WO2013183453A1 - Thermopile, thermopile sensor using same, and infrared sensor - Google Patents

Thermopile, thermopile sensor using same, and infrared sensor Download PDF

Info

Publication number
WO2013183453A1
WO2013183453A1 PCT/JP2013/064327 JP2013064327W WO2013183453A1 WO 2013183453 A1 WO2013183453 A1 WO 2013183453A1 JP 2013064327 W JP2013064327 W JP 2013064327W WO 2013183453 A1 WO2013183453 A1 WO 2013183453A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermopile
sensor
terminal
thermocouple
difference
Prior art date
Application number
PCT/JP2013/064327
Other languages
French (fr)
Japanese (ja)
Inventor
恭輔 尾崎
宏行 朝比奈
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2013183453A1 publication Critical patent/WO2013183453A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • G01J5/14Electrical features thereof
    • G01J5/16Arrangements with respect to the cold junction; Compensating influence of ambient temperature or other variables

Definitions

  • the present invention relates to a thermopile, a thermopile sensor using the thermopile, and an infrared sensor, and more particularly, a thermopile capable of reducing a difference in impedance and a difference in temperature coefficient of resistance viewed from each of a pair of terminals, and The present invention relates to a thermopile sensor and an infrared sensor using the same.
  • thermopiles As temperature sensors used in industrial equipment and thermometers, and sensor elements that measure various heat related physical quantities such as thermal analysis, fluid flow, impurity concentration, and atmospheric pressure, those using thermopiles are known.
  • FIG. 7 shows a plan view of a conventional thermopile 110.
  • the conventional thermopile 110 is configured on a semiconductor substrate 120 in which first thermoelectric material layers 122 and second thermoelectric material layers 123 are alternately connected in series.
  • the first thermoelectric material layer 122 and the second thermoelectric material layer 123 are formed using different materials.
  • the pair of the first thermoelectric material layer 122 and the second thermoelectric material layer 123 includes the thermocouple 121.
  • the thermopile 110 is configured by connecting a plurality of thermocouples 121 in series.
  • thermocouple 121 generates a thermoelectromotive force corresponding to the temperature difference between the first contact 124 and the second contact 125, and the thermopile 110 sums the thermoelectromotive forces of the thermocouples 121 to the same temperature. It is possible to obtain a larger thermoelectromotive force with respect to the difference. And the thermoelectromotive force of the thermopile 110 is taken out from the 1st terminal 131 and the 2nd terminal 132 provided in the both ends of the series circuit.
  • thermopile 110 In recent years, mounting of the thermopile 110 to mobile devices and the like has been studied, and a reduction in size is desired.
  • the thermopile 110 When the thermopile 110 is downsized, the temperature difference between the first contact 124 and the second contact 125 is reduced, and the electromotive force of each thermocouple 121 tends to be reduced. Therefore, it is necessary to increase the sensitivity of the thermopile 110 by increasing the thermocouples 121 connected in series. However, in this case, increasing the number of thermocouples 121 increases the resistance value between the first terminal 131 and the second terminal 132.
  • FIG. 8 shows an equivalent circuit diagram of a thermopile sensor 111 in which an instrumentation amplifier 135 is connected to the first terminal 131 and the second terminal 132 of the thermopile 110.
  • an external resistor 140 provided outside the semiconductor substrate 120 is connected to one input terminal of the instrumentation amplifier 135.
  • the resistance 150 which is the resistance component of the thermopile 110, has a large value as described above.
  • the impedance difference when viewed from each of the above becomes large. In this case, an offset of the output V 0ut of the instrumentation amplifier 135 occurs, and an accurate sensor output cannot be obtained.
  • the external resistor 140 is provided to adjust the difference in impedance when viewed from each of the pair of input terminals of the instrumentation amplifier 135, thereby suppressing the occurrence of offset in the instrumentation amplifier 135.
  • the thermoelectromotive force from the thermopile 110 can be output accurately.
  • Patent Document 1 discloses an infrared detector using a thermal resistance element such as a thermopile or a bolometer.
  • a thermal resistance element such as a thermopile or a bolometer.
  • an external circuit for adjusting the occurrence of offset due to self-heating of the thermosensitive resistor element is connected.
  • thermopile sensor 111 it is necessary to provide an external resistor 140 to adjust the impedance difference as shown in FIG. Furthermore, an external resistor 140 having a resistance value equivalent to the resistor 150, which is a resistance component of the thermopile 110, must be provided, and the material selectivity of the external resistor 140 and the design flexibility of the thermopile sensor 111 are reduced.
  • the resistance 150 of the thermopile 110 and the external resistance 140 have different temperature coefficients, and it is difficult to match them. Therefore, when a temperature change occurs in the usage environment, the resistance value between the resistor 150 of the thermopile 110 and the external resistor 140 changes, and the difference in input impedance when viewed from the instrumentation amplifier 135 becomes large. In this case, a drift occurs in the output V out from the instrumentation amplifier 135, causing a problem that an accurate sensor output cannot be obtained.
  • the present invention solves the above-described problem, and can reduce a difference in impedance and a difference in temperature coefficient of resistance when viewed from each of a pair of terminals, a thermopile sensor using the thermopile, and An object is to provide an infrared sensor.
  • thermopile of the present invention includes a semiconductor substrate and a plurality of thermocouples formed on the semiconductor substrate, and the plurality of thermocouples are connected in series to form a series circuit, and the series circuit Is provided with a pair of terminals for connection to an external circuit, and a reference potential is connected between the pair of terminals.
  • the resistance value is divided at the location where the reference potential is connected.
  • the divided thermocouples are a first thermocouple group and a second thermocouple group, respectively
  • the resistance values when viewed from one pair of terminals are the resistance values of the first thermocouple group and the second thermocouple group, respectively.
  • the resistance value of the thermocouple group Therefore, the impedance difference when viewed from each of the pair of terminals can be reduced as compared with the thermopile of the conventional example.
  • the first thermocouple group and the second thermocouple group are composed of thermocouples formed of the same material, they have the same temperature coefficient. Therefore, it is possible to reduce the difference in temperature coefficient of resistance when viewed from each of the pair of terminals, and even when a temperature change occurs, the difference in impedance can be reduced as compared with the conventional thermopile. .
  • thermopile of the present invention it is possible to reduce the difference in impedance and the difference in temperature coefficient of resistance when viewed from each of the pair of terminals.
  • thermopile of the present invention it is preferable that the reference potential is connected to a midpoint of the series circuit. According to this, in the series circuit, the impedance and the temperature coefficient of resistance when viewed from each of the pair of terminals can be made equal. In addition, when a thermopile sensor is formed using the thermopile of the present invention, it is not necessary to provide an external resistor for impedance adjustment, so that the size can be reduced. Furthermore, it is possible to suppress the occurrence of drift due to a temperature coefficient shift and obtain an accurate output.
  • thermopile of the present invention it is preferable that a voltage dividing resistor for generating the reference potential is formed on the semiconductor substrate. According to this, since the voltage dividing resistor can be formed by a thin film process in the same manner as each thermocouple, the resistance value is more accurate than when a voltage dividing resistor (external resistor) is provided outside the semiconductor substrate. Control can be performed, and the size of the sensor can be reduced.
  • thermopile sensor of the present invention is characterized by using any one of the above thermopile. According to this, since the difference in impedance when viewed from each of the pair of terminals of the thermopile and the difference in temperature coefficient of resistance are small, impedance adjustment can be easily performed when an external circuit such as an instrumentation amplifier is connected. Or impedance adjustment is not necessary. Furthermore, since the impedance difference can be reduced even when a temperature change occurs, the occurrence of drift can be suppressed and an accurate sensor output can be obtained.
  • the infrared sensor of the present invention is characterized by using the above-described thermopile sensor. According to this, by reducing the difference in impedance and the temperature coefficient of resistance when viewed from a pair of terminals of the thermopile, the occurrence of offset and temperature drift is suppressed and the measurement accuracy of the infrared sensor is improved. Can be made.
  • thermopile of the present invention the resistance value of the series circuit composed of a plurality of thermocouples is divided at the location where the reference potential is connected. Assuming that the divided thermocouples are a first thermocouple group and a second thermocouple group, respectively, the resistance values when viewed from one pair of terminals are the resistance values of the first thermocouple group and the second thermocouple group, respectively. The resistance value of the thermocouple group. Therefore, the impedance difference when viewed from a pair of terminals can be reduced as compared with the conventional thermopile. Further, since the first thermocouple group and the second thermocouple group are composed of thermocouples formed of the same material, they have the same temperature coefficient. Therefore, it is possible to reduce the difference in temperature coefficient of resistance when viewed from each of the pair of terminals, and even when a temperature change occurs, the difference in impedance can be reduced as compared with the conventional thermopile. .
  • thermopile of the present invention it is possible to reduce the difference in impedance and the difference in temperature coefficient of resistance when viewed from each of the pair of terminals.
  • FIG. 2 is a cross-sectional view of a thermopile when cut along line II-II in FIG. 1. It is an equivalent circuit diagram of the thermopile of this embodiment. It is an equivalent circuit diagram of the thermopile sensor in the embodiment of the present invention. It is an equivalent circuit diagram which shows the modification of a thermopile, and a thermopile type sensor using the same. It is sectional drawing of the infrared sensor of this invention. It is a top view of the thermopile of a prior art example. It is an equivalent circuit diagram of a thermopile sensor of a conventional example.
  • FIG. 1 the top view of the thermopile 10 in this embodiment is shown.
  • FIG. 2 is a cross-sectional view of the thermopile 10 taken along the line II-II in FIG.
  • the thermopile 10 includes a plurality of thermocouples 21 connected in series.
  • Each thermocouple 21 is configured by connecting a first thermoelectric material layer 22 and a second thermoelectric material layer 23 by a first contact 24.
  • the plurality of thermocouples 21 are connected by the second contact 25.
  • the some thermocouple 21 is connected in series and comprises a series circuit.
  • a first terminal 31 and a second terminal 32 are connected to the plurality of thermocouples 21 and can be connected to an external circuit.
  • the first thermoelectric material layer 22 and the second thermoelectric material layer 23 are formed using different materials.
  • polysilicon is used as the first thermoelectric material layer 22, and the second thermoelectric material is used.
  • the layer 23 is formed using aluminum.
  • the first thermoelectric material layer 22 and the second thermoelectric material layer 23 are formed by a thin film method such as sputtering, and are patterned by photolithography. Thereby, the thermocouple 21 connected in series as shown in FIG. 1 is formed.
  • the thermopile 10 includes a semiconductor substrate 20, and the semiconductor substrate 20 has a through hole 28 that opens up and down.
  • a silicon substrate can be used as the semiconductor substrate 20, and the through hole 28 can be formed by etching from the lower surface of the semiconductor substrate 20.
  • An insulating film 27 formed as a thin film is provided on the upper surface of the semiconductor substrate 20 so as to cover the through hole 28, and a plurality of thermocouples 21 are formed on the upper surface of the insulating film 27.
  • the plurality of thermocouples 21 are formed so as to surround the through hole 28, the first contact 24 is in a position overlapping the through hole 28, and the second contact 25 is the semiconductor substrate 20. It is formed in the position which overlaps with the thick part.
  • the insulating film 27 As the insulating film 27, a silicon nitride film, a silicon oxide film, or the like can be used.
  • the through hole 28 is formed in the semiconductor substrate 20.
  • the present invention is not limited to this mode, and a configuration in which a cavity is formed on the upper surface or the lower surface of the semiconductor substrate 20 by etching may be used.
  • the first contact 24 is formed on the insulating film 27 located in the through hole 28 having a small heat capacity
  • the second contact 25 is a thick wall of the semiconductor substrate 20 having a large heat capacity. It is formed on the insulating film 27 located in the part.
  • the thermopile 10 has a plurality of thermocouples 21 connected in series, and the total electromotive force of each thermocouple 21 is output from the first terminal 31 and the second terminal 32 as the output of the thermopile 10. It is taken out.
  • thermocouple 21 The electromotive force of each thermocouple 21 is small, and it is difficult to increase the temperature difference between the first contact 24 and the second contact 25 when the thermopile 10 is downsized.
  • the electromotive force of the pair tends to be small. Therefore, in order to increase the output of the thermopile 10, the total sum of electromotive forces of the thermocouple 21 is increased by usually connecting several tens to several hundreds of thermocouples 21 in series. Therefore, the sum total of the resistance values of the plurality of thermocouples 21 also increases.
  • the lead-out wiring layer 26 is led out from the midpoint 34 between the first terminal 31 and the second terminal 32 and connected to the reference potential connection terminal 33. Yes.
  • a reference potential is connected via a reference potential connection terminal 33 to the middle point 34 of the series circuit composed of a plurality of thermocouples 21.
  • thermocouple group 21a a plurality of thermocouples 21 between the first terminal 31 and the midpoint 34 shown in FIG. 1 are defined as a first thermocouple group 21a, and a plurality of thermocouples 21 between the midpoint 34 and the second terminal 32 are provided.
  • the thermocouple 21 is defined as a second thermocouple group 21b.
  • the reference potential V ref is connected to the reference potential connection terminal 33 drawn from the midpoint 34, and the plurality of thermocouples 21 are connected to the first thermocouple group 21 a and the second thermocouple 21 at the midpoint 34.
  • the thermocouple group 21b is divided.
  • the resistance values when viewed from the first terminal 31 and the second terminal 32 are the resistance component 50 of the first thermocouple group 21a and the resistance component of the second thermocouple group 21b, respectively.
  • the resistance 51 is as follows. Each thermocouple 21 is formed on the same semiconductor substrate 20 in the same process and has very little variation. Therefore, the resistance 50 of the first thermocouple group 21a and the resistance 51 of the second thermocouple group 21b. The resistance value is almost equal. Therefore, the impedance when viewed from the first terminal 31 and the second terminal 32 can be made substantially equal. As a result, when an external circuit is connected to the first terminal 31 and the second terminal 32 to form a sensor, the influence of the impedance difference between the terminals can be reduced and the offset of the sensor output can be suppressed. it can.
  • thermocouple group 21a and the second thermocouple group 21b are made of the same material, the resistance 50 of the first thermocouple group 21a and the resistance 51 of the second thermocouple group 21b. And the temperature coefficient can be made substantially equal. Therefore, the temperature coefficient of the impedance when viewed from the first terminal 31 and the second terminal 32 is also equal, and it is possible to suppress the occurrence of a difference in impedance when a temperature change occurs. Thereby, when it is set as a sensor using the thermopile 10, it becomes possible to obtain the exact sensor output, suppressing generation
  • FIG. 4 shows an equivalent circuit diagram of the thermopile sensor 11 in which the instrumentation amplifier 35 is connected to the thermopile 10 of the present embodiment.
  • the first terminal 31 and the second terminal 32 are each connected to an input terminal pair of the instrumentation amplifier 35.
  • a reference potential V ref is connected to the midpoint 34 of the thermopile 10, and each thermocouple 21 is divided into a first thermocouple group 21a and a second thermocouple group 21b.
  • the thermoelectromotive force of the first thermocouple group 21a is input the reference potential V ref as a reference, based on the reference potential V ref to the other input terminal
  • the thermoelectromotive force of the second thermocouple group 21b is input.
  • the voltage input to the input terminal pair is amplified and output as the output voltage Vout .
  • thermopile sensor 11 shown in FIG. 4, the impedance when viewed from the first terminal 31 and the second terminal 32 of the thermopile 10 is substantially equal, and therefore when viewed from each input terminal of the instrumentation amplifier 35.
  • the impedance is almost equal.
  • the temperature coefficient of the impedance when viewed from each input terminal of the instrumentation amplifier 35 can be made equal, even when a temperature change occurs, the occurrence of variations in impedance viewed from each of the input terminal pairs is prevented. can do. Thereby, it is possible to obtain an accurate sensor output by suppressing the occurrence of drift of the output voltage Vout that occurs when a temperature change occurs.
  • thermopile 10 and the thermopile sensor 11 using the same according to the present embodiment the middle point 34 of the series circuit composed of a plurality of thermocouples 21, that is, the middle of the first terminal 31 and the second terminal 32.
  • the present invention is not limited to this.
  • a configuration in which the reference potential connection terminal 33 is provided at any location between the first terminal 31 and the second terminal 32 and the reference potential V ref is connected may be employed.
  • thermopile sensor 11 the impedance difference when viewed from the first terminal 31 and the second terminal 32 of the thermopile 10 can be reduced as compared with the thermopile 110 and the thermopile sensor 111 of the conventional example.
  • the thermopile sensor 11 when the thermopile sensor 11 is used, the impedance difference between the input terminals can be easily adjusted, and the material selectivity can be expanded even when an external resistor is provided, and the design flexibility of the thermopile sensor 11 can be increased. it can.
  • each thermocouple 21 has the same temperature coefficient, it is possible to reduce the difference in temperature coefficient when viewed from the first terminal 31 and the second terminal 32 of the thermopile 10. Therefore, when the thermopile sensor 11 is used, it is possible to suppress the occurrence of drift due to a temperature change and obtain an accurate sensor output.
  • thermopile 10 of this embodiment a voltage dividing resistor 41 and a voltage dividing resistor 42 for generating the reference potential V ref are formed.
  • the voltage dividing resistor 41 and the voltage dividing resistor 42 are connected in series, the supply voltage Vs is applied to one end, and the GND is connected to the other end and grounded.
  • a reference potential is extracted from between the voltage dividing resistor 41 and the voltage dividing resistor 42 and connected to the reference potential connection terminal 33.
  • V ref V s ⁇ R2 / (R1 + R2) is applied as the reference potential V ref .
  • the reference potential V ref can be set with high accuracy. For example, if the voltage dividing resistor 41 and the voltage dividing resistor 42 are formed to have the same resistance value, a value that is 1 ⁇ 2 of the supply voltage V s is applied as the reference potential V ref .
  • the voltage dividing resistor 41 and the voltage dividing resistor 42 are preferably formed on the semiconductor substrate 20 shown in FIG. According to this, as with each thermocouple 21, the voltage dividing resistor 41 and the voltage dividing resistor 42 can be formed by a thin film process, and the resistance value can be adjusted easily and accurately by trimming with a laser or the like. Is possible. Therefore, the reference potential V ref can be set by controlling the resistance value with high accuracy.
  • the material used for the voltage dividing resistors 41 and 42 is not particularly limited, it can be formed using the same material as the first thermoelectric material layer 22 or the second thermoelectric material layer 23.
  • the voltage dividing resistor 41 and the voltage dividing resistor 42 can be formed using, for example, polysilicon.
  • the voltage dividing resistor 41 and the voltage dividing resistor 42 and the thermocouple 21 of the thermopile 10 can be formed in the same process, and the manufacturing cost can be reduced.
  • thermocouple 21 and the voltage dividing resistors 41 and 42 can be configured as one sensor chip 12, and the reference potential V ref is set as the reference potential V ref . There is no need to provide an external resistor to generate. Therefore, miniaturization of the thermopile sensor 11 can be realized.
  • FIG. 6 shows a cross-sectional view of an infrared sensor 13 using the thermopile sensor 11 of the present invention.
  • the thermopile sensor 11 is housed in a package.
  • sectional drawing of the thermopile 10 used for the infrared sensor 13 of this embodiment is shown.
  • an infrared absorption film 29 is formed across the insulating film 27 and each thermocouple 21.
  • the infrared absorption film 29 is formed at a position where the heat capacity overlapping with the through hole 28 is small, and is formed so as to overlap with the first contact 24 of the thermocouple 21 and not overlap with the second contact 25. ing.
  • the infrared absorption film 29 absorbs the infrared rays and the temperature rises. As a result, the temperature of the first contact 24 of the thermocouple 21 increases.
  • the second contact 25 is formed on the thick part of the semiconductor substrate 20 having a large heat capacity, and the thick part of the semiconductor substrate 20 functions as a heat sink, the temperature of the second contact 25 does not increase. . In this way, a temperature difference is generated between the first contact 24 and the second contact 25 due to infrared irradiation, and an electromotive force is generated in each thermocouple 21 by the Seebeck effect. The sum of the electromotive forces becomes the output of the infrared sensor 13, and the infrared rays can be detected by the change in the electromotive force.
  • thermopile sensor 11 shown in FIG. 4 or 5 is used. Even in this case, since the impedance when viewed from each input terminal of the instrumentation amplifier 35 can be made substantially equal, it is not necessary to provide an external resistor for impedance adjustment outside the semiconductor substrate 20. Therefore, the infrared sensor 13 can be downsized.
  • thermocouple group 21a and the second thermocouple group 21b when viewed from each input terminal of the instrumentation amplifier 35 are substantially equal. Therefore, when the temperature of the thermocouple 21 rises due to the absorption of infrared rays, it is possible to suppress the occurrence of drift due to temperature changes and obtain the highly accurate output of the infrared sensor 13.
  • thermopile type sensor 11 the infrared sensor 13 was comprised using the thermopile type sensor 11
  • the present invention can be applied as a temperature sensor or a flow rate sensor, and the same effect can be obtained when a catalyst layer that reacts with a specific gas is provided to form a gas sensor.

Abstract

[Problem] To provide a thermopile capable of reducing the difference in impedance and the difference in resistor temperature coefficient as viewed from each of a pair of terminals. [Solution] The thermopile includes a semiconductor substrate (20) and a plurality of thermocouples (21) formed on the semiconductor substrate (20). The plurality of thermocouples (21) are connected in series to form a series circuit. The series circuit has a pair of terminals (31, 32) for connecting to an external circuit. A reference potential is connected between the pair of terminals (31, 32).

Description

サーモパイル、及びそれを用いたサーモパイル式センサ並びに赤外線センサThermopile, thermopile sensor and infrared sensor using the same
 本発明は、サーモパイル、及びそれを用いたサーモパイル式センサ並びに赤外線センサに関し、特に、1対の端子のそれぞれから見たインピーダンスの差及び抵抗の温度係数の差を低減することが可能なサーモパイル、及びそれを用いたサーモパイル式センサ並びに赤外線センサに関する。 The present invention relates to a thermopile, a thermopile sensor using the thermopile, and an infrared sensor, and more particularly, a thermopile capable of reducing a difference in impedance and a difference in temperature coefficient of resistance viewed from each of a pair of terminals, and The present invention relates to a thermopile sensor and an infrared sensor using the same.
 産業機器や体温計などに用いられる温度センサや、熱分析などの各種の熱に関する物理量や流体のフロー、不純物濃度、気圧等を計測するセンサ素子として、サーモパイルを用いたものが知られている。 As temperature sensors used in industrial equipment and thermometers, and sensor elements that measure various heat related physical quantities such as thermal analysis, fluid flow, impurity concentration, and atmospheric pressure, those using thermopiles are known.
 図7には、従来例のサーモパイル110の平面図を示す。従来例のサーモパイル110は、図7に示すように第1の熱電材料層122と第2の熱電材料層123とが交互に直列接続されて半導体基板120上に構成されている。第1の熱電材料層122と第2の熱電材料層123とは異なる材料を用いて形成されており、1対の第1の熱電材料層122と第2の熱電材料層123とで熱電対121を構成する。サーモパイル110は、複数の熱電対121が直列接続されて構成される。各熱電対121は、第1の接点124と第2の接点125との温度差に対応する熱起電力を発生し、サーモパイル110は、各熱電対121の熱起電力を合計して、同じ温度差に対してより大きな熱起電力を得ることが可能である。そして、サーモパイル110の熱起電力は、直列回路の両端に設けられた第1の端子131及び第2の端子132から取り出される。 FIG. 7 shows a plan view of a conventional thermopile 110. As shown in FIG. 7, the conventional thermopile 110 is configured on a semiconductor substrate 120 in which first thermoelectric material layers 122 and second thermoelectric material layers 123 are alternately connected in series. The first thermoelectric material layer 122 and the second thermoelectric material layer 123 are formed using different materials. The pair of the first thermoelectric material layer 122 and the second thermoelectric material layer 123 includes the thermocouple 121. Configure. The thermopile 110 is configured by connecting a plurality of thermocouples 121 in series. Each thermocouple 121 generates a thermoelectromotive force corresponding to the temperature difference between the first contact 124 and the second contact 125, and the thermopile 110 sums the thermoelectromotive forces of the thermocouples 121 to the same temperature. It is possible to obtain a larger thermoelectromotive force with respect to the difference. And the thermoelectromotive force of the thermopile 110 is taken out from the 1st terminal 131 and the 2nd terminal 132 provided in the both ends of the series circuit.
 近年、サーモパイル110のモバイル機器などへの搭載が検討されており、小型化が望まれている。サーモパイル110を小型化する場合、第1の接点124と第2の接点125との温度差が小さくなり各熱電対121の起電力が小さくなる傾向にある。そのため、直列接続する熱電対121を増やしてサーモパイル110の感度を上げる必要がある。しかし、この場合、熱電対121を多くすることにより第1の端子131と第2の端子132との間の抵抗値が増大する。 In recent years, mounting of the thermopile 110 to mobile devices and the like has been studied, and a reduction in size is desired. When the thermopile 110 is downsized, the temperature difference between the first contact 124 and the second contact 125 is reduced, and the electromotive force of each thermocouple 121 tends to be reduced. Therefore, it is necessary to increase the sensitivity of the thermopile 110 by increasing the thermocouples 121 connected in series. However, in this case, increasing the number of thermocouples 121 increases the resistance value between the first terminal 131 and the second terminal 132.
 図8には、サーモパイル110の第1の端子131及び第2の端子132に計装増幅器135を接続したサーモパイル式センサ111の等価回路図を示す。図8に示すように、計装増幅器135の入力端子の一方には、半導体基板120の外部に設けられた外部抵抗140が接続されている。外部抵抗140を設けずにサーモパイル110と計装増幅器135とを接続した場合、上述のようにサーモパイル110が有する抵抗成分である抵抗150の値が大きいため、計装増幅器135の1対の入力端子のそれぞれから見たときのインピーダンス差が大きくなってしまう。この場合、計装増幅器135の出力V0utのオフセットが生じて正確なセンサ出力を得ることができなくなる。外部抵抗140は、計装増幅器135の1対の入力端子のそれぞれから見たときのインピーダンスの差を調整するために設けられており、これにより、計装増幅器135でのオフセットの発生を抑制してサーモパイル110からの熱起電力を正確に出力することができる。 FIG. 8 shows an equivalent circuit diagram of a thermopile sensor 111 in which an instrumentation amplifier 135 is connected to the first terminal 131 and the second terminal 132 of the thermopile 110. As shown in FIG. 8, an external resistor 140 provided outside the semiconductor substrate 120 is connected to one input terminal of the instrumentation amplifier 135. When the thermopile 110 and the instrumentation amplifier 135 are connected without providing the external resistor 140, the resistance 150, which is the resistance component of the thermopile 110, has a large value as described above. The impedance difference when viewed from each of the above becomes large. In this case, an offset of the output V 0ut of the instrumentation amplifier 135 occurs, and an accurate sensor output cannot be obtained. The external resistor 140 is provided to adjust the difference in impedance when viewed from each of the pair of input terminals of the instrumentation amplifier 135, thereby suppressing the occurrence of offset in the instrumentation amplifier 135. Thus, the thermoelectromotive force from the thermopile 110 can be output accurately.
 特許文献1には、サーモパイルやボロメータなどの感熱抵抗素子を用いた赤外線検出器について開示されている。特許文献1の赤外線検出器において、感熱抵抗素子の自己発熱に伴うオフセットの発生を調整するための外部回路が接続されている。 Patent Document 1 discloses an infrared detector using a thermal resistance element such as a thermopile or a bolometer. In the infrared detector of Patent Document 1, an external circuit for adjusting the occurrence of offset due to self-heating of the thermosensitive resistor element is connected.
特開2005-221264号公報JP 2005-221264 A
 しかしながら、従来例のサーモパイル式センサ111においては、図8に示すように外部抵抗140を設けてインピーダンス差を調整する必要があるため、小型化を阻害する要因となる。さらに、サーモパイル110の有する抵抗成分である抵抗150と同等の抵抗値を有する外部抵抗140を設けなければならず、外部抵抗140の材料選択性やサーモパイル式センサ111の設計自由度が小さくなる。 However, in the conventional thermopile sensor 111, it is necessary to provide an external resistor 140 to adjust the impedance difference as shown in FIG. Furthermore, an external resistor 140 having a resistance value equivalent to the resistor 150, which is a resistance component of the thermopile 110, must be provided, and the material selectivity of the external resistor 140 and the design flexibility of the thermopile sensor 111 are reduced.
 また、サーモパイル110の抵抗150と外部抵抗140とは異なる温度係数を有しており、一致させることは困難である。そのため、使用環境の温度変化が生じた場合、サーモパイル110の抵抗150と外部抵抗140との抵抗値に変化が生じて、計装増幅器135から見たときの入力インピーダンスの差が大きくなってしまう。この場合、計装増幅器135からの出力Voutにドリフトが発生して、正確なセンサ出力を得ることができないという課題が生じる。 Further, the resistance 150 of the thermopile 110 and the external resistance 140 have different temperature coefficients, and it is difficult to match them. Therefore, when a temperature change occurs in the usage environment, the resistance value between the resistor 150 of the thermopile 110 and the external resistor 140 changes, and the difference in input impedance when viewed from the instrumentation amplifier 135 becomes large. In this case, a drift occurs in the output V out from the instrumentation amplifier 135, causing a problem that an accurate sensor output cannot be obtained.
 本発明は、上記課題を解決して、1対の端子のそれぞれから見たときのインピーダンスの差及び抵抗の温度係数の差を低減することが可能なサーモパイル、及びそれを用いたサーモパイル式センサ並びに赤外線センサを提供することを目的とする。 The present invention solves the above-described problem, and can reduce a difference in impedance and a difference in temperature coefficient of resistance when viewed from each of a pair of terminals, a thermopile sensor using the thermopile, and An object is to provide an infrared sensor.
 本発明のサーモパイルは、半導体基板と、前記半導体基板の上に形成された複数の熱電対と、を有し、前記複数の熱電対は直列接続されて直列回路を構成しており、前記直列回路には外部回路と接続するための1対の端子が設けられ、前記1対の端子間に基準電位が接続されていることを特徴とする。 The thermopile of the present invention includes a semiconductor substrate and a plurality of thermocouples formed on the semiconductor substrate, and the plurality of thermocouples are connected in series to form a series circuit, and the series circuit Is provided with a pair of terminals for connection to an external circuit, and a reference potential is connected between the pair of terminals.
 これによれば、複数の熱電対から構成される直列回路は、基準電位が接続された箇所において抵抗値が分割される。分割された熱電対をそれぞれ第1の熱電対群、第2の熱電対群とすると、1対の端子から見たときの抵抗値は、それぞれ第1の熱電対群の抵抗値、第2の熱電対群の抵抗値となる。したがって、従来例のサーモパイルと比較して1対の端子のそれぞれから見たときのインピーダンス差を小さくすることができる。また、第1の熱電対群と第2の熱電対群とは同じ材料で形成された熱電対から構成されているため、同じ温度係数を有している。したがって、1対の端子のそれぞれから見たときの抵抗の温度係数の差を低減することが可能であり、温度変化が生じた場合においても従来例のサーモパイルと比較してインピーダンスの差を低減できる。 According to this, in the series circuit composed of a plurality of thermocouples, the resistance value is divided at the location where the reference potential is connected. Assuming that the divided thermocouples are a first thermocouple group and a second thermocouple group, respectively, the resistance values when viewed from one pair of terminals are the resistance values of the first thermocouple group and the second thermocouple group, respectively. The resistance value of the thermocouple group. Therefore, the impedance difference when viewed from each of the pair of terminals can be reduced as compared with the thermopile of the conventional example. Further, since the first thermocouple group and the second thermocouple group are composed of thermocouples formed of the same material, they have the same temperature coefficient. Therefore, it is possible to reduce the difference in temperature coefficient of resistance when viewed from each of the pair of terminals, and even when a temperature change occurs, the difference in impedance can be reduced as compared with the conventional thermopile. .
 本発明のサーモパイルによれば、1対の端子のそれぞれから見たときのインピーダンスの差及び抵抗の温度係数の差を低減することが可能である。 According to the thermopile of the present invention, it is possible to reduce the difference in impedance and the difference in temperature coefficient of resistance when viewed from each of the pair of terminals.
 本発明のサーモパイルにおいて、前記基準電位は前記直列回路の中点に接続されていることが好適である。これによれば、直列回路において、一対の端子のそれぞれから見たときのインピーダンス、及び抵抗の温度係数を等しくすることできる。また、本発明のサーモパイルを用いてサーモパイル式センサとしたときに、インピーダンス調整のために外部抵抗を設ける必要がないため小型化が可能である。さらに、温度係数のずれによるドリフトの発生も抑制でき正確な出力を得ることができる。 In the thermopile of the present invention, it is preferable that the reference potential is connected to a midpoint of the series circuit. According to this, in the series circuit, the impedance and the temperature coefficient of resistance when viewed from each of the pair of terminals can be made equal. In addition, when a thermopile sensor is formed using the thermopile of the present invention, it is not necessary to provide an external resistor for impedance adjustment, so that the size can be reduced. Furthermore, it is possible to suppress the occurrence of drift due to a temperature coefficient shift and obtain an accurate output.
 本発明のサーモパイルは、前記半導体基板の上に前記基準電位を生成する分圧抵抗が形成されていることが好適である。これによれば、分圧抵抗についても各熱電対と同様に薄膜プロセスで形成することができるため、半導体基板の外部に分圧抵抗(外部抵抗)を設ける場合に比べて、高精度に抵抗値制御を行うことが可能であり、また、センサの小型化も可能となる。 In the thermopile of the present invention, it is preferable that a voltage dividing resistor for generating the reference potential is formed on the semiconductor substrate. According to this, since the voltage dividing resistor can be formed by a thin film process in the same manner as each thermocouple, the resistance value is more accurate than when a voltage dividing resistor (external resistor) is provided outside the semiconductor substrate. Control can be performed, and the size of the sensor can be reduced.
 本発明のサーモパイル式センサは、上記のいずれかのサーモパイルを用いたことを特徴とする。これによれば、サーモパイルの1対の端子のそれぞれから見たときのインピーダンスの差及び抵抗の温度係数の差が小さいため、計装増幅器などの外部回路を接続した場合にインピーダンス調整が容易に行うことができ、または、インピーダンス調整が不要となる。さらに、温度変化が生じた場合にもインピーダンス差を低減できるため、ドリフトの発生を抑制して正確なセンサ出力を得ることができる。 The thermopile sensor of the present invention is characterized by using any one of the above thermopile. According to this, since the difference in impedance when viewed from each of the pair of terminals of the thermopile and the difference in temperature coefficient of resistance are small, impedance adjustment can be easily performed when an external circuit such as an instrumentation amplifier is connected. Or impedance adjustment is not necessary. Furthermore, since the impedance difference can be reduced even when a temperature change occurs, the occurrence of drift can be suppressed and an accurate sensor output can be obtained.
 本発明の赤外線センサは、上記のサーモパイル式センサを用いたことを特徴とする。これによれば、サーモパイルの1対の端子からそれぞれ見たときのインピーダンスの差及び抵抗の温度係数の差を小さくすることにより、オフセットや温度ドリフトの発生を抑制して赤外線センサの測定精度を向上させることができる。 The infrared sensor of the present invention is characterized by using the above-described thermopile sensor. According to this, by reducing the difference in impedance and the temperature coefficient of resistance when viewed from a pair of terminals of the thermopile, the occurrence of offset and temperature drift is suppressed and the measurement accuracy of the infrared sensor is improved. Can be made.
 本発明のサーモパイルによれば、複数の熱電対から構成される直列回路は、基準電位が接続された箇所において抵抗値が分割される。分割された熱電対をそれぞれ第1の熱電対群、第2の熱電対群とすると、1対の端子から見たときの抵抗値は、それぞれ第1の熱電対群の抵抗値、第2の熱電対群の抵抗値となる。したがって、従来例のサーモパイルと比較して1対の端子から見たときのインピーダンス差を小さくすることができる。また、第1の熱電対群と第2の熱電対群とは同じ材料で形成された熱電対から構成されているため、同じ温度係数を有している。したがって、1対の端子のそれぞれから見たときの抵抗の温度係数の差を低減することが可能であり、温度変化が生じた場合においても従来例のサーモパイルと比較してインピーダンスの差を低減できる。 According to the thermopile of the present invention, the resistance value of the series circuit composed of a plurality of thermocouples is divided at the location where the reference potential is connected. Assuming that the divided thermocouples are a first thermocouple group and a second thermocouple group, respectively, the resistance values when viewed from one pair of terminals are the resistance values of the first thermocouple group and the second thermocouple group, respectively. The resistance value of the thermocouple group. Therefore, the impedance difference when viewed from a pair of terminals can be reduced as compared with the conventional thermopile. Further, since the first thermocouple group and the second thermocouple group are composed of thermocouples formed of the same material, they have the same temperature coefficient. Therefore, it is possible to reduce the difference in temperature coefficient of resistance when viewed from each of the pair of terminals, and even when a temperature change occurs, the difference in impedance can be reduced as compared with the conventional thermopile. .
 本発明のサーモパイルによれば、1対の端子のそれぞれから見たときのインピーダンスの差及び抵抗の温度係数の差を低減することが可能である。 According to the thermopile of the present invention, it is possible to reduce the difference in impedance and the difference in temperature coefficient of resistance when viewed from each of the pair of terminals.
本発明の実施形態におけるサーモパイルの平面図である。It is a top view of the thermopile in the embodiment of the present invention. 図1のII-II線で切断したときのサーモパイルの断面図である。FIG. 2 is a cross-sectional view of a thermopile when cut along line II-II in FIG. 1. 本実施形態のサーモパイルの等価回路図である。It is an equivalent circuit diagram of the thermopile of this embodiment. 本発明の実施形態におけるサーモパイル式センサの等価回路図である。It is an equivalent circuit diagram of the thermopile sensor in the embodiment of the present invention. サーモパイルの変形例、及びそれを用いたサーモパイル式センサを示す等価回路図である。It is an equivalent circuit diagram which shows the modification of a thermopile, and a thermopile type sensor using the same. 本発明の赤外線センサの断面図である。It is sectional drawing of the infrared sensor of this invention. 従来例のサーモパイルの平面図である。It is a top view of the thermopile of a prior art example. 従来例のサーモパイル式センサの等価回路図である。It is an equivalent circuit diagram of a thermopile sensor of a conventional example.
 以下、図面を参照して、本発明の実施形態について説明をする。図1には、本実施形態におけるサーモパイル10の平面図を示す。また、図2には、図1のII-II線で切断したときのサーモパイル10の断面図を示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, the top view of the thermopile 10 in this embodiment is shown. FIG. 2 is a cross-sectional view of the thermopile 10 taken along the line II-II in FIG.
 図1に示すように、サーモパイル10は、直列に接続された複数の熱電対21を有して構成されている。各熱電対21は、第1の熱電材料層22と第2の熱電材料層23とが第1の接点24で接続されて構成されている。また、複数の熱電対21どうしは、第2の接点25で接続されている。これにより、複数の熱電対21が直列に接続されて直列回路を構成する。複数の熱電対21には、第1の端子31、及び第2の端子32が接続されており、外部回路と接続可能となっている。 As shown in FIG. 1, the thermopile 10 includes a plurality of thermocouples 21 connected in series. Each thermocouple 21 is configured by connecting a first thermoelectric material layer 22 and a second thermoelectric material layer 23 by a first contact 24. The plurality of thermocouples 21 are connected by the second contact 25. Thereby, the some thermocouple 21 is connected in series and comprises a series circuit. A first terminal 31 and a second terminal 32 are connected to the plurality of thermocouples 21 and can be connected to an external circuit.
 第1の熱電材料層22と第2の熱電材料層23とは互いに異なる材料を用いて形成されており、本実施形態において第1の熱電材料層22としてポリシリコンを用い、第2の熱電材料層23としてアルミニウムを用いて形成されている。第1の熱電材料層22及び第2の熱電材料層23は、スパッタ法などの薄膜法で成膜されて、フォトリソグラフィによってパターニングされる。これにより、図1に示すような、直列接続された熱電対21が形成される。 The first thermoelectric material layer 22 and the second thermoelectric material layer 23 are formed using different materials. In the present embodiment, polysilicon is used as the first thermoelectric material layer 22, and the second thermoelectric material is used. The layer 23 is formed using aluminum. The first thermoelectric material layer 22 and the second thermoelectric material layer 23 are formed by a thin film method such as sputtering, and are patterned by photolithography. Thereby, the thermocouple 21 connected in series as shown in FIG. 1 is formed.
 図2に示すように、サーモパイル10は、半導体基板20を有して構成されており、半導体基板20には上下に開口する貫通孔28が形成されている。本実施形態において、半導体基板20としてシリコン基板を用いることができ、貫通孔28は、半導体基板20の下面からエッチングすることにより形成することができる。半導体基板20の上面には貫通孔28を覆うように薄膜で形成された絶縁膜27が設けられており、絶縁膜27の上面に複数の熱電対21が形成されている。図1に示すように、複数の熱電対21は貫通孔28を囲むように形成されており、第1の接点24は貫通孔28と重なる位置に、また、第2の接点25は半導体基板20の厚肉部と重なる位置に形成されている。 As shown in FIG. 2, the thermopile 10 includes a semiconductor substrate 20, and the semiconductor substrate 20 has a through hole 28 that opens up and down. In the present embodiment, a silicon substrate can be used as the semiconductor substrate 20, and the through hole 28 can be formed by etching from the lower surface of the semiconductor substrate 20. An insulating film 27 formed as a thin film is provided on the upper surface of the semiconductor substrate 20 so as to cover the through hole 28, and a plurality of thermocouples 21 are formed on the upper surface of the insulating film 27. As shown in FIG. 1, the plurality of thermocouples 21 are formed so as to surround the through hole 28, the first contact 24 is in a position overlapping the through hole 28, and the second contact 25 is the semiconductor substrate 20. It is formed in the position which overlaps with the thick part.
 絶縁膜27として、シリコン窒化膜やシリコン酸化膜等を用いることができる。また、本実施形態において半導体基板20に貫通孔28が形成されているが、この態様に限られず、半導体基板20の上面または下面にエッチングによりキャビティを形成した構成であっても良い。 As the insulating film 27, a silicon nitride film, a silicon oxide film, or the like can be used. In the present embodiment, the through hole 28 is formed in the semiconductor substrate 20. However, the present invention is not limited to this mode, and a configuration in which a cavity is formed on the upper surface or the lower surface of the semiconductor substrate 20 by etching may be used.
 図1及び図2に示すように、第1の接点24は熱容量が小さい貫通孔28に位置する絶縁膜27上に形成され、また、第2の接点25は熱容量が大きい半導体基板20の厚肉部に位置する絶縁膜27上に形成されている。これにより、第1の接点24と第2の接点25との間に温度差が生じた場合、ゼーベック効果により熱電対21に熱起電力が発生する。図1に示すように、サーモパイル10は複数の熱電対21が直列に接続されており、各熱電対21の起電力の総和がサーモパイル10の出力として第1の端子31及び第2の端子32から取り出される。 As shown in FIGS. 1 and 2, the first contact 24 is formed on the insulating film 27 located in the through hole 28 having a small heat capacity, and the second contact 25 is a thick wall of the semiconductor substrate 20 having a large heat capacity. It is formed on the insulating film 27 located in the part. Thereby, when a temperature difference arises between the 1st contact 24 and the 2nd contact 25, a thermoelectromotive force generate | occur | produces in the thermocouple 21 by Seebeck effect. As shown in FIG. 1, the thermopile 10 has a plurality of thermocouples 21 connected in series, and the total electromotive force of each thermocouple 21 is output from the first terminal 31 and the second terminal 32 as the output of the thermopile 10. It is taken out.
 各熱電対21の起電力は小さいものであり、また、サーモパイル10を小型化する場合第1の接点24と第2の接点25との間の温度差を大きくすることが困難であり、各熱電対の起電力は小さくなる傾向にある。そこで、サーモパイル10の出力を大きくするために、通常数十~数百の熱電対21を直列接続することにより、熱電対21の起電力の総和を大きくしている。そのため、複数の熱電対21の抵抗値の総和も増大する。本実施形態のサーモパイル10においては、図1に示すように、第1の端子31と第2の端子32との中点34から引出配線層26が引き出され、基準電位接続端子33に接続されている。複数の熱電対21から構成される直列回路の中点34には、基準電位接続端子33を介して基準電位が接続されている。 The electromotive force of each thermocouple 21 is small, and it is difficult to increase the temperature difference between the first contact 24 and the second contact 25 when the thermopile 10 is downsized. The electromotive force of the pair tends to be small. Therefore, in order to increase the output of the thermopile 10, the total sum of electromotive forces of the thermocouple 21 is increased by usually connecting several tens to several hundreds of thermocouples 21 in series. Therefore, the sum total of the resistance values of the plurality of thermocouples 21 also increases. In the thermopile 10 of this embodiment, as shown in FIG. 1, the lead-out wiring layer 26 is led out from the midpoint 34 between the first terminal 31 and the second terminal 32 and connected to the reference potential connection terminal 33. Yes. A reference potential is connected via a reference potential connection terminal 33 to the middle point 34 of the series circuit composed of a plurality of thermocouples 21.
 図3には、本実施形態のサーモパイル10の等価回路図を示す。ここで、図1に示す第1の端子31と中点34との間における複数の熱電対21を第1の熱電対群21aとして、中点34と第2の端子32との間の複数の熱電対21を第2の熱電対群21bとする。図3に示すように、中点34から引き出された基準電位接続端子33には基準電位Vrefが接続されて、複数の熱電対21は中点34において第1の熱電対群21aと第2の熱電対群21bとに分割される。 In FIG. 3, the equivalent circuit schematic of the thermopile 10 of this embodiment is shown. Here, a plurality of thermocouples 21 between the first terminal 31 and the midpoint 34 shown in FIG. 1 are defined as a first thermocouple group 21a, and a plurality of thermocouples 21 between the midpoint 34 and the second terminal 32 are provided. The thermocouple 21 is defined as a second thermocouple group 21b. As shown in FIG. 3, the reference potential V ref is connected to the reference potential connection terminal 33 drawn from the midpoint 34, and the plurality of thermocouples 21 are connected to the first thermocouple group 21 a and the second thermocouple 21 at the midpoint 34. The thermocouple group 21b is divided.
 これにより、第1の端子31及び第2の端子32から見たときの抵抗値は、それぞれ、第1の熱電対群21aの抵抗成分である抵抗50と第2の熱電対群21bの抵抗成分である抵抗51となる。各熱電対21は、同一の半導体基板20の上に同一の工程で形成されて、バラツキは非常に小さいため、第1の熱電対群21aの抵抗50と第2の熱電対群21bの抵抗51とはほぼ等しい抵抗値となる。したがって、第1の端子31及び第2の端子32から見たときのインピーダンスをほぼ等しくすることができる。これにより、第1の端子31と第2の端子32とに外部回路を接続してセンサとした場合に、端子間のインピーダンス差の影響を低減してセンサ出力のオフセットの発生を抑制することができる。 Thus, the resistance values when viewed from the first terminal 31 and the second terminal 32 are the resistance component 50 of the first thermocouple group 21a and the resistance component of the second thermocouple group 21b, respectively. The resistance 51 is as follows. Each thermocouple 21 is formed on the same semiconductor substrate 20 in the same process and has very little variation. Therefore, the resistance 50 of the first thermocouple group 21a and the resistance 51 of the second thermocouple group 21b. The resistance value is almost equal. Therefore, the impedance when viewed from the first terminal 31 and the second terminal 32 can be made substantially equal. As a result, when an external circuit is connected to the first terminal 31 and the second terminal 32 to form a sensor, the influence of the impedance difference between the terminals can be reduced and the offset of the sensor output can be suppressed. it can.
 また、第1の熱電対群21aと第2の熱電対群21bとは同じ材料から形成されていることから、第1の熱電対群21aの抵抗50と第2の熱電対群21bの抵抗51との温度係数をほぼ等しくすることができる。したがって、第1の端子31及び第2の端子32から見たときのインピーダンスの温度係数についても等しくなり、温度変化が生じた場合のインピーダンスの差の発生を抑えることが可能である。これにより、サーモパイル10を用いてセンサとした場合に、温度変化によるドリフトの発生を抑制して正確なセンサ出力を得ることが可能となる。 Further, since the first thermocouple group 21a and the second thermocouple group 21b are made of the same material, the resistance 50 of the first thermocouple group 21a and the resistance 51 of the second thermocouple group 21b. And the temperature coefficient can be made substantially equal. Therefore, the temperature coefficient of the impedance when viewed from the first terminal 31 and the second terminal 32 is also equal, and it is possible to suppress the occurrence of a difference in impedance when a temperature change occurs. Thereby, when it is set as a sensor using the thermopile 10, it becomes possible to obtain the exact sensor output, suppressing generation | occurrence | production of the drift by a temperature change.
 図4には、本実施形態のサーモパイル10に計装増幅器35を接続したサーモパイル式センサ11の等価回路図を示す。図4に示すように第1の端子31及び第2の端子32は、それぞれ計装増幅器35の入力端子対に接続されている。サーモパイル10の中点34には基準電位Vrefが接続されて、各熱電対21は第1の熱電対群21aと第2の熱電対群21bとに分割されている。これにより、計装増幅器35の一方の入力端子には、基準電位Vrefを基準とした第1の熱電対群21aの熱起電力が入力され、他方の入力端子には基準電位Vrefを基準とした第2の熱電対群21bの熱起電力が入力される。そして、入力端子対に入力された電圧が増幅されて出力電圧Voutとして出力される。 FIG. 4 shows an equivalent circuit diagram of the thermopile sensor 11 in which the instrumentation amplifier 35 is connected to the thermopile 10 of the present embodiment. As shown in FIG. 4, the first terminal 31 and the second terminal 32 are each connected to an input terminal pair of the instrumentation amplifier 35. A reference potential V ref is connected to the midpoint 34 of the thermopile 10, and each thermocouple 21 is divided into a first thermocouple group 21a and a second thermocouple group 21b. Thus, to one input terminal of the instrumentation amplifier 35, the thermoelectromotive force of the first thermocouple group 21a is input the reference potential V ref as a reference, based on the reference potential V ref to the other input terminal The thermoelectromotive force of the second thermocouple group 21b is input. Then, the voltage input to the input terminal pair is amplified and output as the output voltage Vout .
 図4に示すサーモパイル式センサ11において、サーモパイル10の第1の端子31及び第2の端子32から見たときのインピーダンスはほぼ等しくなることから、計装増幅器35の各入力端子から見たときのインピーダンスはほぼ等しい値となる。 In the thermopile sensor 11 shown in FIG. 4, the impedance when viewed from the first terminal 31 and the second terminal 32 of the thermopile 10 is substantially equal, and therefore when viewed from each input terminal of the instrumentation amplifier 35. The impedance is almost equal.
 これにより、入力インピーダンスの差に起因して発生する出力電圧Voutのオフセットの発生を抑制することができ、正確なセンサ出力を得ることができる。また、インピーダンスの調整が不要であるため、図8の従来例のサーモパイル式センサ111で示したような、インピーダンス調整用の外部抵抗140を半導体基板120の外部に接続する必要がないことから、サーモパイル式センサ11の小型化が可能である。 Thereby, it is possible to suppress the occurrence of the offset of the output voltage Vout caused by the difference in input impedance, and an accurate sensor output can be obtained. Further, since it is not necessary to adjust the impedance, it is not necessary to connect the external resistor 140 for impedance adjustment to the outside of the semiconductor substrate 120 as shown in the conventional thermopile sensor 111 of FIG. The type sensor 11 can be downsized.
 また、計装増幅器35の各入力端子から見たときのインピーダンスの温度係数も等しくすることができるため、温度変化が生じた場合にも入力端子対のそれぞれから見たインピーダンスのバラツキの発生を防止することができる。これにより、温度変化が生じたときに発生する出力電圧Voutのドリフトの発生を抑制して、正確なセンサ出力を得ることが可能である。 In addition, since the temperature coefficient of the impedance when viewed from each input terminal of the instrumentation amplifier 35 can be made equal, even when a temperature change occurs, the occurrence of variations in impedance viewed from each of the input terminal pairs is prevented. can do. Thereby, it is possible to obtain an accurate sensor output by suppressing the occurrence of drift of the output voltage Vout that occurs when a temperature change occurs.
 本実施形態に示すサーモパイル10及びこれを用いたサーモパイル式センサ11において、複数の熱電対21から構成される直列回路の中点34、つまり、第1の端子31と第2の端子32との中点34に基準電位Vrefが接続された構成を示しているが、これに限定されるものではない。第1の端子31と第2の端子32との間のいずれかの箇所に基準電位接続端子33を設けて基準電位Vrefを接続した構成であっても良い。 In the thermopile 10 and the thermopile sensor 11 using the same according to the present embodiment, the middle point 34 of the series circuit composed of a plurality of thermocouples 21, that is, the middle of the first terminal 31 and the second terminal 32. Although a configuration in which the reference potential V ref is connected to the point 34 is shown, the present invention is not limited to this. A configuration in which the reference potential connection terminal 33 is provided at any location between the first terminal 31 and the second terminal 32 and the reference potential V ref is connected may be employed.
 この場合であっても、従来例のサーモパイル110、及びサーモパイル式センサ111に比べて、サーモパイル10の第1の端子31及び第2の端子32から見たときのインピーダンス差を小さくすることができる。これにより、サーモパイル式センサ11とした場合に、入力端子間のインピーダンス差の調整が容易になり、外部抵抗を設ける場合にも材料選択性が拡がり、サーモパイル式センサ11の設計自由度を高めることができる。また、各熱電対21はそれぞれ同じ温度係数を有しているため、サーモパイル10の第1の端子31及び第2の端子32から見たときの温度係数の差を小さくすることが可能である。したがって、サーモパイル式センサ11とした場合に、温度変化によるドリフトの発生を抑制して、正確なセンサ出力を得ることができる。 Even in this case, the impedance difference when viewed from the first terminal 31 and the second terminal 32 of the thermopile 10 can be reduced as compared with the thermopile 110 and the thermopile sensor 111 of the conventional example. As a result, when the thermopile sensor 11 is used, the impedance difference between the input terminals can be easily adjusted, and the material selectivity can be expanded even when an external resistor is provided, and the design flexibility of the thermopile sensor 11 can be increased. it can. Moreover, since each thermocouple 21 has the same temperature coefficient, it is possible to reduce the difference in temperature coefficient when viewed from the first terminal 31 and the second terminal 32 of the thermopile 10. Therefore, when the thermopile sensor 11 is used, it is possible to suppress the occurrence of drift due to a temperature change and obtain an accurate sensor output.
 図5には、本実施形態のサーモパイル10の変形例、及びこれを用いたサーモパイル式センサ11の等価回路図を示す。本変形例のサーモパイル10において、基準電位Vrefを生成するための分圧抵抗41と分圧抵抗42とが形成されている。図5に示すように、分圧抵抗41と分圧抵抗42とは直列に接続されて、その一端には供給電圧Vsが印加され、他端にはGNDが接続されて接地されている。そして、分圧抵抗41と分圧抵抗42との間から基準電位が取り出されて、基準電位接続端子33に接続されている。分圧抵抗41の抵抗値をR1、分圧抵抗42の抵抗値をR2としたとき、基準電位VrefとしてVref=V×R2/(R1+R2)が印加される。分圧抵抗41及び分圧抵抗42を適切に設定することにより、基準電位Vrefを精度良く設定することができる。例えば、分圧抵抗41と分圧抵抗42とを同じ抵抗値になるように形成すれば、供給電圧Vの1/2の値が基準電位Vrefとして印加される。 In FIG. 5, the modification of the thermopile 10 of this embodiment and the equivalent circuit schematic of the thermopile sensor 11 using the same are shown. In the thermopile 10 of this modification, a voltage dividing resistor 41 and a voltage dividing resistor 42 for generating the reference potential V ref are formed. As shown in FIG. 5, the voltage dividing resistor 41 and the voltage dividing resistor 42 are connected in series, the supply voltage Vs is applied to one end, and the GND is connected to the other end and grounded. A reference potential is extracted from between the voltage dividing resistor 41 and the voltage dividing resistor 42 and connected to the reference potential connection terminal 33. When the resistance value of the voltage dividing resistor 41 is R1 and the resistance value of the voltage dividing resistor 42 is R2, V ref = V s × R2 / (R1 + R2) is applied as the reference potential V ref . By appropriately setting the voltage dividing resistor 41 and the voltage dividing resistor 42, the reference potential V ref can be set with high accuracy. For example, if the voltage dividing resistor 41 and the voltage dividing resistor 42 are formed to have the same resistance value, a value that is ½ of the supply voltage V s is applied as the reference potential V ref .
 また、本変形例において分圧抵抗41及び分圧抵抗42は、図2に示す半導体基板20の上に形成されていることが好ましい。これによれば、各熱電対21と同様に、分圧抵抗41及び分圧抵抗42を薄膜プロセスで形成することができ、レーザーなどのトリミングによって抵抗値の調整を容易に、かつ正確に行うことが可能となる。したがって、高精度に抵抗値を制御して基準電位Vrefを設定することができる。 In the present modification, the voltage dividing resistor 41 and the voltage dividing resistor 42 are preferably formed on the semiconductor substrate 20 shown in FIG. According to this, as with each thermocouple 21, the voltage dividing resistor 41 and the voltage dividing resistor 42 can be formed by a thin film process, and the resistance value can be adjusted easily and accurately by trimming with a laser or the like. Is possible. Therefore, the reference potential V ref can be set by controlling the resistance value with high accuracy.
 分圧抵抗41、42に用いられる材料は、特に限定されるものではないが、第1の熱電材料層22または第2の熱電材料層23と同じ材料を用いて形成することができる。本変形例において、例えばポリシリコンを用いて分圧抵抗41及び分圧抵抗42を形成することができる。この場合、分圧抵抗41及び分圧抵抗42と、サーモパイル10の熱電対21とを同じ工程で形成することが可能であり製造コストを低減することが可能となる。 Although the material used for the voltage dividing resistors 41 and 42 is not particularly limited, it can be formed using the same material as the first thermoelectric material layer 22 or the second thermoelectric material layer 23. In this modification, the voltage dividing resistor 41 and the voltage dividing resistor 42 can be formed using, for example, polysilicon. In this case, the voltage dividing resistor 41 and the voltage dividing resistor 42 and the thermocouple 21 of the thermopile 10 can be formed in the same process, and the manufacturing cost can be reduced.
 また、分圧抵抗41、42を半導体基板20の上に形成することにより、一つのセンサチップ12として各熱電対21と分圧抵抗41、42とを構成することができ、基準電位Vrefを生成するために外部抵抗を設ける必要がない。したがって、サーモパイル式センサ11の小型化を実現することができる。 Further, by forming the voltage dividing resistors 41 and 42 on the semiconductor substrate 20, each thermocouple 21 and the voltage dividing resistors 41 and 42 can be configured as one sensor chip 12, and the reference potential V ref is set as the reference potential V ref . There is no need to provide an external resistor to generate. Therefore, miniaturization of the thermopile sensor 11 can be realized.
 図6には、本発明のサーモパイル式センサ11を用いた赤外線センサ13の断面図を示す。本実施形態の赤外線センサ13において、サーモパイル式センサ11はパッケージに収納される。図6には、本実施形態の赤外線センサ13に用いられるサーモパイル10の断面図を示す。 FIG. 6 shows a cross-sectional view of an infrared sensor 13 using the thermopile sensor 11 of the present invention. In the infrared sensor 13 of the present embodiment, the thermopile sensor 11 is housed in a package. In FIG. 6, sectional drawing of the thermopile 10 used for the infrared sensor 13 of this embodiment is shown.
 図6に示すように、赤外線センサ13において、絶縁膜27及び各熱電対21に亘って赤外線吸収膜29が形成されている。赤外線吸収膜29は、貫通孔28と重なる熱容量が小さい位置に形成されており、熱電対21の第1の接点24と重なるように、また、第2の接点25とは重ならないように形成されている。 As shown in FIG. 6, in the infrared sensor 13, an infrared absorption film 29 is formed across the insulating film 27 and each thermocouple 21. The infrared absorption film 29 is formed at a position where the heat capacity overlapping with the through hole 28 is small, and is formed so as to overlap with the first contact 24 of the thermocouple 21 and not overlap with the second contact 25. ing.
 赤外線センサ13に赤外線が照射されると、赤外線吸収膜29が赤外線を吸収して温度が上昇する。これにより、熱電対21の第1の接点24の温度が上昇する。一方、第2の接点25は、熱容量が大きい半導体基板20の厚肉部上に形成されており、半導体基板20の厚肉部がヒートシンクとして機能するため、第2の接点25の温度は上昇しない。このようにして、赤外線の照射により第1の接点24と第2の接点25との間に温度差が生じ、ゼーベック効果により各熱電対21に起電力が発生する。この起電力の総和が赤外線センサ13の出力となり、起電力の変化によって赤外線を検出することができる。 When the infrared sensor 13 is irradiated with infrared rays, the infrared absorption film 29 absorbs the infrared rays and the temperature rises. As a result, the temperature of the first contact 24 of the thermocouple 21 increases. On the other hand, since the second contact 25 is formed on the thick part of the semiconductor substrate 20 having a large heat capacity, and the thick part of the semiconductor substrate 20 functions as a heat sink, the temperature of the second contact 25 does not increase. . In this way, a temperature difference is generated between the first contact 24 and the second contact 25 due to infrared irradiation, and an electromotive force is generated in each thermocouple 21 by the Seebeck effect. The sum of the electromotive forces becomes the output of the infrared sensor 13, and the infrared rays can be detected by the change in the electromotive force.
 本実施形態の赤外線センサ13において、図4または図5に示したサーモパイル式センサ11が用いられている。この場合においても、計装増幅器35の各入力端子から見たときのインピーダンスをほぼ等しくすることができるため、インピーダンス調整用の外部抵抗を半導体基板20の外部に設ける必要がない。したがって、赤外線センサ13の小型化が可能となる。 In the infrared sensor 13 of the present embodiment, the thermopile sensor 11 shown in FIG. 4 or 5 is used. Even in this case, since the impedance when viewed from each input terminal of the instrumentation amplifier 35 can be made substantially equal, it is not necessary to provide an external resistor for impedance adjustment outside the semiconductor substrate 20. Therefore, the infrared sensor 13 can be downsized.
 また、計装増幅器35の各入力端子から見たときの第1の熱電対群21aと第2の熱電対群21bとの温度係数はほぼ等しくなる。したがって、赤外線の吸収に伴い熱電対21の温度が上昇した場合において、温度変化によるドリフトの発生を抑制して、高精度な赤外線センサ13の出力を得ることができる。 Also, the temperature coefficients of the first thermocouple group 21a and the second thermocouple group 21b when viewed from each input terminal of the instrumentation amplifier 35 are substantially equal. Therefore, when the temperature of the thermocouple 21 rises due to the absorption of infrared rays, it is possible to suppress the occurrence of drift due to temperature changes and obtain the highly accurate output of the infrared sensor 13.
 なお、本実施形態において、サーモパイル式センサ11を用いて赤外線センサ13を構成する場合を示したが、これに限定されるものではない。例えば、温度センサや流量センサとして応用することが可能であり、また、特定のガスに反応する触媒層を設けてガスセンサとした場合等においても同様の効果を奏する。 In addition, in this embodiment, although the case where the infrared sensor 13 was comprised using the thermopile type sensor 11 was shown, it is not limited to this. For example, the present invention can be applied as a temperature sensor or a flow rate sensor, and the same effect can be obtained when a catalyst layer that reacts with a specific gas is provided to form a gas sensor.
 10 サーモパイル
 11 サーモパイル式センサ
 13 赤外線センサ
 20 半導体基板
 21 熱電対
 21a 第1の熱電対群
 21b 第2の熱電対群
 22 第1の熱電材料層
 23 第2の熱電材料層
 24 第1の接点
 25 第2の接点
 26 引出配線層
 27 絶縁膜
 28 貫通孔
 29 赤外線吸収膜
 31 第1の端子
 32 第2の端子
 33 基準電位接続端子
 34 中点
 35 計装増幅器
 41、42 分圧抵抗
 50、51 抵抗
DESCRIPTION OF SYMBOLS 10 Thermopile 11 Thermopile type sensor 13 Infrared sensor 20 Semiconductor substrate 21 Thermocouple 21a 1st thermocouple group 21b 2nd thermocouple group 22 1st thermoelectric material layer 23 2nd thermoelectric material layer 24 1st contact 25 25th 2 contacts 26 Lead-out wiring layer 27 Insulating film 28 Through-hole 29 Infrared absorbing film 31 First terminal 32 Second terminal 33 Reference potential connection terminal 34 Middle point 35 Instrumentation amplifier 41, 42 Voltage dividing resistor 50, 51 Resistance

Claims (5)

  1.  半導体基板と、
    前記半導体基板の上に形成された複数の熱電対と、を有し、
    前記複数の熱電対は直列接続されて直列回路を構成しており、
    前記直列回路には外部回路と接続するための1対の端子が設けられ、
    前記1対の端子間に基準電位が接続されていることを特徴とするサーモパイル。
    A semiconductor substrate;
    A plurality of thermocouples formed on the semiconductor substrate;
    The plurality of thermocouples are connected in series to form a series circuit,
    The series circuit is provided with a pair of terminals for connection to an external circuit,
    A thermopile, wherein a reference potential is connected between the pair of terminals.
  2.  前記基準電位は前記直列回路の中点に接続されていることを特徴とする請求項1に記載のサーモパイル。 The thermopile according to claim 1, wherein the reference potential is connected to a midpoint of the series circuit.
  3.  前記半導体基板の上に前記基準電位を生成する分圧抵抗が形成されていることを特徴とする請求項1または請求項2に記載のサーモパイル。 3. The thermopile according to claim 1 or 2, wherein a voltage dividing resistor for generating the reference potential is formed on the semiconductor substrate.
  4.  請求項1から請求項3のいずれか1項に記載のサーモパイルを用いたサーモパイル式センサ。 A thermopile sensor using the thermopile according to any one of claims 1 to 3.
  5.  請求項4に記載のサーモパイル式センサを用いた赤外線センサ。 An infrared sensor using the thermopile sensor according to claim 4.
PCT/JP2013/064327 2012-06-08 2013-05-23 Thermopile, thermopile sensor using same, and infrared sensor WO2013183453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-131112 2012-06-08
JP2012131112A JP2015155797A (en) 2012-06-08 2012-06-08 Thermopile, thermopile sensor using the same, and infrared sensor

Publications (1)

Publication Number Publication Date
WO2013183453A1 true WO2013183453A1 (en) 2013-12-12

Family

ID=49711851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064327 WO2013183453A1 (en) 2012-06-08 2013-05-23 Thermopile, thermopile sensor using same, and infrared sensor

Country Status (2)

Country Link
JP (1) JP2015155797A (en)
WO (1) WO2013183453A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722521B1 (en) * 2005-05-19 2007-05-28 한양대학교 산학협력단 Slab structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128140A (en) * 1993-10-29 1995-05-19 Matsushita Electric Works Ltd Infrared detector
JPH09229763A (en) * 1996-02-22 1997-09-05 Osaka Gas Co Ltd Flame sensor
US6765209B1 (en) * 2001-10-18 2004-07-20 Melexis Nv IR sensor with enhanced electrical interference protection
JP2005274283A (en) * 2004-03-24 2005-10-06 Denso Corp Power supply circuit
JP2006214758A (en) * 2005-02-01 2006-08-17 Denso Corp Infrared detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128140A (en) * 1993-10-29 1995-05-19 Matsushita Electric Works Ltd Infrared detector
JPH09229763A (en) * 1996-02-22 1997-09-05 Osaka Gas Co Ltd Flame sensor
US6765209B1 (en) * 2001-10-18 2004-07-20 Melexis Nv IR sensor with enhanced electrical interference protection
JP2005274283A (en) * 2004-03-24 2005-10-06 Denso Corp Power supply circuit
JP2006214758A (en) * 2005-02-01 2006-08-17 Denso Corp Infrared detector

Also Published As

Publication number Publication date
JP2015155797A (en) 2015-08-27

Similar Documents

Publication Publication Date Title
US10129676B2 (en) MEMS microphone, apparatus comprising a MEMS microphone and method for fabricating a MEMS microphone
KR101489104B1 (en) Electric element
US9921110B2 (en) On-chip calibration system and method for infrared sensor
US6565254B2 (en) Infrared sensing element and temperature measuring device
JP2002202168A (en) Flow sensor and method for manufacturing the same
JP5530274B2 (en) Temperature sensor
US6948847B2 (en) Temperature sensor for a MOS circuit configuration
US11047822B2 (en) Sensor device
JP2007101213A (en) Semiconductor device, infrared sensor and manufacturing method of semiconductor device
CN112119290A (en) Thermopile self-test and/or self-calibration
JP6669957B2 (en) Flow sensor
WO2013183453A1 (en) Thermopile, thermopile sensor using same, and infrared sensor
US20200284633A1 (en) Fluid sensor
US20200049647A1 (en) Sensor Device and Electronic Assembly
Socher et al. Optimal performance of CMOS compatible IR thermoelectric sensors
JP5765609B2 (en) Electrical device, integrated device, electronic circuit and temperature calibration device
US8607631B2 (en) Heated air mass WCSP package and method for accelerometer
WO2018216527A1 (en) Filter controlling expression derivation method, light measurement system, control method for fabry-perot interference filter, and filter control program
JPH03274708A (en) Heat sensitive device
KR101578374B1 (en) Thermopile sensor module
JPH0587643A (en) Thermometer for extremely low temperature
JP2002156279A (en) Thermopile type infrared sensor
JP2018141664A (en) Flow sensor
JPH0587641A (en) Thermosensitive device
JPH03176623A (en) Temperature controller for semiconductor element and temperature sensor used for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13801231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP