JPH09229763A - Flame sensor - Google Patents

Flame sensor

Info

Publication number
JPH09229763A
JPH09229763A JP8034602A JP3460296A JPH09229763A JP H09229763 A JPH09229763 A JP H09229763A JP 8034602 A JP8034602 A JP 8034602A JP 3460296 A JP3460296 A JP 3460296A JP H09229763 A JPH09229763 A JP H09229763A
Authority
JP
Japan
Prior art keywords
semiconductor ultraviolet
pair
flame
sensor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8034602A
Other languages
Japanese (ja)
Inventor
Hikari Hirano
光 平野
Takeshi Takagi
剛 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8034602A priority Critical patent/JPH09229763A/en
Publication of JPH09229763A publication Critical patent/JPH09229763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To heighten the degree of allowability for dispersion in production and discrimination precision of on/off of a flame by matching temperature characteristics of dark current between a pair of semiconductor ultraviolet sensors and detecting the difference of output voltage or output current between the two sensors. SOLUTION: A pair of semiconductor ultraviolet ray sensors 1b , 1c in which the long wave length end of an absorbed wave length band is in the neighborhood of 280nm or 290nm are provided, and one 1c of them is shielded with a metal light shielding film 7. Load resistors R1 , R2 grounding one terminal are connected to electrodes 5a , 5b respectively, an electrode 5c is connected to a power source VDD. Output current I1 of the sensor 1b and output current I2 of the sensor 1c are allowed to flow, and output voltages V1 , V2 are output. When dark current is not equal, regulation can be performed so that the output voltages V1 , V2 may be equal in dark. Because the output currents I1 , I2 are also changed for temperature change, its change part appears in the output voltages V1 , V2 as the change of the equal output voltage, and the difference between the output voltages is constant for the temperature change. The difference between the output voltages is detected with an amplifier 9, and an ultraviolet ray of wave length of 280nm or less emitted from a flame can be detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、火炎からの放射光
の特定波長成分を、光導電型の半導体紫外線センサを用
いて認識する火炎センサに関する。更に詳しくは、火炎
の発光波長範囲から太陽光や室内光といった雑音源とな
る光の波長範囲を除外した、概ね200nm乃至280
nmの波長成分の紫外線を検出する火炎センサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flame sensor for recognizing a specific wavelength component of radiated light from a flame using a photoconductive semiconductor ultraviolet sensor. More specifically, the wavelength range of light, which is a noise source such as sunlight or room light, is excluded from the emission wavelength range of the flame, and is approximately 200 nm to 280.
The present invention relates to a flame sensor that detects ultraviolet rays having a wavelength component of nm.

【0002】[0002]

【従来の技術】火炎センサとしては、熱電対を用いて火
炎の発する熱を電気エネルギに変換して火炎を検知する
熱電対型と、水素炎イオン化検出器を用いて火炎中の水
素イオンを電気エネルギに変換して火炎を検知する水素
炎イオン化検出器型と、光電管を用いて火炎の発する光
エネルギを電気エネルギに変換して火炎を検知する光電
管型のものが一般的に使用されている。
2. Description of the Related Art As a flame sensor, a thermocouple type which uses a thermocouple to convert the heat generated by the flame into electric energy to detect the flame, and a hydrogen flame ionization detector to detect hydrogen ions in the flame A hydrogen flame ionization detector type that converts energy into energy to detect a flame and a photoelectric tube type that converts light energy generated by a flame into electrical energy by using a photoelectric tube to detect a flame are generally used.

【0003】[0003]

【発明が解決しようとする課題】前記熱電対型の火炎セ
ンサは、熱源である火炎が消滅した後でもセンサ周辺の
温度が急速には変化しないため、着火時、消火時等の火
炎状態の変化に対する過渡応答性が悪く、特に、温度変
化に乏しい密閉筐体中での使用に問題がある等、使用範
囲が制限されるという欠点があった。前記水素炎イオン
化検出器型の火炎センサは、電極部を火炎内に設ける必
要があり、小さな火炎から大きな火炎まで広範囲に適応
させるには、電極部のみならず支持部等も含め、高い耐
熱性と信頼性が要求されるため、火炎の形状や大きさが
大きく変化するものには適合が困難であり、使用範囲が
給湯器や小型ボイラ等での使用に制限される。前記光電
管型の火炎センサは、前記熱電対型または水素炎イオン
化検出器型の火炎センサに比べて、火炎のオン・オフの
判定精度が優れており、また火炎から距離を置いて設置
できるという長所を備えているが、光電管の構造的な制
約から、火炎センサの小型化及び低電圧駆動が困難であ
る等の短所に加えて、光エネルギを電気エネルギに変換
する光電変換効率(量子効率)が低く、特に火炎から放
射される200nm乃至280nmの波長範囲の微弱な
光を検出するには十分とは言えないという問題があっ
た。詳述すると、図8に示すように、火炎センサとして
検出すべき光の波長範囲は、火炎の発光波長範囲から太
陽光や室内光といった雑音源となる光の波長範囲を除外
したものであり、概ね200nm乃至280nmであ
る。但し、太陽光が完全に遮光された室内で蛍光灯が主
たる雑音源となる場合は、前記火炎センサとして検出す
べき光の波長範囲は、概ね200nm乃至290nmで
ある。また、火炎の発光スペクトルは短波長になるほど
微弱となり、特に240nm以下で顕著である。光電管
の光電変換効率(量子効率)は、長波長側の残留感度域
が長いため、280nm以上の波長域での残留感度を十
分低く抑えるためには、最高感度域が200nm乃至2
20nmの波長範囲に存在し、量子効率は最高感度域に
おいても20%乃至30%であり、火炎センサとして最
も重要な240nm乃至280nmの検出波長範囲では
5%乃至10%に低下するという欠点が有り、火炎セン
サとして最も重要な前記240nm乃至280nmの波
長範囲での量子効率を改善しようとすれば280nm以
上の波長域での残留感度が増え、太陽光や室内光等を誤
検知してSN比を劣化させるという欠点が有り、光電管
を高精度な火炎センサとして使用するには問題があっ
た。本発明は光電管の代わりに光導電型の半導体紫外線
センサを用いて、火炎の放射する光の中の200nm乃
至290nm、特に200nm乃至280nmの波長範
囲の紫外線を高効率、且つ高精度に検出することを目的
としている。光導電型の半導体紫外線センサは、その半
導体の価電子帯と伝導帯間のバンドギャップの適当なも
のを選択することで、所定の吸収スペクトルを有し、且
つ高光電変換効率(量子効率)で、長波長側の残留感度
域が短く、吸収波長端が急峻に立ち上がる半導体紫外線
センサを得ることができる。しかしながら、半導体紫外
線センサは吸収スペクトル内の光を受光していない暗中
においても、半導体紫外線センサに電圧を印加すると暗
電流が流れ、この暗電流の温度変化に対する変動が、前
記吸収スペクトル内の光を受光した場合の明電流との差
よりも大きいため、光導電型の半導体紫外線センサを火
炎センサとして使用するには、火炎のオン・オフ等によ
る温度変化に対する暗電流の変動を補償する必要があ
る。特に火炎から放射される200nm乃至280nm
の波長範囲の微弱な光を検出する半導体紫外線センサを
実現するには、長波長域に吸収スペクトルを持つ他の光
導電型の半導体光センサに比べ、高精度の温度補償が必
要となる。本発明は、上述した従来技術による火炎セン
サの持つ問題点と光導電型の半導体紫外線センサを火炎
センサとして使用する場合に生じる問題点を同時に解消
するためになされたもので、火炎のオン・オフの判定精
度が高く、且つセンサ設置条件に対する自由度の高い、
広い適用範囲を有する火炎センサを提供することを目的
としている。
In the thermocouple type flame sensor, the temperature around the sensor does not change rapidly even after the flame as a heat source is extinguished, so that the flame state changes at the time of ignition, extinguishing, etc. There is a drawback that the range of use is limited, such that the transient response to is poor and that there is a problem in use in a hermetically sealed case where temperature changes are scarce. In the hydrogen flame ionization detector type flame sensor, the electrode part needs to be provided in the flame, and in order to adapt to a wide range from a small flame to a large flame, not only the electrode part but also the support part, etc., have high heat resistance. Since reliability is required, it is difficult to adapt to a flame whose shape and size change greatly, and its use range is limited to use in a water heater, a small boiler, or the like. The photoelectric tube type flame sensor is superior to the thermocouple type or hydrogen flame ionization detector type flame sensor in the accuracy of determining the on / off state of the flame, and can be installed at a distance from the flame. However, due to the structural restrictions of the photoelectric tube, it is difficult to miniaturize the flame sensor and to drive it at a low voltage, and in addition, the photoelectric conversion efficiency (quantum efficiency) for converting light energy into electrical energy is There is a problem that it cannot be said to be low enough to detect weak light particularly in the wavelength range of 200 nm to 280 nm emitted from a flame. More specifically, as shown in FIG. 8, the wavelength range of light to be detected by the flame sensor is obtained by excluding the wavelength range of light that is a noise source such as sunlight or room light from the emission wavelength range of flame. It is approximately 200 nm to 280 nm. However, when a fluorescent lamp is a main noise source in a room where sunlight is completely shielded, the wavelength range of light to be detected by the flame sensor is approximately 200 nm to 290 nm. Further, the emission spectrum of the flame becomes weaker as the wavelength becomes shorter, and is particularly remarkable at 240 nm or less. The photoelectric conversion efficiency (quantum efficiency) of the photoelectric tube has a long residual sensitivity region on the long wavelength side. Therefore, in order to sufficiently suppress the residual sensitivity in the wavelength region of 280 nm or more, the maximum sensitivity region is 200 nm to 2 nm.
It exists in the wavelength range of 20 nm, the quantum efficiency is 20% to 30% even in the highest sensitivity range, and it has a drawback that it falls to 5% to 10% in the detection wavelength range of 240 nm to 280 nm, which is the most important as a flame sensor. If the quantum efficiency in the wavelength range of 240 nm to 280 nm, which is the most important as a flame sensor, is to be improved, the residual sensitivity in the wavelength range of 280 nm or more will increase, and the SN ratio will be increased due to false detection of sunlight or room light. There is a drawback that it deteriorates, and there is a problem in using the photoelectric tube as a highly accurate flame sensor. The present invention uses a photoconductive semiconductor ultraviolet sensor instead of a phototube to detect ultraviolet rays in the light emitted from a flame in the wavelength range of 200 nm to 290 nm, particularly 200 nm to 280 nm with high efficiency and high accuracy. It is an object. A photoconductive semiconductor UV sensor has a predetermined absorption spectrum by selecting an appropriate band gap between the valence band and the conduction band of the semiconductor and has a high photoelectric conversion efficiency (quantum efficiency). It is possible to obtain a semiconductor ultraviolet sensor having a short residual sensitivity region on the long wavelength side and a sharp rise in the absorption wavelength edge. However, even when the semiconductor ultraviolet sensor does not receive light in the absorption spectrum, in the dark, when a voltage is applied to the semiconductor ultraviolet sensor, a dark current flows, and fluctuations of the dark current with respect to temperature changes cause the light in the absorption spectrum to change. Since it is larger than the difference from the bright current when receiving light, in order to use the photoconductive semiconductor UV sensor as a flame sensor, it is necessary to compensate for variations in dark current due to temperature changes due to on / off of the flame. . Especially 200nm to 280nm emitted from flame
In order to realize a semiconductor ultraviolet sensor that detects weak light in the wavelength range of 1), highly accurate temperature compensation is required as compared with other photoconductive semiconductor photosensors that have an absorption spectrum in the long wavelength range. The present invention is made to solve the problems of the above-described conventional flame sensor and the problems that occur when a photoconductive semiconductor ultraviolet sensor is used as a flame sensor. Has a high degree of determination accuracy and a high degree of freedom with respect to sensor installation conditions,
It is an object to provide a flame sensor having a wide application range.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

〔構成〕この目的を達成するための本発明による火炎セ
ンサの第一の特徴構成は、特許請求の範囲の欄の請求項
1に記載した通り、吸収波長域の長波長端が280nm
近傍または290nm近傍にある1対の半導体紫外線セ
ンサを備えて、前記1対の半導体紫外線センサの一方が
遮光されている点にある。本発明による火炎センサの第
二の特徴構成は、特許請求の範囲の欄の請求項2に記載
した通り、吸収波長域の長波長端が280nm近傍また
は290nm近傍にある1対の半導体紫外線センサを備
えて、前記1対の半導体紫外線センサの一方に対し、透
過波長域の短波長端が前記1対の半導体紫外線センサの
吸収波長域の長波長端近傍にある光学フィルタで特定波
長域の光を遮光する点にある。本発明による火炎センサ
の第三の特徴構成は、特許請求の範囲の欄の請求項3に
記載した通り、上述の第一又は第二の特徴構成に加え
て、前記1対の半導体紫外線センサの出力電流または出
力電圧の差分を検出する差動増幅器を備えている点にあ
る。本発明による火炎センサの第四の特徴構成は、特許
請求の範囲の欄の請求項4に記載した通り、上述の第一
又は第二の特徴構成に加えて、前記1対の半導体紫外線
センサが直列に接続され、直列に接続された前記1対の
半導体紫外線センサの両端にある開放電極間に電圧を印
加し、前記1対の半導体紫外線センサの両方に接続する
中間電極から出力電圧または出力電流を取り出す点にあ
る。本発明による火炎センサの第五の特徴構成は、特許
請求の範囲の欄の請求項5に記載した通り、上述の第四
の特徴構成に加えて、前記1対の直列に接続された半導
体紫外線センサを2組有し、各組の前記中間電極からの
出力電圧または出力電流の差分を検出する差動増幅器を
備え、一方の組の遮光されていない半導体紫外線センサ
側の開放電極と他方の組の遮光されている半導体紫外線
センサ側の開放電極を各々接続してある点にある。本発
明による火炎センサの第六の特徴構成は、特許請求の範
囲の欄の請求項6に記載した通り、上述の第一乃至第五
の特徴構成に加えて、前記半導体紫外線センサの全てが
同一基板上に形成されている点にある。本発明による火
炎センサの第七の特徴構成は、特許請求の範囲の欄の請
求項7に記載した通り、上述の第三または第五の特徴構
成に加えて、前記半導体紫外線センサの全て、及び、前
記差動増幅器が同一基板上に形成されている点にある。
[Structure] The first characteristic structure of the flame sensor according to the present invention for achieving this object is, as described in claim 1 of the scope of the claims, that the long wavelength end of the absorption wavelength range is 280 nm.
A point is that a pair of semiconductor ultraviolet sensors near or at 290 nm is provided, and one of the pair of semiconductor ultraviolet sensors is shielded from light. The second characteristic configuration of the flame sensor according to the present invention is, as described in claim 2 of the claims, a pair of semiconductor ultraviolet sensors having a long wavelength end in the absorption wavelength region near 280 nm or 290 nm. An optical filter having a short wavelength end in a transmission wavelength range near a long wavelength end in an absorption wavelength range of the pair of semiconductor ultraviolet sensors is provided to emit light in a specific wavelength range to one of the pair of semiconductor ultraviolet sensors. The point is to block light. A third characteristic configuration of the flame sensor according to the present invention is, in addition to the above-mentioned first or second characteristic configuration, as described in claim 3 of the scope of claims, in addition to the pair of semiconductor ultraviolet sensors. It is provided with a differential amplifier that detects the difference between the output current and the output voltage. A fourth characteristic configuration of the flame sensor according to the present invention is, in addition to the above-mentioned first or second characteristic configuration, a pair of semiconductor ultraviolet sensors as described in claim 4 of the claims. A voltage is applied between open electrodes at both ends of the pair of semiconductor ultraviolet sensors connected in series, and an output voltage or an output current is output from an intermediate electrode connected to both of the pair of semiconductor ultraviolet sensors. The point is to take out. A fifth characteristic configuration of the flame sensor according to the present invention is, in addition to the above-described fourth characteristic configuration, as described in claim 5 of the appended claims, a pair of semiconductor ultraviolet rays connected in series. There are two sets of sensors, a differential amplifier for detecting the difference in output voltage or output current from the intermediate electrodes of each set is provided, and one set of open electrodes on the side of the semiconductor UV sensor not shielded from light and the other set The open electrodes on the side of the semiconductor UV sensor, which are shielded from light, are connected to each other. A sixth characteristic configuration of the flame sensor according to the present invention is, in addition to the above-mentioned first to fifth characteristic configurations, all of the semiconductor ultraviolet sensors are the same as described in claim 6 of the claims. It is formed on the substrate. The seventh characteristic configuration of the flame sensor according to the present invention is, in addition to the above-mentioned third or fifth characteristic configuration, all of the semiconductor ultraviolet sensors, and The differential amplifier is formed on the same substrate.

【0005】以下に作用を説明する。第一の特徴構成に
よれば、前記1対の半導体紫外線センサ間で暗電流の温
度特性の整合を取り、両センサの出力電圧または出力電
流の差分を検出することにより、温度変化に対する変動
の激しい暗電流成分が相殺され、1対の半導体紫外線セ
ンサの遮光されていない方を所定の波長範囲の紫外線セ
ンサとして機能させ、遮光されている方を温度補償用の
サーミスタとして機能させることができるのである。こ
れにより、高精度な温度補償が可能となり、火炎のオン
・オフの判定精度が高く、且つ適用範囲の広い火炎セン
サを簡単に構成することができるのである。
The operation will be described below. According to the first characteristic configuration, the temperature characteristics of the dark current are matched between the pair of semiconductor ultraviolet sensors, and the difference between the output voltage or the output current of both sensors is detected, so that the variation with respect to the temperature change is large. The dark current components are canceled out, and the unshielded one of the pair of semiconductor ultraviolet sensors can function as an ultraviolet sensor in a predetermined wavelength range, and the shielded one can function as a thermistor for temperature compensation. . As a result, highly accurate temperature compensation is possible, the flame on / off determination accuracy is high, and a flame sensor with a wide range of application can be easily configured.

【0006】第二の特徴構成によれば、前記1対の半導
体紫外線センサ間で暗電流の温度特性及び吸収スペクト
ルの整合を取り、両センサの出力電圧または出力電流の
差分を検出することにより、温度変化に対する変動の激
しい暗電流成分を相殺し、更に、前記遮光されている方
の半導体紫外線センサは前記半導体紫外線センサの吸収
波長域の長波長端が結晶の不完全性や製造工程中の条件
バラツキにより太陽光や室内光の波長範囲内に及ぶ場合
に対しても、これら太陽光や室内光による明電流の増加
分を雑音成分として相殺することができ、1対の半導体
紫外線センサの遮光されていない方を所定の波長範囲の
紫外線センサとして機能させ、遮光されている方を温度
補償用のサーミスタ及び擾乱光補償用の素子として機能
させることができるのである。これにより、高精度な温
度補償及び擾乱光補償が可能となり、製造バラツキに対
する許容度及び火炎のオン・オフの判定精度が高く、且
つ適用範囲の広い火炎センサを簡単に構成することがで
きるのである。
According to the second characteristic configuration, the temperature characteristics and the absorption spectrum of the dark current are matched between the pair of semiconductor ultraviolet sensors, and the difference between the output voltage or the output current of both sensors is detected. The dark current component, which fluctuates drastically with respect to the temperature change, is canceled out, and further, in the semiconductor ultraviolet sensor which is shielded from light, the long wavelength end of the absorption wavelength range of the semiconductor ultraviolet sensor is an incomplete crystal or a condition during the manufacturing process. Even when the variation reaches the wavelength range of sunlight or room light due to variations, the increase in bright current due to the sunlight or room light can be offset as a noise component, and the pair of semiconductor ultraviolet sensors can block light. The non-shielded one can function as an ultraviolet ray sensor in a predetermined wavelength range, and the shielded one can function as a thermistor for temperature compensation and an element for compensating for disturbing light. Than it is. As a result, highly accurate temperature compensation and turbulent light compensation are possible, the tolerance for manufacturing variations and the accuracy of flame on / off determination are high, and a flame sensor with a wide range of application can be easily configured. .

【0007】第三の特徴構成によれば、前記一対の半導
体紫外線センサの出力電流または出力電圧の差分を差動
増幅器で検出することで、前記暗電流の変動または太陽
光や室内光による明電流の増加が相殺され、所定の吸収
波長範囲内の紫外線強度の変化に対する明電流の増減分
だけが前記差分として検出できるため、差動増幅器を用
いた簡単な回路構成で、火炎のオン・オフの判定と前記
温度補償または擾乱光補償のための処理が同時に行え
る、高精度な火炎センサを提供することができるのであ
る。
According to the third characteristic configuration, the difference between the output current or the output voltage of the pair of semiconductor ultraviolet sensors is detected by the differential amplifier, whereby the fluctuation of the dark current or the bright current due to sunlight or room light is detected. Is canceled out, and only the increase / decrease of the bright current with respect to the change of the ultraviolet intensity within the predetermined absorption wavelength range can be detected as the difference. Therefore, a simple circuit configuration using a differential amplifier can be used to turn on / off the flame. It is possible to provide a highly accurate flame sensor that can perform the determination and the process for the temperature compensation or the turbulent light compensation at the same time.

【0008】第四の特徴構成によれば、温度変化による
暗電流の変動や擾乱光による明電流の変動が、直列接続
された一対の半導体紫外線センサ間で等しく働くため、
所定の吸収波長範囲内の紫外線強度が一定の場合、両半
導体紫外線センサ間の抵抗比は温度変化や擾乱光の有無
にかかわらず常に一定となる。前記中間電極からの出力
電圧は出力電流が無い場合、直列接続された一対の半導
体紫外線センサの両端の開放電極に印加された入力電圧
を抵抗分割したものであるから、抵抗比が一定であれば
一定となり、所定の吸収波長範囲内の紫外線強度の変化
にのみ追従する。この結果、前記温度補償または擾乱光
補償のための処理が自動的に行われ、所定の吸収波長範
囲内の紫外線強度の変化に対する明電流の変化分だけ
が、出力電圧が一定の場合は出力電流の変化として、出
力電流が一定の場合は出力電圧の変化として検出でき、
一対の半導体紫外線センサを直列接続しただけの簡単な
回路構成で、火炎のオン・オフの判定精度の高い火炎セ
ンサを構成することができるのである。
According to the fourth characteristic configuration, the fluctuation of the dark current due to the temperature change and the fluctuation of the bright current due to the disturbing light act equally between the pair of semiconductor ultraviolet sensors connected in series.
When the intensity of ultraviolet rays within a predetermined absorption wavelength range is constant, the resistance ratio between the two semiconductor ultraviolet sensors is always constant regardless of temperature change or the presence or absence of disturbing light. When there is no output current, the output voltage from the intermediate electrode is a resistance division of the input voltage applied to the open electrodes at both ends of a pair of semiconductor ultraviolet sensors connected in series. It becomes constant and follows only changes in the ultraviolet intensity within a predetermined absorption wavelength range. As a result, the process for the temperature compensation or the disturbance light compensation is automatically performed, and only the change amount of the bright current with respect to the change of the ultraviolet intensity within the predetermined absorption wavelength range is the output current when the output voltage is constant. If the output current is constant, it can be detected as a change in the output voltage.
With a simple circuit configuration in which a pair of semiconductor ultraviolet sensors are connected in series, it is possible to configure a flame sensor with high accuracy of flame on / off determination.

【0009】第五の特徴構成によれば、所定の吸収波長
範囲内の紫外線強度の変化に対して、2組の直列接続さ
れた一対の半導体紫外線センサの各中間電極における出
力電圧または出力電流が各々逆方向に変化するため、紫
外線強度の変化に対する出力電圧または出力電流の変化
が倍増されて、火炎センサの受光感度の向上が容易に図
れることになり、更に、紫外線強度の変化に対し逆方向
に変化する一対の出力電圧または出力電流を差動増幅す
る結果、電源電圧の変動等による雑音成分も同時に相殺
されて、使用条件の変動に対する許容度の高い、且つ火
炎のオン・オフの判定精度の非常に高い火炎センサを差
動増幅器を用いた簡単な回路構成で構成することができ
るのである。
According to the fifth characteristic configuration, the output voltage or the output current at each intermediate electrode of the two pairs of semiconductor ultraviolet sensors connected in series is changed with respect to the change of the ultraviolet intensity within the predetermined absorption wavelength range. Since each change in the opposite direction, the change in the output voltage or output current with respect to the change in the UV intensity is doubled, making it easier to improve the light receiving sensitivity of the flame sensor. As a result of differentially amplifying a pair of output voltage or output current that changes with time, noise components due to fluctuations in power supply voltage, etc. are also canceled at the same time, which is highly tolerant of fluctuations in operating conditions and the accuracy of flame on / off determination It is possible to construct a very high flame sensor with a simple circuit configuration using a differential amplifier.

【0010】第六の特徴構成によれば、暗電流の温度特
性及び結晶の不完全性や製造工程中の条件バラツキによ
る吸収スペクトルの変動を前記1対の半導体紫外線セン
サ間で簡単に整合させることができ、高精度な温度補償
及び擾乱光補償が可能となり、製造バラツキに対する許
容度及び火炎のオン・オフの判定精度の高い火炎センサ
を簡単に構成することができるのである。
According to the sixth characteristic configuration, variations in absorption spectrum due to temperature characteristics of dark current, imperfections of crystals, and variations in conditions during the manufacturing process can be easily matched between the pair of semiconductor ultraviolet sensors. Therefore, it is possible to perform highly accurate temperature compensation and turbulent light compensation, and it is possible to easily configure a flame sensor that has high tolerance for manufacturing variations and high flame on / off determination accuracy.

【0011】第七の特徴構成によれば、温度補償機能及
び擾乱光補償機能を有する火炎センサに必要な構成要素
を1チップに集積できるため、火炎センサを構成する部
品点数が軽減でき、且つ火炎センサの大幅な小型化が可
能となるのである。
According to the seventh characteristic configuration, since the components necessary for the flame sensor having the temperature compensation function and the disturbance light compensation function can be integrated on one chip, the number of parts constituting the flame sensor can be reduced and the flame can be reduced. The size of the sensor can be greatly reduced.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図1に示すように、吸収波長域の
長波長端が280nm近傍にある1対の半導体紫外線セ
ンサ1の一例であるAlx Ga1-x N光導電体1aが例
えばレーザ加熱等による物理蒸着法により同一基板2の
一例であるサファイア基板2a上に形成される。ここ
で、AlとGaの組成比xを0.33乃至0.35の範
囲で選択すれば、バンドギャップEgが概ね4.5eV
となり、前記Alx Ga1-x N光導電体1aの吸収スペ
クトルの長波長端はhν/Eg=1240/Eg(n
m)で与えられることより、吸収スペクトルの長波長端
は概ね275nmとなる。但し、hはプランク定数で、
νは光の振動数である。更に、一対の紫外線センサを構
成するために必要な、少なくとも三つの電極を形成する
ために、前記Alx Ga1-x N光導電体1a層上に、n
型GaN層の下部電極3と例えばTiAl等の金属電極
4を蒸着させ、図2に示すような櫛形パターンの三つの
電極5a、5b、及び5cを露光エッチング工程を経て
形成する。一組のn型GaN層の電極下部3と金属電極
4で電極5a、5b、または5cが構成される。尚、前
記金属電極4の金属がn型GaN層内に熱拡散し、前記
金属電極4とn型GaN層の下部電極3は疑似的にオー
ミック接触している。更に、金属電極4及びAlx Ga
1-x N光導電体1a層上に、少なくとも280nm以下
の波長の紫外線を透過する例えばSiO2 やAl2 3
のような絶縁保護膜6を蒸着形成し、導線を前記金属電
極4にボンディングするための開口窓を露光エッチング
工程を経て形成する。一対の半導体紫外線センサ1の一
方に対してのみ、受光部を遮蔽するように前記絶縁保護
膜6上に金属遮光膜7が蒸着形成されている。図1及び
図2に示すように、二つの電極5a、5cと前記二つの
電極5a、5cの下方領域及び前記二つの電極5a、5
cに挟まれた領域のAlx Ga1-x N光導電体1a層で
一つの素子として機能する半導体紫外線センサ1bが構
成される。二つの電極5a、5cに挟まれた領域が受光
部10である。また、二つの電極5b、5cと前記二つ
の電極5b、5cの下方領域及び前記二つの電極5b、
5cに挟まれた領域のAlx Ga1-x N光導電体1a層
で温度補償用の半導体紫外線センサ1cが構成される。
尚、一対の半導体紫外線センサ1b、1cは金属遮光膜
7を除いて断面形状及び平面形状が等しく形成されてい
る。但し、平面形状については、入射光の入射角を考慮
して、方向性についても整合性を取る方が望ましい場合
もある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, an Al x Ga 1 -x N photoconductor 1a, which is an example of a pair of semiconductor ultraviolet sensors 1 having a long wavelength end in the absorption wavelength region near 280 nm, is a physical vapor deposition method such as laser heating. Are formed on the sapphire substrate 2a, which is an example of the same substrate 2. If the composition ratio x of Al and Ga is selected in the range of 0.33 to 0.35, the band gap Eg is about 4.5 eV.
Therefore, the long wavelength end of the absorption spectrum of the Al x Ga 1-x N photoconductor 1a is hν / Eg = 1240 / Eg (n
Since it is given by m), the long wavelength end of the absorption spectrum is approximately 275 nm. However, h is Planck's constant,
ν is the frequency of light. Further, n is formed on the Al x Ga 1 -x N photoconductor 1a layer to form at least three electrodes necessary for constructing a pair of ultraviolet sensors.
The lower electrode 3 of the type GaN layer and the metal electrode 4 such as TiAl are vapor-deposited, and three electrodes 5a, 5b and 5c having a comb pattern as shown in FIG. 2 are formed through an exposure etching process. The lower electrode 3 of the pair of n-type GaN layers and the metal electrode 4 constitute the electrode 5a, 5b, or 5c. The metal of the metal electrode 4 is thermally diffused into the n-type GaN layer, and the metal electrode 4 and the lower electrode 3 of the n-type GaN layer are in pseudo ohmic contact. Furthermore, the metal electrode 4 and Al x Ga
On the 1-x N photoconductor 1a layer, for example, SiO 2 or Al 2 O 3 which transmits at least a wavelength of 280 nm or shorter is transmitted.
The insulating protection film 6 is formed by vapor deposition, and an opening window for bonding the conductive wire to the metal electrode 4 is formed through an exposure etching process. A metal light-shielding film 7 is vapor-deposited and formed on the insulating protective film 6 so as to shield the light-receiving portion for only one of the pair of semiconductor ultraviolet sensors 1. As shown in FIGS. 1 and 2, the two electrodes 5a and 5c, the lower regions of the two electrodes 5a and 5c, and the two electrodes 5a and 5c.
The semiconductor ultraviolet sensor 1b that functions as one element is configured by the Al x Ga 1 -x N photoconductor 1a layer in the region sandwiched by c. The region sandwiched between the two electrodes 5a and 5c is the light receiving unit 10. Also, the two electrodes 5b and 5c, the lower regions of the two electrodes 5b and 5c, and the two electrodes 5b,
The Al x Ga 1 -x N photoconductor 1a layer in the region sandwiched by 5c constitutes the semiconductor ultraviolet sensor 1c for temperature compensation.
The pair of semiconductor ultraviolet sensors 1b and 1c are formed to have the same cross-sectional shape and planar shape except for the metal light shielding film 7. However, with respect to the planar shape, it may be desirable to take the matching of the directivity in consideration of the incident angle of the incident light.

【0013】図3は図1及び図2に示す一対の半導体紫
外線センサを等価回路で図示したものである。図4乃至
図7に、図3に示す等価回路より拡張された本発明にか
かわる火炎センサの回路構成を示す。図4乃至図7に示
す各図において、温度補償は自動的に行われ、火炎から
放射される紫外線は電気信号として検出される。図4に
示すように、一方の端子を接地した負荷抵抗R1、R2
を前記一対の半導体紫外線センサの電極5a、5bに各
々接続し、電極5cを電源VDDに接続する。半導体紫外
線センサ1bの出力電流I1 、及び他方の半導体紫外線
センサ1cの出力電流I2 は各々負荷抵抗R1、R2に
流れ、電極5a、5bに出力電圧V1 、V2 が出力され
る。負荷抵抗R2の抵抗値は原則的にはR1の抵抗値と
等しく設定されるが、一対の半導体紫外線センサ1b、
1cが別チップから出来ている場合など、暗電流が等し
くないときは、暗中において出力電圧V1 、V2 が等し
くなるように調整可能である。温度変化に対して、前記
出力電流I1 、I2 が同様に変化するため、出力電流の
変化分は、等しい出力電圧の変化として出力電圧V1
2 に現れることになり、出力電圧の差分は、温度変化
に対して一定となる。差動増幅器9で前記出力電圧の差
分を検知することで、火炎の放射する280nm以下の
波長の紫外線を検出できるのである。
FIG. 3 is an equivalent circuit diagram of the pair of semiconductor ultraviolet sensors shown in FIGS. 4 to 7 show circuit configurations of the flame sensor according to the present invention expanded from the equivalent circuit shown in FIG. In each of the drawings shown in FIGS. 4 to 7, temperature compensation is automatically performed, and the ultraviolet rays emitted from the flame are detected as an electric signal. As shown in FIG. 4, load resistors R1 and R2 with one terminal grounded
Are connected to the electrodes 5a and 5b of the pair of semiconductor ultraviolet sensors, respectively, and the electrode 5c is connected to the power supply V DD . Output current I 2 of the output current I 1, and the other semiconductor ultraviolet sensor 1c of the semiconductor UV sensor 1b each into the load resistors R1, R2, electrodes 5a, output 5b voltage V 1, V 2 are output. Although the resistance value of the load resistor R2 is set to be equal to the resistance value of R1 in principle, a pair of semiconductor ultraviolet sensors 1b,
When the dark currents are not equal, such as when 1c is made from another chip, the output voltages V 1 and V 2 can be adjusted to be equal in the dark. Since the output currents I 1 and I 2 also change in response to temperature changes, the change in the output current is equal to the change in the output voltage V 1 ,
Will appear at the V 2, the difference between the output voltage becomes constant with respect to temperature changes. By detecting the difference in the output voltage with the differential amplifier 9, it is possible to detect the ultraviolet rays having a wavelength of 280 nm or less emitted by the flame.

【0014】図5に示すように、電極5aを電源VDD
接続し、電極5bを接地し、半導体紫外線センサ1b、
1cを直列接続された状態で使用する。電極5cより、
二つの半導体紫外線センサ1b、1cの各々の抵抗成分
で電源電圧VDDが抵抗分割された出力電圧V3 を取り出
す。暗中において半導体紫外線センサ1b、1cの導電
率が等しいため、等しい出力電流I1 、I2 を得て、前
記出力電圧V3 は電源電圧VDDの半値となる。前記直列
接続された抵抗R1、R2のR1側を電源VDDに接続
し、R2側を接地し、中点より参照電圧Vref を取り出
す。抵抗R2の抵抗値は原則的にはR1の抵抗値と等し
く設定され、前記参照電圧Vref は電源電圧VDDの半値
となり、暗中では出力電圧V3 と参照電圧Vref が同電
位となり、前記中点と電極5c間に設けられた電流計1
1には電流が流れない。尚、半導体紫外線センサ1b、
1cが別チップから出来ている場合など、暗電流が等し
くないときは、前記暗中での出力電圧V3 が電源電圧V
DDの半値から変位するが、抵抗R2の抵抗値を調整する
ことで、前記参照電圧Vref を暗中での出力電圧V3
等しく調整することが可能である。前記出力電流I1
2 が温度変化に対して同様に変化するため、前記出力
電圧V3 は一定値を保持する。火炎の放射する280n
m以下の波長の紫外線に対して、半導体紫外線センサ1
bだけが感応し、出力電流I1 、I2 の両方を増加させ
る方向に出力電圧V3は変化する。これにより前記中点
と電極5c間に電位差が生じ、前記電流計11に電流が
流れ、温度条件に寄らず火炎の放射する280nm以下
の波長の紫外線にのみ感応する火炎センサとして作動す
る。
As shown in FIG. 5, the electrode 5a is connected to the power source V DD , the electrode 5b is grounded, and the semiconductor ultraviolet sensor 1b,
1c is used in a state of being connected in series. From electrode 5c,
An output voltage V 3 obtained by resistance-dividing the power supply voltage V DD by each resistance component of the two semiconductor ultraviolet sensors 1b and 1c is taken out. Since the semiconductor ultraviolet sensors 1b and 1c have the same conductivity in the dark, the same output currents I 1 and I 2 are obtained, and the output voltage V 3 becomes half the power supply voltage V DD . The R1 side of the series-connected resistors R1 and R2 is connected to the power supply V DD , the R2 side is grounded, and the reference voltage V ref is taken out from the midpoint. In principle, the resistance value of the resistor R2 is set equal to the resistance value of R1, the reference voltage V ref is half the power supply voltage V DD , and the output voltage V 3 and the reference voltage V ref are the same potential in the dark. Ammeter 1 provided between the midpoint and the electrode 5c
No current flows through 1. The semiconductor ultraviolet sensor 1b,
When the dark currents are not equal, such as when 1c is made from another chip, the output voltage V 3 in the dark is the power supply voltage V 3.
Although it is displaced from the half value of DD , it is possible to adjust the reference voltage V ref to be equal to the output voltage V 3 in the dark by adjusting the resistance value of the resistor R2. The output current I 1 ,
Since I 2 also changes with temperature, the output voltage V 3 maintains a constant value. 280n radiating flame
Semiconductor ultraviolet sensor 1 for ultraviolet rays with wavelengths of m or less
Only b is sensitive and the output voltage V 3 changes in the direction of increasing both the output currents I 1 and I 2 . As a result, a potential difference is generated between the midpoint and the electrode 5c, a current flows through the ammeter 11, and it operates as a flame sensor that is sensitive only to ultraviolet rays of a wavelength of 280 nm or less emitted by the flame regardless of temperature conditions.

【0015】図6に示すように、図5に示す電流計11
を用いて電流の有無を検知して火炎のオン・オフの判定
を行う代わりに、前記出力電圧V3 と前記参照電圧V
ref の差分を差動増幅器9で検知するのも好ましい実施
形態である。この場合、差動増幅器9の入力電圧の変動
範囲が温度変化に対して変動しないため、図4に示した
回路構成より差動増幅器9の設計が容易である。
As shown in FIG. 6, the ammeter 11 shown in FIG.
Instead of detecting the presence / absence of a current by using to determine whether the flame is on or off, the output voltage V 3 and the reference voltage V
It is also a preferred embodiment that the difference in ref is detected by the differential amplifier 9. In this case, since the variation range of the input voltage of the differential amplifier 9 does not vary with temperature changes, the design of the differential amplifier 9 is easier than the circuit configuration shown in FIG.

【0016】図7に示すように、図6に示す直列接続し
た抵抗R1、R2の代わりに、別の一対の直列接続した
半導体紫外線センサ1c、1bで置き換えるのも好まし
い実施形態である。この回路構成では、図5及び図6に
示す回路構成と同様、各組の一対の半導体紫外線センサ
の出力電圧V3A、V3Bは暗中では温度条件にかかわらず
電源電圧VDDの半値であるが、火炎の放射する280n
m以下の波長の紫外線に対して、出力電圧V3A上昇し、
出力電圧V3Bは低下する。出力電圧V3A、V3Bの変動幅
は図6に示す出力電圧V3 と同じであり、差動増幅器9
の入力電圧である出力電圧V3A、V3Bの差分電圧は図6
に示す回路構成の2倍になり、また入力電圧の中央値が
常に一定であるため、差動増幅器9の設計がより容易に
なり、且つ検出感度の高いものが得られる。
As shown in FIG. 7, it is also a preferred embodiment to replace the series-connected resistors R1 and R2 shown in FIG. 6 with another pair of series-connected semiconductor ultraviolet sensors 1c and 1b. In this circuit configuration, similarly to the circuit configurations shown in FIGS. 5 and 6, the output voltages V 3A and V 3B of the pair of semiconductor ultraviolet sensors of each set are half the power supply voltage V DD in the dark regardless of temperature conditions. 280n of flame radiation
The output voltage V 3A rises with respect to ultraviolet rays having a wavelength of m or less,
The output voltage V 3B decreases. The fluctuation range of the output voltages V 3A and V 3B is the same as that of the output voltage V 3 shown in FIG.
The difference voltage between the output voltages V 3A and V 3B , which is the input voltage of
Since the circuit configuration is doubled and the median value of the input voltage is always constant, the differential amplifier 9 can be designed more easily and the detection sensitivity is high.

【0017】図9に示すように、前記一対の半導体紫外
線センサ1の吸収スペクトル14に280nmより長波
長側に残留感度が有る場合、図1に示す金属遮光膜7を
設ける代わりに、光学フィルタ8である280nmより
長波長側の紫外線を透過する紫外線透過フィルタ8aを
一対の半導体紫外線センサ1の一方に対して、受光部を
遮蔽するように前記絶縁保護膜6上に設けるのも好まし
い実施形態である。280nmより長波長側の紫外線を
透過する紫外線透過フィルタ8aとして、例えばホーヤ
株式会社製の紫外線透過フィルタUV28,UV30,
UV32,色補整フィルタCC500、CL500、熱
吸収フィルタHA50、HA30、紫外線透過可視光吸
収フィルタU360、U350、U340等が候補とし
て挙げられるが、望ましくは図9に示す透過スペクトル
13のように、280nmより透過率が急峻に立ち上が
る特性のフィルタが理想的である。具体的には、図2に
示す金属遮光膜7を設ける領域に、前記紫外線透過フィ
ルタ8aを接着したり、前記一対の半導体紫外線センサ
1がそれぞれ別チップからなり個別に別パッケージに組
み立てられている場合は、金属遮光膜7を設けず、一方
のパッケージの受光窓に前記紫外線透過フィルタ8aを
使用する。更に前記絶縁保護膜6がSiO2 やAl2
3 等のガラス系の材料の場合、前記一対の半導体紫外線
センサ1の一方の受光部を覆う領域だけを、上述の紫外
線透過フィルタ8aの組成に近い組成の絶縁保護膜を形
成すると、紫外線透過フィルタ8aをわざわざ接着する
手間が省け、製造効率の向上になる。
As shown in FIG. 9, when the absorption spectrum 14 of the pair of semiconductor ultraviolet sensors 1 has residual sensitivity on the longer wavelength side than 280 nm, instead of providing the metal light-shielding film 7 shown in FIG. In a preferred embodiment, an ultraviolet ray transmitting filter 8a that transmits ultraviolet rays having a wavelength longer than 280 nm is provided on the insulating protective film 6 for one of the pair of semiconductor ultraviolet ray sensors 1 so as to shield the light receiving portion. is there. Examples of the ultraviolet transmission filter 8a that transmits ultraviolet rays having a wavelength longer than 280 nm include ultraviolet transmission filters UV28, UV30, manufactured by Hoya Corporation.
UV32, color compensating filters CC500, CL500, heat absorption filters HA50, HA30, ultraviolet transmission visible light absorption filters U360, U350, U340 and the like are mentioned as candidates, but preferably, as shown in the transmission spectrum 13 shown in FIG. An ideal filter is one that has a characteristic that the transmittance rises sharply. Specifically, the ultraviolet light transmitting filter 8a is adhered to the region where the metal light shielding film 7 shown in FIG. 2 is provided, or the pair of semiconductor ultraviolet light sensors 1 are formed of different chips and are individually assembled in different packages. In this case, the metal light-shielding film 7 is not provided and the ultraviolet transmission filter 8a is used for the light receiving window of one package. Further, the insulating protective film 6 is made of SiO 2 or Al 2 O.
In the case of a glass-based material such as 3 , if an insulating protective film having a composition close to the composition of the above-mentioned ultraviolet transmission filter 8a is formed only on the region that covers one light receiving portion of the pair of semiconductor ultraviolet sensors 1, the ultraviolet transmission filter It is possible to save the trouble of adhering 8a and improve the manufacturing efficiency.

【0018】図9に示すように、半導体紫外線センサ1
の吸収スペクトル14と紫外線透過フィルタ8aの透過
スペクトル13を乗じたものが、前記紫外線透過フィル
タ8aで遮光された半導体紫外線センサ1cの実効的な
吸収スペクトル15となる。暗電流は半導体紫外線セン
サ1の熱平衡電流であるため、その温度補償は前記半導
体紫外線センサ1cが金属遮光膜7で遮光されても、紫
外線透過フィルタ8aで遮光されても、図4乃至図7に
示した回路構成の実施形態では、その効果は全く等価で
ある。図9に示す透過スペクトル13を有する紫外線透
過フィルタ8aを使用する場合、例えば太陽光等の28
0nmより長波長の擾乱光が、火炎センサに入射して
も、半導体紫外線センサ1b、1cの両方が前記吸収ス
ペクトル14、15に従って、明電流を出力する。前記
透過スペクトル13が280nmより垂直に立ち上がる
理想的な特性の場合は、吸収スペクトル14、15が2
80nmより長波長域で全く等しいため、前記半導体紫
外線センサ1b、1cの出力電流は等しくなり、図4に
示す出力電圧V1 、V2 の差分、図5または図6に示す
出力電圧V3 、図7に示す出力電圧V3A、V3Bも変化せ
ず、太陽光などの擾乱光による雑音成分が除去できる。
しかしながら、図9に示すように前記透過スペクトル1
3が280nmより急峻ではあるが徐々に立ち上がる場
合は、吸収スペクトル14、15は280nmより長波
長域で差が生じ、結果として前記半導体紫外線センサ1
b、1cの出力電流や出力電圧に差が生じ、太陽光など
の擾乱光による残留雑音成分が完全には除去しきれない
が、金属遮光膜7で遮光する場合に比べて、その残留雑
音成分は抑制され、雑音信号比を向上させることができ
る。上述のように、前記一対の半導体紫外線センサ1の
吸収スペクトル14に280nmより長波長側に残留感
度が存在する場合においても、280nmより長波長側
の紫外線を透過する紫外線透過フィルタ8aを使用する
ことで、図4乃至図7に示す実施形態がそのまま適用で
きる。
As shown in FIG. 9, a semiconductor ultraviolet sensor 1
The product of the absorption spectrum 14 and the transmission spectrum 13 of the ultraviolet transmission filter 8a is the effective absorption spectrum 15 of the semiconductor ultraviolet sensor 1c shielded by the ultraviolet transmission filter 8a. Since the dark current is the thermal equilibrium current of the semiconductor ultraviolet sensor 1, its temperature compensation is as shown in FIGS. 4 to 7 regardless of whether the semiconductor ultraviolet sensor 1c is shielded by the metal light shielding film 7 or the ultraviolet transmission filter 8a. In the embodiment of the circuit configuration shown, the effects are exactly equivalent. When using the ultraviolet transmission filter 8a having the transmission spectrum 13 shown in FIG.
Even if turbulent light with a wavelength longer than 0 nm is incident on the flame sensor, both semiconductor ultraviolet sensors 1b and 1c output a bright current according to the absorption spectra 14 and 15. In the case of the ideal characteristic that the transmission spectrum 13 rises vertically from 280 nm, the absorption spectra 14 and 15 are 2
Since the semiconductor ultraviolet ray sensors 1b and 1c have the same output current in the wavelength region longer than 80 nm, the difference between the output voltages V 1 and V 2 shown in FIG. 4, the output voltage V 3 shown in FIG. 5 or 6, The output voltages V 3A and V 3B shown in FIG. 7 do not change, and the noise component due to the disturbing light such as sunlight can be removed.
However, as shown in FIG. 9, the transmission spectrum 1
When 3 is steeper than 280 nm but gradually rises, the absorption spectra 14 and 15 have a difference in a wavelength range longer than 280 nm, and as a result, the semiconductor ultraviolet sensor 1
Although the output currents and the output voltages of b and 1c are different from each other, the residual noise component due to the disturbing light such as sunlight cannot be completely removed, but the residual noise component is greater than that when the metal light shielding film 7 shields the light. Can be suppressed and the noise signal ratio can be improved. As described above, even when the absorption spectrum 14 of the pair of semiconductor ultraviolet sensors 1 has residual sensitivity on the longer wavelength side than 280 nm, the ultraviolet transmission filter 8a that transmits the ultraviolet ray on the longer wavelength side than 280 nm is used. Thus, the embodiments shown in FIGS. 4 to 7 can be applied as they are.

【0019】(別実施形態)以下に他の実施形態を説明
する。前記吸収波長域の長波長端が280nm近傍にあ
る1対の半導体紫外線センサ1として、Alx Ga1-x
N光導電体以外にも同様のバンドギャップ有する、Mg
S、CaS、SrS等を使用しても良い。またAlx
1-x N光導電体のAlとGaの組成比xとバンドギャ
ップの関係は不純物濃度等に関連して変化するため、必
ずしも前記組成比xは0.33乃至0.35の範囲に限
定されるものではない。図2に示す電極及び受光部の平
面形状は特に櫛形パターンに限定するものではない。ま
た同櫛形パターンを方向を変えて組み合わせることで、
受光感度の入射角依存性が緩和されることも期待され
る。図4、図6または図7に示す差動増幅器は、特に詳
細な回路構成は説明しないが、前記半導体紫外線センサ
の電流駆動能力に限界があるため、半導体紫外線センサ
と独立したものとしては、一般に使用される高入力イン
ピーダンス差動増幅器の使用が望ましく、また半導体紫
外線センサと同一基板上で構成される場合は、MOSF
ET入力の差動増幅器の使用が望ましい。図1に示すサ
ファイア基板の代わりに、六方晶系SiC基板や高抵抗
率のSi基板を使用するのも良い。高抵抗率のSi基板
を使用する場合、半導体紫外線センサを形成する領域と
は別部分に、熱拡散またはイオン打ち込みにより、選択
的にn型またはp型の不純物拡散領域を形成することで
例えばMOSFET等の能動素子を形成でき、高入力イ
ンピーダンス差動増幅器を半導体紫外線センサと同一基
板上に設けることができ、1チップで小型の火炎センサ
が構成できる。上述の実施形態における1対の半導体紫
外線センサ1の吸収波長域の長波長端は擾乱光となる太
陽光や室内光の発光スペクトルより280nm近傍にあ
ることが望ましいが、必ずしも280nm近傍に限定さ
れる必要はなく、例えば、太陽光が完全に遮光された室
内で蛍光灯が主たる雑音源となる場合は、前記1対の半
導体紫外線センサ1の吸収波長域の長波長端は290n
m近傍でも構わない。更に、前記1対の半導体紫外線セ
ンサ1の一方に対し、少なくとも200nm乃至280
nmの紫外線が遮光されていれば、前記擾乱光に対する
補償回路の感度を向上させたり、または、前記1対の半
導体紫外線センサ1の両方に対して前記擾乱光波長範囲
を遮光する光学フィルタを設けることで、上述の実施形
態における温度補償及び擾乱光補償と同様の効果を得る
ことが可能である。
(Another Embodiment) Another embodiment will be described below. As a pair of semiconductor ultraviolet sensors 1 in which the long wavelength end of the absorption wavelength region is near 280 nm, Al x Ga 1-x
Mg having similar bandgap other than N photoconductor
You may use S, CaS, SrS etc. Also Al x G
Since the relationship between the composition ratio x of Al and Ga of the a 1-x N photoconductor and the band gap changes in relation to the impurity concentration and the like, the composition ratio x is not necessarily limited to the range of 0.33 to 0.35. It is not something that will be done. The planar shapes of the electrodes and the light receiving portions shown in FIG. 2 are not particularly limited to the comb pattern. Also, by changing the direction and combining the same comb-shaped pattern,
It is also expected that the incident angle dependence of the light receiving sensitivity will be relaxed. The circuit configuration of the differential amplifier shown in FIG. 4, FIG. 6 or FIG. 7 is not particularly described in detail, but since the semiconductor ultraviolet sensor has a limited current driving capability, it is generally regarded as an independent semiconductor ultraviolet sensor. It is desirable to use the high input impedance differential amplifier used, and if it is constructed on the same substrate as the semiconductor UV sensor, MOSF
The use of a differential amplifier with ET input is desirable. Instead of the sapphire substrate shown in FIG. 1, a hexagonal SiC substrate or a high resistivity Si substrate may be used. When a Si substrate having a high resistivity is used, an n-type or p-type impurity diffusion region is selectively formed by thermal diffusion or ion implantation in a portion different from a region where a semiconductor ultraviolet sensor is formed, for example, a MOSFET. And the like, a high input impedance differential amplifier can be provided on the same substrate as the semiconductor ultraviolet sensor, and a small flame sensor can be configured with one chip. The long-wavelength end of the absorption wavelength range of the pair of semiconductor ultraviolet sensors 1 in the above-described embodiment is preferably near 280 nm from the emission spectrum of sunlight or room light that becomes disturbing light, but is not necessarily limited to near 280 nm. It is not necessary, for example, when a fluorescent lamp is the main noise source in a room where sunlight is completely shielded, the long wavelength end of the absorption wavelength range of the pair of semiconductor ultraviolet sensors 1 is 290n.
It may be near m. Furthermore, at least 200 nm to 280 is applied to one of the pair of semiconductor ultraviolet sensors 1.
If the ultraviolet rays of nm are shielded, the sensitivity of the compensating circuit for the disturbing light is improved, or an optical filter for shielding the disturbing light wavelength range is provided for both of the pair of semiconductor ultraviolet sensors 1. Therefore, it is possible to obtain the same effects as the temperature compensation and the disturbance light compensation in the above-described embodiment.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
半導体紫外線センサに対する高精度な温度補償及び擾乱
光補償が可能となり、製造バラツキに対する許容度及び
火炎のオン・オフの判定精度が高く、且つ広い適応範囲
を有する半導体紫外線センサを用いた火炎センサを簡単
に供給できるようになった。
As described above, according to the present invention,
High-accuracy temperature compensation and turbulent light compensation for semiconductor ultraviolet sensor is possible, tolerance to manufacturing variations and high accuracy of flame on / off determination, and simple flame sensor using semiconductor ultraviolet sensor with wide application range Can be supplied to.

【0021】尚、特許請求の範囲の項に、図面との対照
を便利にするために符号を記すが、該記入により本発明
は本発明は添付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the constitution of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】同一基板上に形成された一対の半導体紫外線セ
ンサの断面図
FIG. 1 is a cross-sectional view of a pair of semiconductor ultraviolet sensors formed on the same substrate.

【図2】同一基板上に形成された一対の半導体紫外線セ
ンサの平面図
FIG. 2 is a plan view of a pair of semiconductor ultraviolet sensors formed on the same substrate.

【図3】一対の半導体紫外線センサの等価回路図FIG. 3 is an equivalent circuit diagram of a pair of semiconductor ultraviolet sensors.

【図4】火炎センサの回路構成図FIG. 4 is a circuit configuration diagram of a flame sensor.

【図5】火炎センサの回路構成図FIG. 5 is a circuit configuration diagram of a flame sensor.

【図6】火炎センサの回路構成図FIG. 6 is a circuit diagram of a flame sensor.

【図7】火炎センサの回路構成図FIG. 7 is a circuit configuration diagram of a flame sensor.

【図8】火炎、太陽光、室内光の発光スペクトル図、及
び光電管の吸収スペクトル図
FIG. 8: Emission spectrum diagram of flame, sunlight, room light, and absorption spectrum diagram of phototube

【図9】火炎、太陽光、室内光の発光スペクトル図、及
び半導体紫外線センサの吸収スペクトル図
FIG. 9: Emission spectrum diagram of flame, sunlight, room light, and absorption spectrum diagram of semiconductor ultraviolet sensor

【符号の説明】[Explanation of symbols]

1 半導体紫外線センサ 2 基板 3 下部電極 4 金属電極 5a 開放電極 5b 開放電極 5c 中間電極 6 絶縁保護膜 7 金属遮光膜 8 光学フィルタ 8a 紫外線透過フィルタ 9 差動増幅器 10 受光部 11 電流計 12 入射光 1 Semiconductor Ultraviolet Sensor 2 Substrate 3 Lower Electrode 4 Metal Electrode 5a Open Electrode 5b Open Electrode 5c Intermediate Electrode 6 Insulation Protective Film 7 Metal Light Shielding Film 8 Optical Filter 8a Ultraviolet Transmission Filter 9 Differential Amplifier 10 Light Receiving Section 11 Ammeter 12 Incident Light

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/10 H01L 31/10 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 31/10 H01L 31/10 A

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 吸収波長域の長波長端が280nm近傍
または290nm近傍にある1対の半導体紫外線センサ
(1)を備えてなる火炎センサであって、前記1対の半
導体紫外線センサ(1)の一方が遮光されている火炎セ
ンサ。
1. A flame sensor comprising a pair of semiconductor ultraviolet sensors (1) having a long wavelength end in the absorption wavelength range near 280 nm or 290 nm, wherein the pair of semiconductor ultraviolet sensors (1) comprises: A flame sensor with one side shielded from light.
【請求項2】 吸収波長域の長波長端が280nm近傍
または290nm近傍にある1対の半導体紫外線センサ
(1)を備えてなる火炎センサであって、前記1対の半
導体紫外線センサ(1)の一方に対し、透過波長域の短
波長端が前記1対の半導体紫外線センサ(1)の吸収波
長域の長波長端近傍にある光学フィルタ(8)を設けて
ある火炎センサ。
2. A flame sensor comprising a pair of semiconductor ultraviolet sensors (1) having a long wavelength end in the absorption wavelength region in the vicinity of 280 nm or 290 nm, wherein the pair of semiconductor ultraviolet sensors (1) comprises: On the other hand, a flame sensor provided with an optical filter (8) having a short wavelength end of a transmission wavelength region near a long wavelength end of an absorption wavelength region of the pair of semiconductor ultraviolet sensors (1).
【請求項3】 前記1対の半導体紫外線センサ(1)の
出力電流または出力電圧の差分を検出する差動増幅器
(9)を備えている請求項1または2に記載の火炎セン
サ。
3. The flame sensor according to claim 1, further comprising a differential amplifier (9) for detecting a difference between output currents or output voltages of the pair of semiconductor ultraviolet sensors (1).
【請求項4】 前記1対の半導体紫外線センサ(1)が
直列に接続され、直列に接続された前記1対の半導体紫
外線センサ(1)の両端にある開放電極(5a,5b)
間に電圧を印加し、前記1対の半導体紫外線センサ
(1)の両方に接続する中間電極(5c)から出力電圧
または出力電流を取り出す請求項1または2に記載の火
炎センサ。
4. The pair of semiconductor ultraviolet sensors (1) are connected in series, and the open electrodes (5a, 5b) at both ends of the pair of semiconductor ultraviolet sensors (1) connected in series.
The flame sensor according to claim 1, wherein an output voltage or an output current is taken out from an intermediate electrode (5c) connected to both of the pair of semiconductor ultraviolet sensors (1) by applying a voltage therebetween.
【請求項5】 請求項4に記載の1対の直列に接続され
た半導体紫外線センサ(1)を2組有し、各組の前記中
間電極(5c)からの出力電圧または出力電流の差分を
検出する差動増幅器(9)を備え、一方の組の遮光され
ていない半導体紫外線センサ側の開放電極(5a)と他
方の組の遮光されている半導体紫外線センサ側の開放電
極(5b)同士を各々接続してある火炎センサ。
5. A pair of semiconductor ultraviolet sensors (1) connected in series according to claim 4 are provided in two sets, and a difference in output voltage or output current from the intermediate electrode (5c) of each set is calculated. A differential amplifier (9) for detection is provided, and one set of open electrodes (5a) on the side of the semiconductor UV sensor which is not shielded from light and another set of open electrodes (5b) on the side of the semiconductor UV sensor which are shielded from light are connected to each other. A flame sensor connected to each.
【請求項6】 前記半導体紫外線センサ(1)の全てが
同一基板(2)上に形成されている請求項1、2、3、
4または5に記載の火炎センサ。
6. The semiconductor ultraviolet sensor (1) is formed on the same substrate (2) all of the semiconductor ultraviolet sensor (1), 1, 2, 3,
The flame sensor according to 4 or 5.
【請求項7】 前記半導体紫外線センサ(1)の全て、
及び、前記差動増幅器(9)が同一基板(2)上に形成
されている請求項3または5に記載の火炎センサ。
7. All of the semiconductor ultraviolet sensors (1),
The flame sensor according to claim 3 or 5, wherein the differential amplifier (9) is formed on the same substrate (2).
【請求項8】 1対の半導体紫外線センサ(1)を備え
てなる火炎センサであって、前記1対の半導体紫外線セ
ンサ(1)の一方が遮光され、前記遮光される波長範囲
の長波長端が280nm近傍または290nm近傍にあ
る火炎センサ。
8. A flame sensor comprising a pair of semiconductor ultraviolet sensors (1), wherein one of the pair of semiconductor ultraviolet sensors (1) is shielded from light, and a long wavelength end of the shielded wavelength range. A flame sensor having a wavelength of around 280 nm or around 290 nm.
JP8034602A 1996-02-22 1996-02-22 Flame sensor Pending JPH09229763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8034602A JPH09229763A (en) 1996-02-22 1996-02-22 Flame sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8034602A JPH09229763A (en) 1996-02-22 1996-02-22 Flame sensor

Publications (1)

Publication Number Publication Date
JPH09229763A true JPH09229763A (en) 1997-09-05

Family

ID=12418911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8034602A Pending JPH09229763A (en) 1996-02-22 1996-02-22 Flame sensor

Country Status (1)

Country Link
JP (1) JPH09229763A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125873A1 (en) * 2006-04-24 2007-11-08 Asahi Kasei Emd Corporation Infrared sensor
WO2007135739A1 (en) 2006-05-24 2007-11-29 Meijo University Ultraviolet photosensor
US7531776B2 (en) 2006-09-25 2009-05-12 Epson Imaging Devices Corporation Photodetector, electro-optical device, and electronic apparatus having a differential current detection circuit
JP2011014710A (en) * 2009-07-02 2011-01-20 Murata Mfg Co Ltd Ultraviolet sensor
WO2013183453A1 (en) * 2012-06-08 2013-12-12 アルプス電気株式会社 Thermopile, thermopile sensor using same, and infrared sensor
US9620662B2 (en) 2014-09-19 2017-04-11 Hamamatsu Photonics K.K. Ultraviolet sensor and ultraviolet detecting device
JP2018200246A (en) * 2017-05-29 2018-12-20 ホーチキ株式会社 Flame detector
WO2020149207A1 (en) * 2019-01-17 2020-07-23 ソニーセミコンダクタソリューションズ株式会社 Imaging device and electronic equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125873A1 (en) * 2006-04-24 2007-11-08 Asahi Kasei Emd Corporation Infrared sensor
JP4802242B2 (en) * 2006-04-24 2011-10-26 旭化成エレクトロニクス株式会社 Infrared sensor
US8304734B2 (en) 2006-04-24 2012-11-06 Asahi Kasei Emd Corporation Infrared sensor
WO2007135739A1 (en) 2006-05-24 2007-11-29 Meijo University Ultraviolet photosensor
US7531776B2 (en) 2006-09-25 2009-05-12 Epson Imaging Devices Corporation Photodetector, electro-optical device, and electronic apparatus having a differential current detection circuit
JP2011014710A (en) * 2009-07-02 2011-01-20 Murata Mfg Co Ltd Ultraviolet sensor
WO2013183453A1 (en) * 2012-06-08 2013-12-12 アルプス電気株式会社 Thermopile, thermopile sensor using same, and infrared sensor
US9620662B2 (en) 2014-09-19 2017-04-11 Hamamatsu Photonics K.K. Ultraviolet sensor and ultraviolet detecting device
JP2018200246A (en) * 2017-05-29 2018-12-20 ホーチキ株式会社 Flame detector
WO2020149207A1 (en) * 2019-01-17 2020-07-23 ソニーセミコンダクタソリューションズ株式会社 Imaging device and electronic equipment

Similar Documents

Publication Publication Date Title
US6320189B1 (en) Device for the detection of multispectral infrared/visible radiation
US5331168A (en) Reference grade solar ultraviolet band pyranometer
Sharma et al. Enhanced photosensitivity of highly spectrum selective cylindrical gate I n 1− x G ax A s nanowire MOSFET photodetector
JPH09229763A (en) Flame sensor
US5015838A (en) Color sensor having laminated semiconductor layers
US6919552B2 (en) Optical detector and method for detecting incident light
US3987298A (en) Photodetector system for determination of the wavelength of incident radiation
US3878105A (en) Optical radiation transmission and detection device
US6787757B2 (en) Apparatus and methods for generating an electronic signal responsive to selected light
US4682018A (en) Process for the temperature compensation of a photoconducting detector
JP2022551699A (en) Photoconductor readout circuit
JPS6382326A (en) Element for ultraviolet ray sensor
US3717799A (en) Ktao3 ultraviolet detector
JP2989203B2 (en) Infrared detector
JPH0517492B2 (en)
US3061726A (en) Color sensitive infrared detector
JP2005207830A (en) Infrared sensor
JP5885946B2 (en) Photoelectric conversion device
US5072112A (en) Method for realizing a primary photometric standard of optical radiation using a silicon photodiode
JPH0552659A (en) Infrared radiation sensor
JPH09325068A (en) Flame sensor and flame detector
JP2860027B2 (en) Manufacturing method of ultraviolet detector
Johnson et al. Photoeffects and related properties of semiconducting diamonds
RU2155418C1 (en) Semiconductor sensor of ultraviolet radiation
JP2016174163A (en) Optical filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040902