JP2005207830A - Infrared sensor - Google Patents

Infrared sensor Download PDF

Info

Publication number
JP2005207830A
JP2005207830A JP2004013390A JP2004013390A JP2005207830A JP 2005207830 A JP2005207830 A JP 2005207830A JP 2004013390 A JP2004013390 A JP 2004013390A JP 2004013390 A JP2004013390 A JP 2004013390A JP 2005207830 A JP2005207830 A JP 2005207830A
Authority
JP
Japan
Prior art keywords
infrared
filter
light receiving
infrared light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004013390A
Other languages
Japanese (ja)
Inventor
Yoshifumi Kawakami
佳史 河上
Yoshitaka Moriyasu
嘉貴 森安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2004013390A priority Critical patent/JP2005207830A/en
Publication of JP2005207830A publication Critical patent/JP2005207830A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared sensor for detecting an infrared ray in a wavelength band wherein a cut wavelength of a long-wavelength cut filter is approximately a lower limit, without being influenced by a background temperature of a detection object without using an interference filter having a complicated manufacturing method. <P>SOLUTION: A pair is formed by the first infrared ray receiving element wherein filters for cutting infrared rays over a specific wavelength are combined and the second infrared ray receiving element wherein filters are not combined, and this infrared sensor having sensitivity to the infrared ray in the wavelength band wherein the cut wavelength of the filter is approximately the lower limit is constituted by using the difference of the output signals of the two infrared ray receiving elements. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、特定波長以上の赤外線をカットするフィルタのカット波長をおよそ下限とする波長帯の赤外線を検出する赤外線センサに関するものである。   The present invention relates to an infrared sensor that detects infrared light in a wavelength band whose cut wavelength is approximately the lower limit of a filter that cuts infrared light of a specific wavelength or more.

従来、室温で動作可能な赤外線センサの受光素子としては、焦電素子やサーモパイルなどが主に用いられてきた。しかし、これらの受光素子は赤外線を吸収したあと、受光素子中で変換された熱による焦電効果や熱起電力に従って赤外線を検出するため、検出感度の赤外線波長に対する選択性が低く、人体をより効率よく検出する場合には、およそ透過波長帯として8〜14μmの遠赤外線領域のみを帯域透過する干渉フィルタが必要である。この干渉フィルタは製造方法が複雑で難しく、人感センサのコストを高くする一因となっている。
焦電素子は、入射する赤外線量の変化に伴う自発分極の変化を利用する。この方法では、焦電素子内部の温度の変化でも信号が出力されるため、検出対象物の背景温度の揺らぎに弱いという欠点がある。そのため、その影響を小さくする目的で、2個または4個の焦電素子を組み合わせて赤外線センサを形成し、検出対象物の動きによる赤外線量の変化を各焦電素子間の出力信号の差として検出することになるので、動いている人体を検出するのには向いている。しかし、人体が静止している場合は素子間の出力信号の差がゼロとなり検出できず、人感センサとして使用する用途には向いていないという問題がある。
Conventionally, pyroelectric elements, thermopiles, and the like have been mainly used as light receiving elements of infrared sensors that can operate at room temperature. However, these light receiving elements absorb infrared rays and then detect infrared rays according to the pyroelectric effect and thermoelectromotive force caused by the heat converted in the light receiving elements, so the selectivity of the detection sensitivity to the infrared wavelength is low, and the human body is more In the case of efficient detection, an interference filter that transmits only a band of 8 to 14 μm far-infrared as a transmission wavelength band is necessary. This interference filter is complicated and difficult to manufacture, which contributes to increasing the cost of the human sensor.
The pyroelectric element utilizes a change in spontaneous polarization accompanying a change in the amount of incident infrared rays. This method has a disadvantage that it is vulnerable to fluctuations in the background temperature of the detection target because a signal is output even when the temperature inside the pyroelectric element changes. Therefore, in order to reduce the influence, an infrared sensor is formed by combining two or four pyroelectric elements, and the change in the amount of infrared rays due to the movement of the detection object is taken as the difference in output signal between the pyroelectric elements. This is suitable for detecting a moving human body. However, when the human body is stationary, there is a problem that the difference between the output signals between the elements is zero and cannot be detected, which is not suitable for use as a human sensor.

サーモパイルは、入射する赤外線の温度を直接検出できるので、静止している人体の検出にも向いている。しかしながら、焦電素子と同様に背景温度が変化すると検出レベルが変動するため、人体の有無を識別するしきい値を変動させる必要があり、その制御方法が複雑になるという問題がある。この問題を解決するため、特許文献1にあるように、2個の素子、誘電体多層膜干渉フィルタ、差動増幅器、および基準電圧比較器を組み合わせて人体を検出する赤外線センサが開示されている。しかし、この発明では、複雑な製造方法を有する誘電体多層膜干渉フィルタが2枚必要であり、しかも、サーモパイルは、上記の通り検出感度の赤外線波長に対する選択性が低いため、遮断特性の急峻な干渉フィルタを必ず複数枚必要とするため、製造方法を複雑にする要因となる。   The thermopile can directly detect the temperature of incident infrared rays, and is therefore suitable for detecting a stationary human body. However, since the detection level changes when the background temperature changes as in the pyroelectric element, it is necessary to change the threshold value for identifying the presence or absence of a human body, and there is a problem that the control method becomes complicated. In order to solve this problem, as disclosed in Patent Document 1, an infrared sensor that detects a human body by combining two elements, a dielectric multilayer film interference filter, a differential amplifier, and a reference voltage comparator is disclosed. . However, according to the present invention, two dielectric multilayer interference filters having a complicated manufacturing method are required, and the thermopile has low selectivity for the infrared wavelength as described above. Since a plurality of interference filters are necessarily required, the manufacturing method becomes a factor.

特開平5−256698号公報JP-A-5-256698

本発明は、長波長カットフィルタのカット波長をおよそ下限とする波長帯の赤外線を検出する赤外線センサを提供することを目的とする。   An object of this invention is to provide the infrared sensor which detects the infrared rays of the wavelength band which makes the cut wavelength of a long wavelength cut filter the lower limit about.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、赤外線受光素子と特定波長以上の赤外線をカットするフィルタを組み合わせることにより、上記目的に適合することを見いだし、この知見に基づいて本発明をなすに至った。
つまり、請求項1に記載されるように、特定波長λ1以上の赤外線をカットするフィルタと、該フィルタを透過した赤外線を検出する第1の赤外線受光素子と、フィルタを透過させずに直接赤外線を検出する第2の赤外線受光素子とからなり、前記第1の赤外線受光素子の出力信号と、前記第2の赤外線受光素子の出力信号との差分をとることにより、該フィルタのカット波長をおよそ下限とする波長帯λ1〜λ2の赤外線に感度を有することを特徴とする赤外線センサを構成する。
As a result of intensive studies to solve the above-mentioned problems, the present inventor found that the infrared light-receiving element and the filter that cuts infrared light having a specific wavelength or more are combined, and that the above-mentioned purpose is met. The present invention has been made.
That is, as described in claim 1, a filter that cuts infrared light having a specific wavelength λ 1 or more, a first infrared light receiving element that detects infrared light that has passed through the filter, and direct infrared light that does not pass through the filter. A second infrared light receiving element that detects the difference between the output signal of the first infrared light receiving element and the output signal of the second infrared light receiving element, thereby reducing the cut wavelength of the filter to about An infrared sensor having sensitivity to infrared rays in the wavelength band λ 1 to λ 2 as a lower limit is configured.

また、請求項2に記載されるように、前記第1および第2の赤外線受光素子が、ともに化合物半導体受光素子からなることを特徴とする請求項1に記載の赤外線センサを構成する。
請求項3に記載されるように、前記第1および第2赤外線受光素子が、InAsxSb1-x(0≦x≦0.75)からなる化合物半導体受光素子であることを特徴とする請求項1または請求項2に記載の赤外線センサを構成する。
請求項4に記載されるように、前記フィルタは、特定波長λ1がおよそ5μm以上の赤外線をカットする特性を有しているフィルタであることを特徴とする請求項1から3のいずれかに記載の赤外線センサを構成する。
According to a second aspect of the present invention, in the infrared sensor according to the first aspect, the first and second infrared light receiving elements are both compound semiconductor light receiving elements.
According to a third aspect of the present invention, the first and second infrared light receiving elements are compound semiconductor light receiving elements made of InAs x Sb 1-x (0 ≦ x ≦ 0.75). The infrared sensor according to claim 1 or claim 2 is configured.
4. The filter according to claim 1, wherein the filter has a characteristic of cutting infrared rays having a specific wavelength λ 1 of about 5 μm or more. 5. The described infrared sensor is configured.

請求項5に記載されるように、前記フィルタが、珪酸塩ガラス、ホウ珪酸ガラス、リン酸塩ガラス、またはソーダガラスの中から選ばれることを特徴とする請求項4に記載の赤外線センサを構成する。
請求項6に記載されるように、前記第1および第2赤外線受光素子の前面に、可視光をカットするためのフィルタを取り付けることを特徴とする請求項1から5のいずれかに記載の赤外線センサを構成する。
The infrared sensor according to claim 4, wherein the filter is selected from silicate glass, borosilicate glass, phosphate glass, or soda glass. To do.
The infrared ray according to any one of claims 1 to 5, wherein a filter for cutting visible light is attached to the front surfaces of the first and second infrared light receiving elements. Configure the sensor.

本発明により、干渉フィルタを用いず、検出対象物の背景温度に影響されないで、長波長カットフィルタのカット波長をおよそ下限とする波長帯の赤外線に感度を有する赤外線センサを作ることができる。   According to the present invention, it is possible to produce an infrared sensor that is sensitive to infrared rays in a wavelength band that does not use an interference filter and is not affected by the background temperature of the detection target and that has a cut wavelength of the long wavelength cut filter as a lower limit.

以下、本願発明を実施するための最良の形態について具体的に説明する。
第1の赤外線受光素子は特定波長λ1以上の赤外線をカットするフィルタを該受光素子の前面に配置して赤外線を検出し、第2の赤外線受光素子は前記フィルタを透過させずに直接赤外線を検出し、前記第1と第2の赤外線受光素子の出力信号を差動増幅器に入力して差分を得ることにより、該フィルタのカット波長をおよそ下限とする波長帯の赤外線に感度を有する赤外線センサを構成する。
また、前記第1と第2の赤外線受光素子の出力信号の差分を得る別の方法として、前記第1と第2の赤外線受光素子を電気的に直列接続してブリッジを構成し、該ブリッジの中点から出力しても良い。
The best mode for carrying out the present invention will be specifically described below.
First infrared light receiving element detects the infrared by placing a filter for cutting a specific wavelength lambda 1 or more infrared to the front of the light receiving element, an infrared second infrared receiving elements directly without passing through the filter An infrared sensor having sensitivity to infrared rays in a wavelength band whose cut wavelength of the filter is approximately the lower limit by detecting and inputting the output signals of the first and second infrared light receiving elements to a differential amplifier to obtain a difference Configure.
As another method for obtaining a difference between output signals of the first and second infrared light receiving elements, a bridge is formed by electrically connecting the first and second infrared light receiving elements in series, You may output from the midpoint.

ここで、特定波長λ1とは該フィルタのカット波長を示しており、本発明における赤外線センサの検出波長帯のおよそ下限値をいう。また、波長λ2は、本発明で用いる赤外線受光素子が受光感度を持つ波長の上限値をいう。
次に、本発明を応用して人体を検出する場合の実施形態について説明する。
人体が放射する赤外線の波長領域で良好な感度を有する赤外線受光素子としては、下記の理由から化合物半導体を用いることが好ましい態様であり、化合物半導体の具体例としては、InAsxSb1-x(xは組成割合)が好適に用いることができる。しかしながら、これに限定しなくとも、その他の半導体としてHg1-xCdxTeやPb1-xSnxTeも、同じ目的で同様に使用することができる。
Here, the specific wavelength λ 1 indicates the cut wavelength of the filter, and is the approximate lower limit of the detection wavelength band of the infrared sensor in the present invention. The wavelength λ 2 is the upper limit value of the wavelength at which the infrared light receiving element used in the present invention has light receiving sensitivity.
Next, an embodiment in which the present invention is applied to detect a human body will be described.
A compound semiconductor is preferably used as the infrared light receiving element having good sensitivity in the infrared wavelength range emitted by the human body for the following reasons. As a specific example of the compound semiconductor, InAs x Sb 1-x ( x is preferably a composition ratio). However, although not limited thereto, Hg 1-x Cd x Te and Pb 1-x Sn x Te can be similarly used for the same purpose as other semiconductors.

赤外線受光素子の受光感度分布は、図3に示すように人体を310°Kの黒体と見なしたときに放射される赤外線波長分布に合わせて、より強く反応するように決めることができる。つまり、図2に示されるように、最大検出感度を示す波長が6〜14μmの領域に含まれ、良好な感度を持つように決められる。この目的を達成するため、組成割合xにより所望の感度分布を制御できる化合物半導体を薄膜として用いるのが好ましい。化合物半導体がInAsxSb1-xの場合、その組成割合xは、0≦x≦0.75で設定される。このときの赤外線受光素子が受光感度を持つ上限波長λ2はおよそ6.9〜11.5μmとなる。さらに、人体が放出する赤外線を、より効率よく選択性を高めるためには、最大検出感度を示す波長を人体が放出する赤外線波長分布の最大値近傍に設定するのが好ましい。この目的で受光感度を持つ上限波長λ2は、好ましくは9.0〜11.5μmになるように組成が決められる。この条件を満たすために、InAsxSb1-xの組成割合xは、0.13≦x≦0.58から選ばれるのがより好ましい形態である。 The light receiving sensitivity distribution of the infrared light receiving element can be determined so as to respond more strongly according to the infrared wavelength distribution emitted when the human body is regarded as a black body of 310 ° K. as shown in FIG. That is, as shown in FIG. 2, the wavelength indicating the maximum detection sensitivity is included in the region of 6 to 14 μm and is determined to have good sensitivity. In order to achieve this object, it is preferable to use a compound semiconductor capable of controlling a desired sensitivity distribution by the composition ratio x as a thin film. When the compound semiconductor is InAs x Sb 1-x , the composition ratio x is set to 0 ≦ x ≦ 0.75. In this case, the upper limit wavelength λ 2 at which the infrared light receiving element has light receiving sensitivity is approximately 6.9 to 11.5 μm. Furthermore, in order to improve the selectivity of infrared rays emitted by the human body more efficiently, it is preferable to set the wavelength indicating the maximum detection sensitivity in the vicinity of the maximum value of the infrared wavelength distribution emitted by the human body. For this purpose, the composition is determined so that the upper limit wavelength λ 2 having light receiving sensitivity is preferably 9.0 to 11.5 μm. In order to satisfy this condition, the composition ratio x of InAs x Sb 1-x is more preferably selected from 0.13 ≦ x ≦ 0.58.

化合物半導体としてInAsxSb1-xを用いると、真空蒸着装置やMBE(モレキュラービームエピタキシー)装置を用いて、基板上に化合物半導体薄膜を形成することができる。この目的で使用する基板としては、GaAs基板やSi基板が好ましい。また、予めマイカ基板上に形成した化合物半導体薄膜を、GaAs基板やSi基板、あるいはガラスやプラスチックなどの基板に接着剤を使って貼り合わせ、その後、マイカを剥離して形成するのも、好適な製造方法の一つである。
上記InAsxSb1-xの薄膜の厚みは0.1〜10.0μmの間で設定して、上記条件の赤外線をより強く吸収されるようにする。前記のように、GaAs基板やSi基板に化合物半導体薄膜を真空蒸着装置やMBE装置を用いて製造する関係上、あまり厚い薄膜は製造時間が長くかかり実用的ではなく、また薄すぎると基板との界面に発生する欠陥が受光素子として動作させたときの特性に悪影響を及ぼしやすい。従って、より好ましくは、化合物半導体薄膜の厚みとして0.5〜5.0μmの範囲で最適化される。
When InAs x Sb 1-x is used as the compound semiconductor, a compound semiconductor thin film can be formed on the substrate using a vacuum deposition apparatus or an MBE (Molecular Beam Epitaxy) apparatus. As the substrate used for this purpose, a GaAs substrate or a Si substrate is preferable. It is also preferable that the compound semiconductor thin film previously formed on the mica substrate is bonded to a GaAs substrate, Si substrate, or glass or plastic substrate using an adhesive, and then the mica is peeled off. This is one of the manufacturing methods.
The thickness of the thin film of InAs x Sb 1-x is set between 0.1 to 10.0 μm so that infrared rays of the above conditions are absorbed more strongly. As described above, because a compound semiconductor thin film is manufactured on a GaAs substrate or Si substrate using a vacuum evaporation apparatus or an MBE apparatus, a too thin film takes a long time to manufacture and is not practical. Defects generated at the interface tend to adversely affect the characteristics when operated as a light receiving element. Therefore, the thickness of the compound semiconductor thin film is more preferably optimized in the range of 0.5 to 5.0 μm.

上記のように赤外線受光素子として化合物半導体薄膜を用いると、化合物半導体のバンドギャップエネルギーに相当する波長以上の赤外線には感度を持たなくなる。そのため、長波長側の上限値は化合物半導体を用いることで自ずと設定され、しかも上限値λ2における遮断特性は比較的急峻な特性である。
本発明の赤外線受光素子は短波長側において、波長5μm以上の遠赤外領域はもとより、波長0.7〜5μmの近・中赤外領域や波長0.4〜0.7μmの可視領域の光にもわずかながら受光感度を持つことになる。人体の放射する遠赤外線に選択的に反応するよう波長6〜14μmの光を赤外線受光素子に入射させるためには、前記特定波長以上の赤外線をカットするフィルタと組み合わせて用いることが必要である。つまり、化合物半導体の赤外線受光素子2個を対として、その一方に図4に示すような波長5μm以上の赤外線をカットするフィルタを用い、波長6〜14μmの領域に最大感度を持つような赤外線センサを構成することは、本発明にとって好ましい形態である。
As described above, when a compound semiconductor thin film is used as the infrared light receiving element, the infrared light having a wavelength longer than the wavelength corresponding to the band gap energy of the compound semiconductor has no sensitivity. Therefore, the upper limit value on the long wavelength side is naturally set by using a compound semiconductor, and the cutoff characteristic at the upper limit value λ 2 is a relatively steep characteristic.
The infrared light receiving element of the present invention has light in the near-infrared region having a wavelength of 0.7 to 5 μm and the visible region having a wavelength of 0.4 to 0.7 μm as well as the far infrared region having a wavelength of 5 μm or more on the short wavelength side. However, it will have a slight sensitivity to light. In order to allow light having a wavelength of 6 to 14 μm to be incident on the infrared light receiving element so as to selectively react with far infrared rays emitted by the human body, it is necessary to use the filter in combination with a filter that cuts infrared rays having the specific wavelength or more. In other words, an infrared sensor having a maximum sensitivity in a wavelength region of 6 to 14 μm, using two compound semiconductor infrared light receiving elements as a pair and using one of them as shown in FIG. 4 for cutting infrared light having a wavelength of 5 μm or more. It is a preferable form for the present invention to constitute.

前記波長5μm以上の赤外線をカットする特性を持つフィルタとしては、ガラスを用いることができ、たとえば珪酸塩ガラス、ホウ珪酸ガラス、リン酸塩ガラスなどが好適に用いることができる。さらには、図4に示されるような透過特性を持つソーダガラスは好ましいガラスの一つである。しかしながら、図4に示されるような透過特性を達成することができる物質ならば、他のものも使用することができる。
ガラスの厚みは、フィルタとして図4に示されるような特性を達成できれば自由に選択することができるが、0.05〜5.0mmの範囲が好ましい。この範囲外で厚みが薄すぎると、機械的強度が不足して製造工程上また使用中に落下などの衝撃で割れてしまうおそれがあるため、好ましくない。また、厚すぎるとセンサの薄型化・小型化という観点から、好ましくない。従って、ガラスの厚みとしては、0.1〜1.0mmの範囲から選ばれるのが、より好ましい実施形態である。
As the filter having the characteristic of cutting infrared rays having a wavelength of 5 μm or more, glass can be used. For example, silicate glass, borosilicate glass, phosphate glass and the like can be preferably used. Furthermore, soda glass having transmission characteristics as shown in FIG. 4 is one of the preferred glasses. However, other materials can be used as long as they can achieve transmission characteristics as shown in FIG.
The thickness of the glass can be freely selected as long as the characteristics as shown in FIG. 4 can be achieved as a filter, but a range of 0.05 to 5.0 mm is preferable. If the thickness is too small outside this range, the mechanical strength is insufficient, and there is a risk of cracking due to an impact such as dropping during the manufacturing process or during use. On the other hand, if it is too thick, it is not preferable from the viewpoint of reducing the thickness and size of the sensor. Accordingly, the thickness of the glass is more preferably selected from the range of 0.1 to 1.0 mm.

上記のようなフィルタを、対を形成する赤外線受光素子の一方の前面に配置することにより、フィルタを透過する波長領域の光に対しては各赤外線受光素子の出力には差が発生しないか発生したとしてもごく小さいのに対し、フィルタを透過しない波長領域の赤外光に対しては赤外線受光素子の出力に大きな差を生じることになる。従って、対を形成する赤外線受光素子の出力を差動増幅器3へ入力して差分を得ることにより、人感センサとして構成することが可能となる。
図5は、化合物半導体を用いた赤外線受光素子と特定波長以上の赤外線をカットするフィルタを組み合わせて、該フィルタのカット波長をおよそ下限とする波長帯の赤外線に感度を持つ本発明の赤外線センサの感度特性を表す図である。つまり、特定の組成を持つ化合物半導体赤外線受光素子の感度特性と、特定波長以上をカットするフィルタの透過特性を掛け合わせることで、図中斜線で示されるような、該フィルタのカット波長λ1をおよそ下限とする波長帯λ1〜λ2の赤外線に感度を持つ赤外線センサが構成されることが示されている。
By arranging the filter as described above on the front surface of one of the infrared light receiving elements forming a pair, there is no difference in the output of each infrared light receiving element with respect to light in the wavelength region that passes through the filter. Even if it is very small, there is a large difference in the output of the infrared light receiving element with respect to infrared light in a wavelength region that does not pass through the filter. Therefore, by inputting the outputs of the infrared light receiving elements forming a pair to the differential amplifier 3 to obtain the difference, it is possible to configure as a human sensor.
FIG. 5 shows a combination of an infrared light receiving element using a compound semiconductor and a filter that cuts infrared light of a specific wavelength or more, and the infrared sensor of the present invention having sensitivity to infrared light in a wavelength band whose cut wavelength is approximately the lower limit. It is a figure showing a sensitivity characteristic. In other words, by multiplying the sensitivity characteristic of the compound semiconductor infrared light receiving element having a specific composition and the transmission characteristic of the filter that cuts the specific wavelength or more, the cut wavelength λ 1 of the filter as shown by the oblique line in the figure is obtained. It is shown that an infrared sensor having sensitivity to infrared rays in the wavelength band λ 1 to λ 2 that is approximately the lower limit is configured.

また、前記フィルタは特定波長λ1以下の領域で透過率が100%ではないため、本来差分が生じて欲しくない特定波長λ1以下の入射光に対しても、2つの赤外線受光素子の出力に差を生じることがあるが、しきい値で識別してオン・オフ信号を出すように設定した基準比較器をその後に取り付けることで、人感センサとして構成することは可能である。しかしながら、あまり絶対強度の大きな可視領域の光が入射すると、このしきい値以上に大きな差分を生じることがあり、そうならないようにしきい値を設定することは可能であるが、そのときは本来十分な感度を持つべき検出波長帯の光に対しての感度を落としてしまうことがあり、かつ、複雑な処理を行ってしきい値を可変させる必要が出てくる。従って、可視光カットフィルタを2つの赤外線受光素子の前面に配置することにより、より的確に検出波長帯の赤外線が検出でき、人体の放射する遠赤外線に良好な感度を有する人感センサとすることが可能になる。この目的で、およそ波長1μm以下の可視光をカットするフィルタとして、シリコン基板が好適に用いることができる。 Also, the order filter is not 100% transmission at a particular wavelength lambda 1 or less in the region, even for the original difference not want to occur a specific wavelength lambda 1 or less of the incident light, the output of the two infrared light-receiving element Although a difference may occur, it can be configured as a human sensor by subsequently attaching a reference comparator that is set to output an on / off signal by identifying with a threshold value. However, if light in the visible region with a large absolute intensity is incident, a difference larger than this threshold value may be generated, and it is possible to set the threshold value so that it does not occur. The sensitivity to light in the detection wavelength band that should have high sensitivity may be lowered, and it is necessary to perform complicated processing to vary the threshold value. Therefore, by arranging the visible light cut filter in front of the two infrared light receiving elements, it is possible to more accurately detect infrared rays in the detection wavelength band, and to provide a human sensor having good sensitivity to far infrared rays emitted by the human body. Is possible. For this purpose, a silicon substrate can be suitably used as a filter that cuts visible light having a wavelength of about 1 μm or less.

次に、実施形態1〜5によって本発明を説明する。   Next, the present invention will be described by Embodiments 1 to 5.

〔実施形態1〕
図1に示すように、特定波長以上の赤外線をカットするフィルタ2と、フィルタ2を透過した赤外線を検出する第1の赤外線受光素子1aと、フィルタを透過させずに直接赤外線を検出する第2の赤外線受光素子1bとからなり、第1の赤外線受光素子1aの出力信号と、前記第2の赤外線受光素子1bの出力信号とを差動増幅器3に入力して差分を得ることにより、フィルタ2のカット波長をおよそ下限とする波長帯の赤外線に感度を有する赤外線センサを構成する。
Embodiment 1
As shown in FIG. 1, a filter 2 that cuts infrared light of a specific wavelength or more, a first infrared light receiving element 1 a that detects infrared light that has passed through the filter 2, and a second that directly detects infrared light without passing through the filter. Filter 2 by inputting the output signal of the first infrared light receiving element 1a and the output signal of the second infrared light receiving element 1b to the differential amplifier 3 to obtain a difference. An infrared sensor having sensitivity to infrared rays in a wavelength band whose cut wavelength is approximately the lower limit is configured.

〔実施形態2〕
可視領域の光の影響をより小さくする目的で、2つの赤外線受光素子に可視光をカットするフィルタを取り付けて使用することも、本発明の好ましい形態の一つである。図6に示すように、特定波長以上の赤外線をカットするフィルタ2を透過した赤外線を検出する第1の赤外線受光素子1aと、フィルタ2を透過させずに直接赤外線を検出する第2の赤外線受光素子1bと、これら2つの赤外線受光素子1a,1bの前方に可視光カットフィルタ4を具備し、2つの赤外線受光素子1a,1bから出力される信号を差動増幅器3に入力して差分を得ることにより、フィルタ2のカット波長をおよそ下限とする波長帯の赤外線に感度を有する赤外線センサを構成する。
[Embodiment 2]
In order to further reduce the influence of light in the visible region, it is also one of preferable modes of the present invention to use a filter that cuts visible light on two infrared light receiving elements. As shown in FIG. 6, a first infrared light receiving element 1 a that detects infrared light that has passed through a filter 2 that cuts infrared light of a specific wavelength or more, and a second infrared light reception that directly detects infrared light without passing through the filter 2. The visible light cut filter 4 is provided in front of the element 1b and the two infrared light receiving elements 1a and 1b, and signals output from the two infrared light receiving elements 1a and 1b are input to the differential amplifier 3 to obtain a difference. Thus, an infrared sensor having sensitivity to infrared rays in a wavelength band whose cut wavelength of the filter 2 is approximately the lower limit is configured.

〔実施形態3〕
図7に示すように、可視光をカットするフィルタが赤外線受光素子を固定する機能も有するように固定基板5として用い、これに2つの赤外線受光素子1a、1bを受光面が固定基板5に面するように固定して、片方の赤外線受光素子1aの前面にのみ、特定波長以上の赤外線をカットするフィルタ2を取り付け、2つの赤外線受光素子1a,1bから出力される信号を差動増幅器3に入力して差分を得て、フィルタ2のカット波長をおよそ下限とする波長帯の赤外線に感度を有する赤外線センサを構成する。この際、固定基板5としてはGaAs基板やSi基板あるいはプラスチック基板など可視光をカットするフィルタとして使用できるものは、好適に使用することができる。
[Embodiment 3]
As shown in FIG. 7, a filter that cuts visible light is used as a fixed substrate 5 so as to have a function of fixing the infrared light receiving element, and two infrared light receiving elements 1 a and 1 b are provided on the fixed substrate 5. The filter 2 that cuts infrared light of a specific wavelength or more is attached only to the front surface of one of the infrared light receiving elements 1a, and signals output from the two infrared light receiving elements 1a and 1b are sent to the differential amplifier 3. A difference is obtained by inputting, and an infrared sensor having sensitivity to infrared rays in a wavelength band whose cut wavelength of the filter 2 is approximately the lower limit is configured. At this time, as the fixed substrate 5, a substrate that can be used as a filter for cutting visible light, such as a GaAs substrate, an Si substrate, or a plastic substrate, can be preferably used.

〔実施形態4〕
特定波長以上をカットするフィルタを、2つの赤外線受光素子1a,1bを固定するための固定基板5としても利用可能な場合は、図8に示すように、2つの赤外線受光素子1a、1bのうち、一方の赤外線受光素子1bはフィルタの前面に受光面を光源へ向けて固定し、もう一方の赤外線受光素子1aは固定基板5の裏面に受光面を固定基板5へ向けて固定して、これら2つの赤外線受光素子1a、1bから出力される信号を差動増幅器3に入力して差分を得ることにより、フィルタ2のカット波長をおよそ下限とする波長帯の赤外線に感度を有する赤外線センサを構成する。
[Embodiment 4]
When a filter that cuts off a specific wavelength or more can be used as the fixed substrate 5 for fixing the two infrared light receiving elements 1a and 1b, as shown in FIG. 8, the two infrared light receiving elements 1a and 1b One infrared light receiving element 1b is fixed to the front surface of the filter with the light receiving surface facing the light source, and the other infrared light receiving element 1a is fixed to the back surface of the fixed substrate 5 with the light receiving surface facing the fixed substrate 5. An infrared sensor having sensitivity to infrared rays in a wavelength band whose cut wavelength of the filter 2 is approximately the lower limit is obtained by inputting the signals output from the two infrared light receiving elements 1a and 1b to the differential amplifier 3 to obtain a difference. To do.

〔実施形態5〕
GaAs基板上に、MBE装置を用いてInAs0.35Sb0.65の薄膜を厚さ1.25μmになるように成長させ、半導体製造プロセスにより、素子分離して保護膜を形成後、2端子電極を付けた赤外線受光素子チップを製造する。図9に示すように、切り出した2つの赤外線受光素子1a、1bを、ガラスエポキシ支持パッケージ9にそれぞれの受光素子1a、1bが近接するように貼り付けて、同一方向へ向けて同じ対象物からの赤外線が入射するように設置する。その一方の赤外線受光素子1aには、前面に厚さ0.5mmのソーダガラスのフィルタ2を配置し、赤外線受光素子1aに直接触れない状態で取り付ける。
[Embodiment 5]
An InAs 0.35 Sb 0.65 thin film was grown on a GaAs substrate to a thickness of 1.25 μm using an MBE apparatus, and a protective film was formed by element isolation by a semiconductor manufacturing process, and then a two-terminal electrode was attached. An infrared light receiving element chip is manufactured. As shown in FIG. 9, two cut out infrared light receiving elements 1a and 1b are attached to the glass epoxy support package 9 so that the respective light receiving elements 1a and 1b are close to each other, and are directed from the same object in the same direction. It is installed so that the infrared rays of. One infrared light receiving element 1a is provided with a soda glass filter 2 having a thickness of 0.5 mm on the front surface and attached without touching the infrared light receiving element 1a.

2つの赤外線受光素子1a、1bは、電気的に直列接続し、その両端には電源とアースを接続する。その中点電位点をローパスフィルタ8を介して電圧増幅器6に接続する。電圧増幅器6の出力信号は、予めしきい値が設定されている基準比較器7に入力される。この基準比較器7は、電圧増幅器6の出力信号が該しきい値より大きいとオン信号を、小さいとオフ信号を出力するように設定され、フィルタ2のカット波長をおよそ下限とする波長帯の赤外線に感度を有する赤外線センサを構成する。
なお、この赤外線センサの動作確認をしたところ、センサの前端より1m離れた距離にいる人体から放射される赤外線を入射するとオン信号が出力されたが、人体と同じ位置に設置した白熱灯や蛍光灯からの光を入射したり、あるいは太陽光を入射しても、オン信号は出力されなかった。
The two infrared light receiving elements 1a and 1b are electrically connected in series, and a power source and a ground are connected to both ends thereof. The midpoint potential point is connected to the voltage amplifier 6 through the low-pass filter 8. The output signal of the voltage amplifier 6 is input to a reference comparator 7 in which a threshold value is set in advance. The reference comparator 7 is set so as to output an on signal when the output signal of the voltage amplifier 6 is larger than the threshold value, and an off signal when the output signal is smaller than the threshold value. An infrared sensor having sensitivity to infrared rays is configured.
In addition, when the operation of this infrared sensor was checked, an on signal was output when an infrared ray radiated from a human body at a distance of 1 m from the front end of the sensor was incident. The on signal was not output even when light from the lamp was incident or sunlight was incident.

本発明は、人体の存在を検出する人感センサとして好適に使用できる。   The present invention can be suitably used as a human sensor for detecting the presence of a human body.

本発明記載の赤外線センサの実施形態1を示す図である。It is a figure which shows Embodiment 1 of the infrared sensor of this invention description. 本発明に用いる赤外線受光素子の相対感度分布を示す図である。It is a figure which shows the relative sensitivity distribution of the infrared light receiving element used for this invention. 310°K黒体放射分布を示す図である。It is a figure which shows 310 degree K black body radiation distribution. ソーダガラスの透過率を示す図である。It is a figure which shows the transmittance | permeability of soda glass. 本発明の赤外線センサの構成における相対感度と透過率を示す図である。It is a figure which shows the relative sensitivity and transmittance | permeability in the structure of the infrared sensor of this invention. 本発明記載の赤外線センサの実施形態2を示す図である。It is a figure which shows Embodiment 2 of the infrared sensor of this invention description. 本発明記載の赤外線センサの実施形態3を示す図である。It is a figure which shows Embodiment 3 of the infrared sensor of this invention description. 本発明記載の赤外線センサの実施形態4を示す図である。It is a figure which shows Embodiment 4 of the infrared sensor of this invention description. 本発明記載の赤外線センサの実施形態5を示す図である。It is a figure which shows Embodiment 5 of the infrared sensor of this invention description.

符号の説明Explanation of symbols

1a、1b 赤外線受光素子
2 フィルタ
3 差動増幅器
4 可視光カットフィルタ
5 固定基板
6 電圧増幅器
7 基準比較器
8 ローパスフィルタ
9 ガラスエポキシ支持パッケージ
1a, 1b Infrared light receiving element 2 Filter 3 Differential amplifier 4 Visible light cut filter 5 Fixed substrate 6 Voltage amplifier 7 Reference comparator 8 Low pass filter 9 Glass epoxy support package

Claims (6)

特定波長λ1以上の赤外線をカットするフィルタと、該フィルタを透過した赤外線を検出する第1の赤外線受光素子と、フィルタを透過させずに直接赤外線を検出する第2の赤外線受光素子とからなり、前記第1の赤外線受光素子の出力信号と、前記第2の赤外線受光素子の出力信号との差分をとることにより、該フィルタのカット波長をおよそ下限とする波長帯λ1〜λ2の赤外線に感度を有することを特徴とする赤外線センサ。 It comprises a filter that cuts infrared light having a specific wavelength λ 1 or more, a first infrared light receiving element that detects infrared light that has passed through the filter, and a second infrared light receiving element that directly detects infrared light without passing through the filter. By taking the difference between the output signal of the first infrared light receiving element and the output signal of the second infrared light receiving element, the infrared light in the wavelength band λ 1 to λ 2 having the cut wavelength of the filter as a lower limit. An infrared sensor characterized by having a sensitivity. 前記第1および第2の赤外線受光素子が、ともに化合物半導体受光素子からなることを特徴とする請求項1に記載の赤外線センサ。   The infrared sensor according to claim 1, wherein the first and second infrared light receiving elements are both compound semiconductor light receiving elements. 前記第1および第2赤外線受光素子が、InAsxSb1-x(0≦x≦0.75)からなる化合物半導体受光素子であることを特徴とする請求項1または請求項2に記載の赤外線センサ。 3. The infrared ray according to claim 1, wherein the first and second infrared light receiving elements are compound semiconductor light receiving elements made of InAs x Sb 1-x (0 ≦ x ≦ 0.75). Sensor. 前記フィルタは、特定波長λ1がおよそ5μm以上の赤外線をカットする特性を有しているフィルタであることを特徴とする請求項1から3のいずれかに記載の赤外線センサ。 4. The infrared sensor according to claim 1, wherein the filter is a filter having a characteristic of cutting infrared rays having a specific wavelength λ 1 of about 5 μm or more. 5. 前記フィルタが、珪酸塩ガラス、ホウ珪酸ガラス、リン酸塩ガラス、またはソーダガラスの中から選ばれることを特徴とする請求項4に記載の赤外線センサ。   The infrared filter according to claim 4, wherein the filter is selected from silicate glass, borosilicate glass, phosphate glass, or soda glass. 前記第1および第2赤外線受光素子の前面に、可視光をカットするためのフィルタを取り付けることを特徴とする請求項1から5のいずれかに記載の赤外線センサ。   The infrared sensor according to claim 1, wherein a filter for cutting visible light is attached to the front surfaces of the first and second infrared light receiving elements.
JP2004013390A 2004-01-21 2004-01-21 Infrared sensor Pending JP2005207830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004013390A JP2005207830A (en) 2004-01-21 2004-01-21 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004013390A JP2005207830A (en) 2004-01-21 2004-01-21 Infrared sensor

Publications (1)

Publication Number Publication Date
JP2005207830A true JP2005207830A (en) 2005-08-04

Family

ID=34899466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004013390A Pending JP2005207830A (en) 2004-01-21 2004-01-21 Infrared sensor

Country Status (1)

Country Link
JP (1) JP2005207830A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292486A (en) * 2006-04-21 2007-11-08 Asahi Kasei Electronics Co Ltd Optical sensor and object detection method
JP2009177150A (en) * 2007-12-25 2009-08-06 Seiko Instruments Inc Photo-detection device and image display device
US8400413B2 (en) 2008-12-25 2013-03-19 Sony Corporation Display apparatus and display method
US10145740B2 (en) 2017-02-27 2018-12-04 Visera Technologies Company Limited Sensing multiple peak wavelengths using combination of dual-band filters
JP7441293B2 (en) 2018-08-29 2024-02-29 旭化成エレクトロニクス株式会社 optical device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292486A (en) * 2006-04-21 2007-11-08 Asahi Kasei Electronics Co Ltd Optical sensor and object detection method
JP4740022B2 (en) * 2006-04-21 2011-08-03 旭化成エレクトロニクス株式会社 Optical sensor and object detection method
JP2009177150A (en) * 2007-12-25 2009-08-06 Seiko Instruments Inc Photo-detection device and image display device
US8400413B2 (en) 2008-12-25 2013-03-19 Sony Corporation Display apparatus and display method
US10145740B2 (en) 2017-02-27 2018-12-04 Visera Technologies Company Limited Sensing multiple peak wavelengths using combination of dual-band filters
JP7441293B2 (en) 2018-08-29 2024-02-29 旭化成エレクトロニクス株式会社 optical device

Similar Documents

Publication Publication Date Title
US9562852B1 (en) Gas sensor with integrated optics and reference cell
KR20220148772A (en) Surface micro-machined infrared sensor using highly temperature stable interferometric absorber
US8975645B2 (en) Optical filter
WO2002099372A3 (en) Advanced high speed, multi-level uncooled bolometer and method for fabricating same
JP2008066584A (en) Photosensor
US10151638B2 (en) Bolometer, method of fabricating the same, and bolometric method
US8373561B2 (en) Infrared detector
JP5636557B2 (en) Infrared sensor manufacturing method, infrared sensor, and quantum infrared gas concentration meter
JP2005207830A (en) Infrared sensor
US10353124B1 (en) Omni-directional ultra-thin reflection optical filters and methods of fabrication
JP4740022B2 (en) Optical sensor and object detection method
US10162091B1 (en) Silicon film optical filtering systems and methods of fabrication
JPS637611B2 (en)
KR101180647B1 (en) Design of pixel for more higher fill factor wherein microbolometer
JPH09229763A (en) Flame sensor
KR101994508B1 (en) Composite sensor and composite sensor module
US5438200A (en) Composite photodetector substrate and method of forming the same
JP4443390B2 (en) Semiconductor photodetection device
US5920071A (en) Mercury cadmium telluride devices for detecting and controlling open flames
RU2642181C2 (en) Tandem- structure of two-channel infrared radiation detector
Aleksandrova et al. Theoretical Design and Fabrication Process for Perovskite LiTaO3-based Infrared Detectors
KR20230114680A (en) Optical devices
JPH02105090A (en) Radiant ray detecting device
JP2016174163A (en) Optical filter
JPS6176922A (en) Flame detecting device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303