semiconductor photodetector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS50153595A JPS50153595A (en) | 1975-12-10 |
JPS5936437B2 true JPS5936437B2 (en) | 1984-09-04 |
Family
ID=13142294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP49060439A Expired JPS5936437B2 (en) | 1974-05-29 | 1974-05-29 | Semiconductor photodetector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5936437B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5721876A (en) * | 1980-07-14 | 1982-02-04 | Canon Inc | Photosensor |
JP6090060B2 (en) * | 2013-08-23 | 2017-03-08 | 株式会社豊田中央研究所 | Single photon avalanche diode |
JP2017005276A (en) * | 2016-09-30 | 2017-01-05 | 株式会社豊田中央研究所 | Single-photon avalanche diode |
JP7169071B2 (en) | 2018-02-06 | 2022-11-10 | ソニーセミコンダクタソリューションズ株式会社 | Pixel structure, image pickup device, image pickup device, and electronic equipment |
JP7242234B2 (en) * | 2018-09-28 | 2023-03-20 | キヤノン株式会社 | Photodetector, photodetection system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4939237A (en) * | 1972-08-22 | 1974-04-12 |
-
1974
- 1974-05-29 JP JP49060439A patent/JPS5936437B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4939237A (en) * | 1972-08-22 | 1974-04-12 |
Also Published As
Publication number | Publication date |
---|---|
JPS50153595A (en) | 1975-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3886579A (en) | Avalanche photodiode | |
US5365101A (en) | Photo-sensing device | |
EP0142316A2 (en) | Improved p-i-n- and avalanche photodiodes | |
JPS5812746B2 (en) | semiconductor photodetector | |
US20120286144A1 (en) | Photodiode, photodiode array and method of operation | |
EP0473198B1 (en) | Photo-sensing device | |
JP2002314118A (en) | Photodetector | |
US3812518A (en) | Photodiode with patterned structure | |
US4129878A (en) | Multi-element avalanche photodiode having reduced electrical noise | |
US4740823A (en) | Photo-detectors | |
RU2102821C1 (en) | Avalanche photodiode | |
US4488038A (en) | Phototransistor for long wavelength radiation | |
US5517052A (en) | Deep-diffused phototransistor | |
US6730979B2 (en) | Recessed p-type region cap layer avalanche photodiode | |
JPS5936437B2 (en) | Semiconductor photodetector | |
US20030087466A1 (en) | Phototransistor device | |
KR20020005990A (en) | Semiconductor device | |
GB1592373A (en) | Photodetector | |
US4816890A (en) | Optoelectronic device | |
US3443102A (en) | Semiconductor photocell detector with variable spectral response | |
US4019199A (en) | Highly sensitive charge-coupled photodetector including an electrically isolated reversed biased diffusion region for eliminating an inversion layer | |
JPH04263475A (en) | Semiconductor photodetector and manufacture thereof | |
US3466448A (en) | Double injection photodetector having n+-p-p+ | |
CN109904271A (en) | Light sensing semiconductor unit and light sensing semiconductor array | |
JPH02291180A (en) | Photodiode |